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DID TARSKI COMMIT "TARSKI'S FALLACY"? 

G. Y SHER 

?1. In his 1936 paper, On the Concept ofLogical Consequence, Tarski introduced 
the celebrated definition of logical consequence: "The sentence a follows logically 
from the sentences of the class F if and only if every model of the class F is also 
a model of the sentence a." [55, p. 417]1 This definition, Tarski said, is based on 
two very basic intuitions, "essential for the proper concept of consequence" [55, 
p. 415] and reflecting common linguistic usage: "Consider any class F of sentences 
and a sentence which follows from the sentences of this class. From an intuitive 
standpoint it can never happen that both the class F consists only of true sentences 
and the sentence a is false. Moreover, ... we are concerned here with the concept 
of logical, i.e., formal, consequence." [55, p. 414] Tarski believed his definition of 
logical consequence captured the intuitive notion: "It seems to me that everyone 
who understands the content of the above definition must admit that it agrees quite 
well with common usage. ... In particular, it can be proved, on the basis of this 
definition, that every consequence of true sentences must be true." [55, p. 417] The 
formality of Tarskian consequences can also be proven. Tarski's definition of logical 
consequence had a key role in the development of the model-theoretic semantics of 
modern logic and has stayed at its center ever since. 2 

In a recent book, The concept of logical consequence [9], J. Etchemendy has 
launched an all out attack on Tarski's definition: "[M]y claim is that Tarski's 
analysis is wrong, that his account of logical truth and logical consequence does 
not capture, or even come close to capturing, any pretheoretic conception of the 
logical properties." [9, p. 6] "This book consists of a single, extended argument. 
The conclusion of the argument is that the standard, semantic account of logical 
consequence is mistaken." [9, p. 8] "Various characteristics distinguish logical truths 
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from common, run-of-the mill truths, and logically valid arguments from those 
that happen to have a false premise or a true conclusion. But Tarski's analysis 
does not capture any of these characteristics ... Furthermore, we are not even 
guaranteed that [Tarski's] definition will be extensionally correct when applied 
to a given language, not even in the paradigmatic, first-order case." [9, p. 136] 
Tarski, according to Etchemendy, fell prey to a series of unfortunate confusions, 
one of which is (if Etchemendy is right) "Tarski's fallacy": Tarski made a simple, 
elementary mistake in calculating modalities, and this led him to assert that his 
definition captured the intuitive notion. In fact, Tarski's definition is a definition 
of material, not logical, consequence, though this may have eluded the logical and 
philosophical communities. 

Etchemendy's verdict is rather extreme, and if founded, its impact on our assess- 
ment of contemporary logic, not to speak of Tarski himself, will be profound. Is 
his verdict justified? I will begin with Tarski's pretheoretic account. One way to 
interpret Tarski's first intuitive consideration on logical consequence is as follows: 
Assume a is a logical consequence of F. Then it is impossible that all the sentences 
of F are true and a is false (where "it is impossible" is an intuitive modal opera- 
tor, equivalent to "necessarily, it is not that case that"). Thus interpreted, Tarski's 
pretheoretic notion of logical consequence involves two intuitive ideas: the idea 
that logical consequence is necessary and the idea that logical consequence is formal. 
These ideas play the role of adequacy conditions: an adequate definition of logi- 
cal consequence yields only consequences that are necessary and formal. Leaving 
formality aside, what Tarski had to do to justify his definition is, then, prove 

(1) F 1= a o-- (All the sentences of F are true -*a is true) 

where l= is the relation of Tarskian consequence and a is an intuitive necessity 
operator. Tarski, as we have seen, claimed the first adequacy condition was provable 
from his definition, but he did not indicate what the proof was. Etchemendy [9, p. 
86] takes Tarski's proof to have the following structure: Assume 

(i) Fr=a, 
(ii) --(All the sentences of F are true -o- a is true), or equivalently: All the 

sentences of F are (actually) true & a is (actually) false. 

These assumptions are contradictory: (i) says that a is true in every model in which 
all the sentences of F are true, but (ii) says that there is a model, namely, one 
representing the "actual world", in which all the sentences of F are true and a is 
false. However, Etchemendy points out, what a proof with this structure proves is 

(2) D[F = a --* (All the sentences of F are true -o- a is true)]. 

And (2) does not imply (1). In Etchemendy's words: "To show that all Tarskian 
consequences are consequences in the ordinary sense, we would need to prove a 
theorem with embedded modality. ... Obviously, the proof in question does not 
show that every Tarskian consequence is a consequence 'in the ordinary sense.' It 
is only through an illicit shift in the position of the modality that we can imagine 
ourselves demonstrating of any Tarskian consequence that it is entailed by [i.e., 
follows with necessity from] the corresponding set of sentences." [9, p. 87-8] To 
take Tarski's proof as a proof of (1) is, then, to make the fallacious inference: 
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D (9 -F 6); therefore, S -* Rd. This is Tarski's fallacy. Tarski made a basic 
mistake in working out his modalities, and coming generations of logicians could 
have been (have been?) misled into believing that model-theoretic semantics is 
sound. 

Did Tarski commit "Tarski's fallacy"? If we take this question as a historical 
question, the answer is quite simple: Tarski declared that the first intuitive condition 
was provable from his definition, but he did not specify (or indicate in any way) what 
the proof was. What Etchemendy takes Tarski's proof to be is, therefore, based on 
speculation. It is consistent with a certain conception of Tarskian semantics (the 
"interpretational" conception, which I will discuss below), but aside from that, 
Etchemendy does not present any piece of evidence that would connect this proof 
with Tarski. Furthermore, the alleged fallacy is not so much a modal fallacy, as a 
fallacy in handling a narrow scope operator. To prove the statement: SD -* T(d) 
- where S is a sentential operator - Tarski, according to Etchemendy, assumed 
SD and derived a contradiction from -'F. It is hard to believe that any competent 
logician would give this kind of proof (unless, of course, in this particular case, 6 
implied 9- (6)). 

Etchemendy's criticism, however, directs our attention to the fact that Tarski 
never (publicly) proved the adequacy of his definition. In this paper I would like 
to examine the adequacy of Tarski's definition with respect to modern logic. More 
precisely, I am interested in whether modern logic has the resources for developing 
an adequate account of logical consequence in the spirit of Tarski. Although my 
interest is not historical, I find Tarski's paper on logical consequence useful in 
clarifying the motivation and key concepts of the semantic project and I will keep 
turning to it throughout the investigation. To fix Tarski's 1936 [55] paper as a point 
of reference, I will give a short synopsis of this paper. 

Tarski opened his paper with a statement regarding the use of "logical conse- 
quence" in mathematics and logic. The meta-mathematical use of "consequence" 
is not arcane, according to Tarski, but aims to simulate the ordinary use of the term. 
Tarski pointed out the insufficiency of the proof-theoretic definition, and proceeded 
to lay down the two intuitive conditions on an adequate definition of logical conse- 
quence. Tarski then considered a substitutional definition of logical consequence, 
but found the substitutional definition inadequate. At this point Tarski declared 
that we must look for a new (non-syntactic) means for expressing the intuitive con- 
ditions, suggesting that "[s]uch a means is provided by semantics." [55, p. 416] In 
preparation for his semantic definition Tarski introduced two concepts: the con- 
cept of satisfaction, defined in The Concept of Truth in Formalized Languages, and 
the concept of model, which he defined in terms of satisfaction. The definition of 
logical consequence in terms of model followed, accompanied by the claim that the 
two pretheoretic conditions were satisfied. Up to this point the context of Tarski's 
investigations appears to be that of Russellian type-theoretic logic (with simple 
types).3 But in the conclusion to his paper Tarski expanded the context of his in- 
quiry, observing that underlying his "whole [semantic] construction is the division 

3Tarski did not explicitly indicate what logic he had in mind, but a look at his cross references (e.g., 
the reference to Tarski [53] in fn. 1, p. 410) as well as a comparison with other articles from the same 
period indicate that this was the notion of logic he assumed in the 1936 paper. 
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of all terms of the language discussed into logical and extra-logical." [55, p. 418] 
This observation put the definition of logical consequence in a new light: It is pos- 
sible that for some selections of logical terms the definition yields the right results 
whereas for others it does not. (Indeed, it is easy to see that for some selections 
of logical terms Tarski's definition fails.) Tarski said he did not know whether a 
systematic distinction between logical and non-logical terms was forthcoming, and 
with this uncertain note he ended his paper. 

Does the failure of Tarski's definition for some selections of logical terms under- 
mine his claim of having proved its adequacy? I think it does not. Tarski formulated 
his definition for the standard logic (or one of the standard logics) of his day, and 
this logic admits a specific selection of logical terms. Tarski's justification was in- 
tended therefore for this specific selection. What the lesson at the end of his paper 
indicates is that the standard selection, or certain features of the standard selection, 
plays an essential role in an adequate justification. 

Back to modern logic: One natural way of going about the proof of (1), where = 
is relativized to a (standard) language ZL is as follows: assume 

(3) F 1 

assume 

(4) *(All the sentences of f are true & a is false), 

where * is an intuitive possibility operator, and derive a contradiction. Unpacking 
assumption (3), we get: There is no model for Z in which all the sentences of F 
are true and u is false. If we can show that (4) implies that there is a model for 
Z in which all the sentences of F are true and a is false, we will have derived the 
desired contradiction. To prove (1) it is thus sufficient to show that given a set I of 
sentences of Z (in our case, I = F U { -i}), the following holds: 

If it is intuitively possible that all the sentences of I are true, then 

(5) there is a Tarskian model (a model for Z) that realizes this possibility. 

Does (5) hold in standard semantics? 
The answer to this question depends, in part, on our understanding of the intuitive 

concepts involved. But at least in one case, that of standard first-order logic, the 
vindication of (1) appears to be straightforward: Consider the logical axioms and 
rules of proof of a standard first-order system, 2, with a language Z. Examining 
the axioms and rules of proof of Y one by one, we intuitively verify that all the 
axioms are necessarily true and all the rules of proof are necessarily truth preserving. 
We conclude that the axioms and rules of proof of Y satisfy the necessity condition. 
Now, take any set I of sentences of Z. Assume it is intuitively possible that all the 
sentences of I are true. Then, because the axioms and rules of proof in 2 satisfy 
necessity, no contradiction can be derived from I in A, i.e., I is proof-theoretically 

4In this paper, "standard language" and "standard logic" refer to a language and a system of logic as 
in standard textbooks of mathematical logic, e.g., Enderton [7]. Often, but not always, the point I wish 
to emphasize is the restriction of logical terms to the "standard" ones: truth functional connectives, 
the universal and/or existential quantifier and identity. "Standard logic" also includes "standard" 
higher-order logic (with "standard" semantics). See, e.g., Shapiro [45]. 
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consistent. It follows from the completeness theorem (Gddel-Henkin-Maltsev) that 
1 has a (Tarskian) model. Q.E.D.5 

This proof is short and elegant, yet it does not go far enough. First, Tarski's 
definition of logical consequence applies to standard higher-order logic as much as 
to standard first-order logic, but the argument from completeness does not apply 
to standard higher-order logic. Second, even with respect to standard first-order 
logic we may seek a level of explanation that goes beyond this proof. The situation 
is somewhat similar to that of using completeness (Henkin's proof) to establish 
the Ldwenheim-Skolem theorem. We would like to understand how uncountable 
models of consistent theories are contracted to countable models (how, for example, 
the uncountable membership relation of a "large" model of ZF is reduced to a 
countable relation), but the proof from completeness does not help us to obtain this 
understanding. In the present case, we would like to know how models represent 
all intuitive possibilities with respect to a given language: what features of possible 
states of affairs correlate with what features of models, how differences between 
models suffice to represent all relevant differences between possible states of affairs, 
etc. But the proof from completeness does not illuminate these issues. Furthermore, 
in view of Tarski's qualifying note, we would like to understand what role logical 
terms play in the correspondence between models and possibilities. The proof from 
completeness relies on the connection between the standard selection of logical terms 
and the standard proof method, but it does not explain what role this selection plays 
in shaping the model-theoretic apparatus. 

?2. Let us call the claim that Tarski's definition satisfies the intuitive conditions 
of formality and necessity "Tarski's adequacy conjecture." Tarski's adequacy con- 
jecture is an informal conjecture, and our verdict on it may vary according to our 
understanding of the intuitive and technical notions involved. The extension of 
"logical term" is an important factor but not the only factor. The technical no- 
tion of model, the intuitive or philosophical notions of necessity (possibility) and 
formality, and perhaps other notions as well, play a crucial role. We can regard 
Tarski's definition as a schema that for different notions of logical system (logical 
term, model, etc.) yields different definitions and ask: For what kind of logical 
system and what notions of necessity and formality does Tarski's adequacy conjec- 
ture hold? Our question, then, concerns conceptions of logical semantics, where by 
"conception of logical semantics" I mean a view, or a theory, of 

(i) the technical apparatus of logical semantics, 
(ii) the intuitive (or philosophical) notion of logical consequence, and 

(iii) the relation between the two (including the philosophical underpinning of 
(i)). 

5A similar proof is given in Kreisel [20], though in a somewhat different context. Assuming the 
intuitive adequacy of the standard definition when "every model" ranges over structures involving 
classes in general, Kreisel asks whether the definition preserves its adequacy when models are restricted 
to proper sets. Using completeness, Kreisel shows that at least in the case of standard first-order logic 
the answer is positive. Etchemendy [9, Ch. 11]) claims Kreisel's proof "does not count" because of the 
assumption mentioned above. However, the proof formulated in the text above does not involve this 
assumption. 
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In positive terms our question is: Is there a conception of logic, or a strategy for 
constructing logic, which vindicates Tarski's conjecture in a non-trivial manner? 

Etchemendy's claim that Tarski's definition fails to capture the intended notion 
of logical consequence is relative to a specific conception of logical semantics, the 
so-called interpretational conception. And relative to this conception, his claim is 
correct: If modern semantics is an interpretational system, then indeed Tarski's 
conjecture fails for this semantics. I will show, however, that modern semantics is 
not an interpretational system, that, furthermore, the interpretational strategy is an 
unreasonable strategy for constructing a logical semantics. In the present section I 
will analyze the two conceptions of logic entertained by Etchemendy as strategies 
for constructing a logical semantics. In Section 3, I will propose a third conception 
which, I will claim, vindicates Tarski's conjecture. 

In presenting the two conceptions of logic below I will not follow Etchemendy's 
accounts to the letter. Instead, I will describe two broad approaches to the problem 
of formulating an adequate account of logical consequence, suggesting a motivation 
and analyzing the central difficulties involved.6 

The metaphysical (representational, inflationary) conception7. The metaphysical 
conception of logical semantics conflates the notion of logical consequence with 
that of necessary consequence in general. One motivation for constructing such a 
semantics is based on (i) the central place of necessity in the intuitive characteriza- 
tion of logical consequence, and (ii) the difficulty in identifying the exact difference 
between logical and necessary consequence, i.e., the precise content of formality. 
Etchemendy expresses a common view when he says: "The most important feature 
of logical consequence, as we ordinarily understand it, is a modal relation that 
holds between implying sentences and sentence implied. The premises of a logically 
valid argument cannot be true if the conclusion is false; such conclusions are said 
to 'follow necessarily' from their premises. That this is the single most important 
feature of the consequence relation, or at any rate of our ordinary understanding 
of that relation, is clear from even the most cursory survey of texts on the sub- 
ject." [9, p. 81] 8 But while most people would not identify the notions of logical and 
necessary consequence, drawing a sharp distinction between the two is not simple, 
and the attempts to account for the distinctive features of logical consequence have 
often taken too much for granted. The most influential approach, due to Quine, 
maintains that genuinely logical consequences are due to the logical structure of 
sentences, where logical structure is a function of the specific logical terms and 
their arrangement in a given sentence: "Logical implication rests wholly on how 
the truth functions, quantifiers, and variables stack up. It rests wholly on what we 
may call, in a word, the logical structure of the ... sentences [involved]." [39, p. 48] 

6My interest in these conceptions is purely theoretical. With one exception, I am not claiming that 
anyone actually accepts either of these conceptions. That exception is Etchemendy who, in spite of 
certain tensions he is aware of (see Ch. 5 and Ch. 8, pp. 112-24), views modern logical semantics as 
an interpretational theory. (See [9, p. 51] and note the references to the standard semantics of mathe- 
matical logic as "the standard interpretational semantics" on pp. 112, 122, 126, etc.) For Etchemendy's 
motivation see Section 4 below. 

71 prefer "metaphysical" to "representational" since in each of the three conceptions I will discuss 
models represent something: it is what they represent, rather than whether they represent, that (among 
other things) distinguishes between them. 

8See references to other writers who share this view on pp. 81-2. 
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But underlying this account is a certain view of logical structure and its carriers, 
and Quine, as well as others who espoused this view, did not give an adequate 
explanation of why the logical structure of language rests on certain terms rather 
than on others.9 (Indeed, few philosophers have offered systematic grounds for 
the distinction between logical and non-logical terms, and even fewer have done so 
from a semantic perspective. 10) 

One way to avoid this and other related problems is to take the broader category 
of necessary consequence as basic and the category of logical consequence as deriva- 
tive upon it: say, logical consequences are the most robust necessary consequences, 
where robustness is measured by pragmatic, behavioristic, or other criteria. How 
do we construct a system for identifying necessary consequences? The idea of meta- 
physical or representational semantics is that of a dual system whose constituents 
are 

(i) a fully interpreted language and 
(ii) an apparatus of models representing possible worlds, i.e., possible varia- 

tions in the actual world that would affect the truth value of sentences of 
the language. The two are connected by 

(iii) a definition of truth (satisfaction) in a model. 

Etchemendy describes the guidelines for models and truth in a model as follows: "the 
class of models should contain representatives of all and only intuitively possible 
configurations of the world" [9, p. 23]; "a sentence is to be true in a model iff it 
would have been true had ... the world actually been as depicted by the model." [9, 
p. 24] The definition of necessary consequence is Tarski's: given a language Z, a 
is a necessary consequence of F iff there is no model for Z (possible world with 
respect to Z) in which all the sentences of F are true and a is false. Clearly, 
consequences falling under this definition (i.e., consequences preserving truth in all 
possible worlds) satisfy the intuitive condition of necessity. 

Is the standard semantics of mathematical logic a metaphysical semantics? Is the 
metaphysical strategy for constructing a logical semantics worth pursuing? In spite 
of some superficial similarities it is unreasonable to view the standard semantics 
of mathematical logic as a metaphysical (representational) semantics. First, the 
language of mathematical logic is only partly interpreted (only the logical terms 
are fully interpreted), but the language of metaphysical semantics is fully inter- 
preted (the notion of necessary consequence in general requires a fully interpreted 
language). Second, while the model theory of mathematical logic is couched in a 
background theory based on set theory, the model theory of metaphysical semantics 
is couched in a background theory based on general metaphysics. In particular, 
the constraints on metaphysical models are essentially more involved than those on 
logical models, and they rule many models of mathematical logic illegitimate. 

91n Philosophy of logic, Quine justifies his preference of standard first-order logic with its specific 
selection of logical terms on the ground that this system is complete. But note that some systems with 
non-standard logical terms, e.g., first-order logic with the quantifier "there exist uncountably many," 
are also complete. (See Keisler [19].) In Word and object [37, pp. 57-61], Quine proposes a partial 
behavioristic justification for the standard logical terms. 

10See Peacocke [34] and McCarthy [28]. There are certain similarities between Peacocke's and 
McCarthy's approaches and mine, but by and large my account will be different from theirs. 



660 G. Y SHER 

Thus, take a simple interpreted language, Z, and consider the following three 
inference schemata of Z: 

(6) a is yellow (all yellow); therefore, a is not red, 

(7) a is yellow; therefore, a is not round, 

and 

(8) a is round; therefore, a is not square, 

where a is to be replaced by an individual term of Z. To distinguish necessary from 
non-necessary inferences of Z, the apparatus of models for Z has to be constructed 
in such a way that all instances of (6) and (8) preserve truth in all models while 
some instances of (7) do not. I.e., the meta-theory has to include instructions that 
will produce the same results as: 

(a) the extension of "x is yellow" shall form an empty intersection with the 
extension of "x is red" in all models; 

(b) the extension of "x is round" shall form an empty intersection with the 
extension of "x is square" in all models; 

(c) the extension of "x is yellow" shall form a nonempty intersection with the 
extension of "x is round" in some models. 

More generally, the meta-theory has to include information about all the possible 
and necessary interrelations between the individuals, properties and relations de- 
noted by terms of the given language. These instructions will rule out many models 
that standard mathematical logic assigns to (its codification of) Z: models in which 
the intersection of the extensions of "x is yellow" and "x is red" is not empty, models 
in which the intersection of the extensions of "x is round" and "x is square" is not 
empty, etc. While mathematical logic imposes primarily set-theoretic constraints on 
its apparatus of models (e.g., if in a given model the intersection of two extensions is 
not empty, then in that model each of the two extensions is not empty), metaphysical 
logic imposes (in addition to these) a great many metaphysical constraints. 

This difference between logical and metaphysical semantics points to deep prob- 
lems that make the construction of metaphysical (representational) semantics un- 
feasible. First, the amount of information that has to be taken into account in 
constructing an apparatus of models for a reasonably rich language is enormous. 
It is doubtful that this information can be organized into anything like axiomatic 
set theory or any other manageable theory. Second, metaphysical semantics re- 
quires solutions to the most obscure and thorny questions of general metaphysics. 
Consider a discourse about a certain object, say my dog Cerberus. What are all 
the possible variations in the world vis-a-vis Cerberus? Clearly, there are models in 
which Cerberus is your dog rather than mine, but is there a model in which Cerberus 
is human? a model in which Cerberus is another dog? a model in which Cerberus 
evolved from an egg fertilized by a spermatozoon with an X chromosome? a model 
in which Cerberus was not begotten by his sire (Parker Jameson of Sunny-Duke)? a 
model in which Cerberus (this Cerberus) is a mythological beast? a model in which 
Cerberus is New York City? a model in which Cerberus is the empty set? Where 
does Cerberus stand with respect to "x is moral" and "x is rational"? (Is there a 
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model in which Cerberus is a moral dog? a rational dog?) Here we come upon 
recalcitrant questions of identity, essential properties, moral and rational agency, 
meaning, etc. that have baffled philosophers for years. 1 1 (Axiomatic set theory also 
leaves many questions unanswered, and we know that in principle set theory is in- 
complete. But the "incompleteness" of general metaphysics is of a different order.) 
Furthermore, it is not even clear that we have a single, coherent notion of necessity 
(possibility), rather than a medley of vague and possibly incompatible notions. 

In sum: (a) The semantics of modern mathematical logic is not a metaphysical 
(representational) semantics. (b) The strategy of vindicating Tarski's conjecture by 
developing a metaphysical semantics is, given the daunting problems facing general 
metaphysics, not feasible. We may try to salvage this strategy by embedding our 
account of logical consequence in a general theory of knowledge or meaning, but 
the obstacles facing us would be no less formidable. Describing logical semantics 
as a specific subsection of metaphysical semantics would not do either, since this is 
tantamount to giving an account of the distinctive nature of logical semantics. 

The linguistic (substitutional/interpretational, deflationary) conception. How can 
we obtain a notion of consequence satisfying necessity and formality without re- 
sorting to an obscure possible world discourse? One strategy we may contemplate 
is this: instead of defining logical consequence in terms of variations in the world, 
let us hold the worldfixed and define logical consequence in terms of variations in 
language. For example, to prove the logical invalidity of 

(9) Proust is a novelist; therefore, Proust is not a dog 

we do not have to produce a possible world in which some dogs are novelists; it 
suffices to produce a language in which "dog" plays the lexical role of "human," 
while "Proust," "novelist" and "not" preserve their usual lexical roles. Such a 
language will constitute a counterexample to (9), since the actual truth values of its 
premise and conclusion under this linguistic transformation are, respectively, T and 
F.2 This linguistic method can also be used to establish the validity of inferences: 
for example, we can prove the validity of 

(10) Some novelists are dogs; therefore, some dogs are novelists 

by showing that no matter how we vary the lexical role of "dog" and "novelist" 
(subject to certain grammatical constraints), the resulting inference will not have a 
(materially) true premise and a (materially) false conclusion. I will call this strategy 
"the linguistic strategy" and the conception of logical semantics based on it "the 

"A "classic" reference for some of these questions is Kripke [21]. See also Forbes [10]. Modal 
logic is not interested in the modal status of inferences like those in the examples above, but semantic 
considerations on modal logic show that allowing the language to include intensional operators will lead 
to additional deviations from standard logical semantics. 

12In this paper I take "actual" and "material" to be synonymous. "Actual" or "material truth" is 
"truth in the actual world" and the notion of "actual world" is taken to be understood in advance. I do 
not need, nor do I want to commit myself to, a precise notion of "actual world." All I require is that 
we have a rough, intuitive notion of the actual world with some paradigm examples of what does and 
what does not fall under it (e.g., familiar, middle sized physical objects like bridges and persons do, while 
fictional characters and at least some "large" sets do not). 
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linguistic conception." The principle underlying the definition of logical conse- 
quence in linguistic semantics (semantic theories based on the linguistic conception) 
is the following: Given an interpreted language Z, a sentence a of Z and a set,F, 
of sentences of Z, a is a logical consequence of F (in Z) iff under no permissible 
lexical variation in Z (using the lexical resources of any language VY D Z) are all 
the sentences of F (materially) true and a (materially) false. (The permissibility 
conditions have to do with uniformity and preservation of grammatical categories.) 

Linguistic semantics reduces the notion of logical consequence to two tractable 
notions: (i) the notion of material truth, and (ii) the notion of lexical variations 
in language. The linguistic strategy, if successful, is highly attractive: avoiding 
metaphysical speculation altogether, it produces an ontologically cheap solution 
to a deep philosophical problem. However, the great simplicity of linguistic se- 
mantics calls for careful scrutiny: Is the reduction of the strong, modal notion of 
logical consequence to two relatively weak notions genuine? How does linguistic 
semantics prevent intuitively material consequences from satisfying the definition of 
logical consequence? I will examine two concrete examples of linguistic semantics: 
substitutional semantics and interpretational semantics. 

Substitutional semantics. The substitutional method has often been conceived as 
a means for avoiding undesirable ontological commitments. For example, by defin- 
ing the standard quantifiers substitutionally rather than objectually we can apply 
the rules of inference of first-order mathematical logic in fictional and mathematical 
discourse without committing ourselves to an ontology of nonexistent physical ob- 
jects and abstract, mathematical objects.13 To define logical consequence, we start 
with a single interpreted languageZ, and we define: a is a logical consequence of F 
iff there is no permissible (uniform) substitution of primitive terms of Z for primitive 
nonlogical terms of Z under which all the sentences of F are (materially) true and U 
is (materially) false. Given a primitive term, t, of Z, the terms substitutable for t in 
Z form a subclass of terms of Z, the substitution class of t in Z; membership in this 
class is based on grammatical compatibility: roughly, t is grammatically compatible 
with t' iff replacement of t by t' (and t' by t) within any grammatical context results 
in a grammatical context; a substitution of t' for t is permissible only if t' is a member 
of the substitution class of t in Z"14 

Regrettably, however, the substitutional test of logical consequence is too weak. I 
will point out three ways in which it fails - three "fallacies of material consequence." 

The first fallacy of material consequence. The first fallacy results from an unwar- 
ranted simplification of the linguistic conception. The test for logical consequence 
in the linguistic conception (i.e., preservation of truth under variations in language 
(lexicon)) involves a multiplicity of languages (lexicons). The substitutional test, 
however, is carried out within a single language. Given a language, Z, substitu- 
tional semantics tests consequences for preservation of truth under replacements of 

3See, for example, Marcus [25, 26] and Gottlieb [14]. But note fn. 14 below. 
14My account of the substitutional test for logical consequence differs from Bolzano's [3] in that the 

latter involves variations in ideas rather than Words and, related to this, a nonmaterial notion of truth. 
This difference means that Bolzano's substitutional semantics does not fall under the rubric of linguistic 
semantics and it cannot be viewed as an antidote to the metaphysical approach. In this paper I examine 
the substitutional approach only as such an antidote. Although Etchemendy talks about "Bolzano's 
definition," he has in mind a linguistic version of the substitutional definition. (See [9, fn. 2, pp. 162-3].) 
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terms of Z by terms of ?, not under replacements of terms of ? by terms of other 
languages. In particular, if t is not a term of Z, no substitution of t for terms of Z 
will ever be considered. The substitutional notion of logical consequence is, thus, 
relative to the lexical riches of a given language. It is easy to see that in some cases 
of lexically deficient languages the substitutional test fails. Thus, let the classes of 
primitive singular terms and 1-place predicates of Z be {"Tarski," "Lukasiewicz"} 
and {"x is Polish," "x is a logician"}. Then 

( 11) Tarski is Polish; therefore, Tarski is a logician 

passes the substitutional test. 
The second fallacy of material consequence. In discussing the substitutional the- 

ory of quantifiers Quine [38, p. 106] remarked that substitutional quantification 
makes good sense - the same good sense - no matter what terms the substitutional 
variables stand for. Even the left-hand parenthesis, Quine emphasized (using an 
example due to Lesniewski), can make up a substitution class for these variables. 
A similar principle applies to the substitutional definition of consequence. The 
substitutional method sets no constraints on what terms can be substituted for, and 
as long as the choice of substitutional classes obeys the grammatical requirement 
of compatibility anything is permitted. From the point of view of substitutional 
semantics, then, the standard distinction between logical and non-logical terms 
is arbitrary. The substitutional test is relative to arbitrary selections of fixed (non- 
fixed) terms, and it is easy to see that under some selections of fixed terms intuitively 
nonlogical inferences pass the test. Thus, let "Tarski" and "is a logician" serve as 
fixed terms: regardless of the lexical resources of the given language, (11) will come 
out logically valid. (The plight of fixed terms goes also in the other direction: if we 
take the material conditional as a non-fixed term, the intuitively logically valid rule 
of Modus Ponens will turn out invalid.) 

The third fallacy of material consequence. Substitutional semantics investigates 
changes in the truth value of sentences under variations in language (variations in 
linguistic terms), not under variations in the world (variations in existent objects 
and their properties), and this enables it to embed its test of logical consequence in a 
material theory of truth. In particular, the notion of "truth under substitutions" is 
a material notion: a sentence is true under a given substitution iff another sentence 
(that obtained from it by the said substitution) is materially true.15 Now, consider 
the inference 

(12) Tarski is Polish; therefore, Kotarbin'ski is Polish 

symbolized in a language, ?, as: P t; therefore P k. Assume that terms in ? are 
divided into fixed and non-fixed in the standard way. (12) passes the substitutional 
test iff 

(13) P't ,-- Plk 

15As I indicated above, I am only interested here in the substitutional method as used in conjunction 
with a material theory of truth. There may be, of course, other uses of the substitutional method. For 
example, we can understand Marcus' use of substitutional quantifiers in [25, 26] as meant to emphasize 
the ontological neutrality, rather than economy, of logic. (On the uses and limits of substitutional 
quantification see Parsons [32] and Kripke [22].) 
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is true under all permissible substitutions for P1, t and k. I.e., (12) is substitutionally 
valid iff the meta-theoretical substitutional quantification 

(14) (VPI ) (Vx) (Vy) (P Ix -+ l Y) 

whose variables are restricted to terms of ?, is materially true. It follows that the 
logical status of (12) depends on such mundane facts as the number of individuals 
in the world. Had the actual world contained only one individual, (12) would 
have come out logically valid. We will call the general principle underlying this 
fallacy "the reduction principle" (after Etchemendy). Assuming the notion of 
logical consequence for ? is defined in a metalanguage ?* D ?, we can formulate 
the reduction principle as follows: "If a universally quantified sentence is true, then 
all of its instances are logically true.",16 If a is a sentence of ? with no non-fixed 
terms (e.g., (3x) (3y)x :& y), the reduction principle says that a is logically true if a 
is materially true. 

The three fallacies of material consequence are not equal. The first fallacy is 
caused by an oversimplification of the linguistic test for logical consequence, and 
it would not be surprising if, with a little technical ingenuity, we were able to 
obviate it. The second and third fallacies, on the other hand, are inherent in the 
linguistic conception. It is integral to this conception that the definition of "logical 
consequence" is couched in a simple, non-modal metalanguage, a language whose 
notion of truth is strictly material. (This is what sets the linguistic conception apart 
as an attractive alternative to the metaphysical conception!) But this simplicity 
means that certain important types of conceptual resources, namely, those required 
for constructing nonmaterial notions, are missing. Linguistic semantics has neither 
the means for distinguishing between logical and nonlogical terms, nor the means 
for reducing logical consequence to a precise yet strong enough notion that would 
account for its necessity.17 

Interpretational semantics. Interpretational semantics is generated from substi- 
tutional semantics in an attempt to block the first fallacy. It includes a new technical 
device, the interpretational model, but otherwise it is based on the same principles 
as its substitutional predecessor. In particular, (i) its notion of logical consequence 
is relative to arbitrary selections of fixed terms, and (ii) logical consequences are 
reduced to material generalizations. This means, of course, that interpretational 
semantics falls prey to the second and third fallacies, and as such it constitutes an 
unviable alternative to substitutional semantics. But if interpretational semantics is 
not a viable option, why dwell on it at all? Our interest in interpretational semantics 
arises from the fact that its technical apparatus is, in certain respects, similar to 

16Etchemendy [9, p. 98]. Here I apply a rule intended for interpretational semantics to substitutional 
semantics. This application requires various clarifications that I will not specify in detail here. The idea 
should be clear: we are referring to substitutional universal quantifications of Z* related to sentences of 
? in the way (14) is related to (13); "all instances" refers to instances in ?. 

17The substitutional definition of logical consequence in Quine [39] avoids the above fallacies by 
introducing various provisos: (i) the substitution classes include formulas and not just primitive terms, 
(ii) the fixed terms are restricted to the standard ones minus identity, (iii) only individual variables are 
permitted, (iv) the (object) language is required to be rich enough for elementary number theory. From 
the point of view of the present investigation these provisos are ad hoc. For additional problems with 
the substitutional definition of logical consequence as motivated by nominalism see Putnam [36]. 



DID TARSKI COMMIT "TARSKI'S FALLACY"? 665 

that of mathematical logic, and this might lead one to confuse it with the standard 
semantics. Based on this confusion one would naturally claim that the standard 
account of logical consequence "does not capture, or even come close to captur- 
ing, any pretheoretic conception of the logical properties" (see above). My goal in 
discussing interpretational semantics is to remove this confusion. 

A natural way to overcome the relativity of substitutional consequences to rich- 
ness of the lexicon is to create maximal substitution classes. Such classes will contain 
names for all existent individuals, properties of existent individuals, relations of ex- 
istent individuals, etc.18 We arrive at interpretational semantics by introducing a 
certain technical device - the interpretational model - for obtaining such classes. 
Given an extensional language, ?, and a selection of primitive terms of ? to be 
held "fixed," an interpretational semantics for ? is a pair, (?', 9C), where ?' is a 
schematic language19 and 9N is an apparatus of interpretational models for ?'. ?' is 
generated from ? by replacing all the non-fixed primitive terms of ? by schematic 
symbols based on syntactic categories: say, proper names are replaced by lowercase 
Roman letters, a-u, with or without finite ordinal subscripts, n-place predicates of 
individuals, n > 1, are replaced by upper case Roman letters, An-Zn, with or with- 
out subscripts, etc. Variables play their usual auxiliary role. An interpretational 
model for ?' consists of a universe, A, identified with the set of all actual individuals, 
and an assignment of values to all the non-fixed primitive terms of ? within A: an 
individual constant is assigned a member of A, an n-place predicate of individuals 
is assigned a subset of An, etc. A represents a maximal substitution class for the 
individual constants of the original language, ?; the power set of An, n > 1 - _9 (An) 
- represents a maximal substitution class for all the n-place primitive predicates of 
individuals of ?; etc. A model for ?' represents a universal replacement of the 
primitive non-fixed terms of Z by primitive terms drawn from a maximal substitu- 
tion class (in accordance with the rules governing such a replacement: uniformity, 
respect of syntactic categories, etc.). Instead of saying that "Tarski is a logician" 
is false under substitution of "Sienkiewicz" for "Tarski," we now say that "Llt" is 
false under an interpretation of "Tarski" as a name of Sienkiewicz or, more techni- 
cally, that "Llt" is false in a model that assigns Sienkiewicz to t and the set of all 
actual logicians to L1. An interpretational model for ?' is, thus, an interpretation 
of ? within a maximal extension ?' of ?. Contrasting interpretational and rep- 
resentational semantics we can say that representational models represent possible 
worlds while interpretational models represent possible maximal languages (of the 
actual world). We define truth in an interpretational model 'a la Tarski in terms 
of satisfaction, saying that "Llt" is true in a model St iff the object assigned to t 
in St, t', satisfies the predicate L't in St, or iff t( E L1 2, etc. The interpretational 
definition of logical consequence (of ?') is, wordwise, the same as in mathematical 
logic: a is a logical consequence of F iff every model of F is a model of a (where the 
notions of logical consequence and model are relativized to ?'). By construction, 

18Because the linguistic test for logical consequence is based on a material notion of truth, only 
existent individuals need to be taken into account. If ? contains names of nonexistent objects, we can 
reformulate the sentences in which these names occur using predicates. 

19The language could also be construed as fully interpreted, but since my goal is to show that there 
are essential differences between interpretational semantics and standard logical semantics I prefer to 
eliminate the nonessential differences. 
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interpretational semantics avoids the first fallacy: if there is a language, ?+ D ?, 
such that some substitution of primitive terms of Z+ for t, P1 and LI renders "PIt" 
materially true and "Llt'" materially false, then there is an interpretational model 
that represents this substitution. 

Interpretational semantics avoids the first fallacy of material consequence but, 
as I have indicated above, the introduction of maximal substitution classes (in the 
form of models) does not eliminate the second and third fallacies. The crux of the 
matter here, as in the earlier case, is the material nature of its meta-theory and the 
consequent dearth of conceptual resources. Interpretational semantics, just like 
substitutional semantics, is not equipped for drawing the nonmaterial distinction 
between logical and non-logical terms. And in interpretational semantics, just as in 
substitutional semantics, the logical status of inferences like (12) is reduced to the 
material truth of generalizations like (the objectual analog of) (14). 

Is standard logical semantics interpretational? This question is partly ambiguous, 
since the notion of interpretational semantics involves not just a technical apparatus, 
but also a theory of what this technical apparatus represents, and while it is clear 
what the technical apparatus of standard logical semantics is, there is no consensus 
about its philosophical foundation. (Indeed, such a consensus would be irrelevant 
anyhow, for the existence of an adequate philosophical foundation for this semantics 
is at trial here.) However., if we can show that the technical apparatus of standard 
logical semantics is significantly different from that of interpretational semantics - 
if, in particular, we can point to differences that (prima facie) preclude the second 
and third fallacies, we will have provided a (prima facie) ground for a negative 
answer to this question. 

There are two glaring technical differences between the semantic-syntactic system 
of standard mathematical logic and interpretational semantics: (A) In mathemati- 
cal logic the selection of logical terms is fixed and definite, while in interpretational 
semantics the selection of logical terms is variable and arbitrary. (B) In interpre- 
tational semantics all models for a given language share the same, predetermined, 
universe (the "actual" universe, whatever this turns out to be). In mathematical 
logic, on the other hand, models for a given language vary both with respect to the 
size of their universes and with respect to the identity of their members (exhibiting 
the whole gamut of countable and uncountable universes of abstract, physical and 
fictional objects). These differences have (prima facie) direct implications for the 
material consequence fallacies. The restriction on logical terms prima facie blocks 
the second fallacy, while the variations in models constitute a prima facie safeguard 
against the third fallacy. 

Let me dwell on the second point. The difference between the interpretational 
and the standard notion of model is related to differences between the respective 
meta-theories. Interpretational semantics is defined within a material meta-theory 
(a theory of "the actual world"), hence its notion of universe is confined to collec- 
tions of "actual" individuals. The standard semantics of mathematical logic, on the 
other hand, is defined within a metalanguage that contains a full-fledged abstract 
set theory, and this theory gives rise to a notion of universe as a well-defined collec- 
tion (i.e., a set) of any objects not ruled out by the axioms, including the elements 
of the set theoretic hierarchy. This difference has a radical effect on the respective 
reduction principles. While interpretational semantics reduces logical inferences 
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to material truths, standard mathematical semantics reduces logical inferences to 
set theoretical, i.e., mathematical, truths, and mathematical truths, unlike material 
truths, are intuitively formal and necessary. Thus, whereas interpretational seman- 
tics reduces (12) to a sentence whose quantifiers are restricted to actual individuals 
and collections of actual individuals, the standard semantics reduces (12) to a set 
theoretical statement, namely 

(15) (Vs1)(Vs2)(Vx)(Vy){[s2 C S&X E sA&y E SI] -- [x E S2 -- y E S2]} 

(where si, S2 range over sets; x, y - over urelements and sets), whose quantifiers 
are not restricted in this way. The latter, unlike the former, is unencumbered by any 
material restrictions on the actual universe (e.g., its size). 

The fact that the interpretational account implicates standard semantics in falla- 
cies, together with the existence of serious discrepancies between the interpretational 
account and the data (discrepancies which suggest that the standard system has in- 
ternal safeguards against the fallacies), creates a strong presumption against the 
interpretational account. Of course, it is possible to explain away the differences be- 
tween the interpretational account and the data (we can always nullify gaps between 
theory and data by making sufficiently radical adjustments).20 The relevant ques- 
tion is, however, not whether we can construe modern semantics interpretationally 
but, given the price, whether (within reason) we have to. 

In this section I have examined two conceptions of logic and found them inad- 
equate. The metaphysical conception inflates the intuitive notion of logical conse- 
quence by identifying it with that of necessary consequence, making the construction 
of an adequate logical semantics contingent upon the development of an adequate 
background metaphysics. The linguistic conception deflates the notion of logical 
consequence by forcing its reduction to material consequence, thereby turning an 
intuitively useful and powerful notion into a weak and useless one. In the next 
section I will propose a conception of logical semantics that, I believe, vindicates 
Tarski's conjecture. The general principles underlying this conception are based, in 
large part, on The Bounds of Logic: A Generalized Viewpoint [47]. 

?3. In justifying a theoretical definition of an intuitive concept it is natural 
to proceed in two steps: (a) justify the general structure of the definition, (b) 
justify particular applications. In the first step we ask: Is it possible, in principle, 
to construct a system in which the theoretical definition gives intuitively correct 
results? What are the general principles underlying such a system? In the second 
step we inquire whether a particular system satisfies these principles. In the case 
of Tarski's definition we cannot draw a complete separation between the two since 
without something like the set-theoretic methods of standard semantics it is almost 
impossible, practically speaking, to articulate the general principles. My account, 
however, concerns the general architecture of logical semantics rather than the 
special design of this or that application, and the intended reading of the set- 
theoretical terminology is, therefore, as general and as non-committal as (plausibly) 
possible. 

20This is what Etchemendy seems to be trying to do, though not systematically and partly indirectly. 
See [9, Chs. 3, 4, 8, 10 and 11]. 
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The thesis I will argue for is relatively strong: Taking Tarski's intuitive conditions 
as determining the scope as well as the limits of logical semantics, I will develop a 
conception of logic under which, I will claim, Tarski's definition yields all and only 
intuitively logical consequences (relative to a given extensional language). Certain 
technical developments in logic play an important role in my analysis, in particular, 
Mostowski's generalization of the standard quantifiers and Lindstrdm's extension of 
Mostowski's generalization. These generalizations throw new light on the question 
of logical terms, allowing us (for the first time) to investigate the nature of logical 
predicates and quantifiers in the same precise and informative manner as in the 
case of the logical connectives. While Tarski's early ideas on logic and semantics 
constitute my starting point, my interest in Tarski is not scholarly and I will feel 
free to diverge from, reshape and extend his ideas in ways that will contribute to the 
present enterprise. 

In broad, and rather crude, lines, my conception can be described as follows: The 
intuitive notion of logical consequence is that of necessary andformal consequence. 
The key to understanding logical consequence is the formality condition, which 
allows us to distinguish between the general notion of necessary consequence and the 
specific notion of logical (=formally necessary) consequence. The formal nature of 
logical consequence is reflected in (i) the choice of logical terms, (ii) the construction 
of models. Logical terms are formal in the sense of denoting properties and relations 
that are, roughly, intuitively structural or mathematical. Technically, logical terms 
do not distinguish between isomorphic arguments, or, more precisely, logical terms 
are invariant under isomorphic structures (logical terms are those terms whose 
evaluation commutes with all isomorphisms of domains). Since the concept of 
logical consequence only takes into account the formal component in the meaning 
of sentences, the question of identifying logical consequences of a given interpreted 
language ? (possibly a segment of "natural" language) reduces to that of identifying 
the logical consequences of a related, semi-schematic, language ?/ in which only 
the logical terms are fully interpreted. Models for ?' represent formally possible 
structures of objects vis-a-vis ?. In particular, the spectrum of possibilities with 
respect to the formal features (structures) of objects "detected" by the logical terms 
of ? is represented by the apparatus of models for ?'. By construction, consequences 
preserving truth in all models (for ?') hold in all formally possible structures of 
objects (relative to Z), hence are formally necessary (relative to it). Since formal 
necessity is a particular case of both necessity and of formality, the two intuitive 
conditions are satisfied. The criterion for logical terms determines a family of 
logical systems satisfying Tarski's conjecture. We can view this family as a "universal 
logic": every Tarskian consequence of any system of universal logic is intuitively 
formal and necessary, and every intuitively formal and necessary consequence (of 
any "reasonable" language) is identified by some system of universal logic. The 
notion of first-order universal logic is especially fruitful and it partially coincides 
with "abstract logic" or "model-theoretic logics." Finally, falling within universal 
logic, standard mathematical logic satisfies Tarski's conjecture. 

I will now turn to a detailed presentation of this conception, beginning with 
Tarski's notion of semantics. Tarski arrived at the idea of a semantic definition of 
"logical consequence" after rejecting the proof-theoretic and substitutional defini- 
tions. The proof-theoretic definition, according to Tarski, is too narrow. Consider 
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the following inference (where statements about numbers are high-order, as in the 
simple theory of types): 0 possesses the property P, 1 possesses the property P, 
..., n possesses the property P, ... ; therefore, all natural numbers possess the 
property P. Intuitively, this inference is logically valid (formally necessary), but the 
standard proof-theoretic method fails to recognize its validity. We may contemplate 
the addition of new rules of inference, but it follows from Gddel's incompleteness 
theorem that no reasonable proof method (finite rules, etc.) will detect all intu- 
itively logical consequences.2" The substitutional definition, Tarski noted (based 
on what I have called the first fallacy of material consequence), reduces the notion 
of logical consequence to that of material consequence. Having rejected the existent 
"syntactic" methods for defining logical consequence, Tarski turned to semantics, a 
discipline whose principles were first precisely formulated in his 1933 paper [52]. 

Semantic reduction. Today, we often view any definition in terms of truth, no 
matter how truth is defined or what other notions are involved, as a semantic 
definition. In talking of "linguistic (substitutional, interpretational) semantics" 
in Section 2, I implicitly accepted this usage. For Tarski, however, the semantic 
method has to do with a particular way of analyzing concepts, namely, as express- 
ing relations between language and objects: "We shall understand by semantics 
the totality of considerations concerning those concepts which, roughly speaking, 
express certain connexions between the expressions of a language and the objects 
and states of affairs referred to by these expression." [54, p. 401] Henceforth I will 
restrict myself to this usage. Now, some semantic predicates relate expressions to 
objects directly: "reference" and "satisfaction" fall under this category. "Truth" 
and "logical consequence," however, are essentially linguistic predicates, truth being 
a property of sentences and logical consequence a relation between a sentence and a 
set of sentences. In what sense are they semantic? One answer to this question turns 
on definability: truth and logical consequence are definable in terms of (directly) 
semantic properties, namely, reference and satisfaction, and in this sense they are 
(indirectly) semantic. But this answer inverts the order of explanation. Truth and 
logical consequence are definable in terms of reference and satisfaction because they 
have to do with language in its relation to objects. On my interpretation, truth and 
logical consequence hold of a given linguistic entity (pair of linguistic entities) in 
their domain due to (i) certain relations in which the expressions involved stand to 
certain objects, and (ii) certain facts about these objects."22 Assuming (i), we can 

2'The fact that Tarski chose a higher-order inference to demonstrate the intuitive inadequacy of the 
proof-theoretic definition is significant. Etchemendy [8] mistakes this inference for a first-order inference 
and uses this "fact" to support the claim that Tarski's 1936 notion of logical consequence was different 
from the common notion. Briefly, Etchemendy argues as follows: The completeness theorem shows 
that the standard semantic definition of logical consequence does not establish the logical validity of 
first-order inferences that, like the arithmetic inference Tarski referred to, fail the proof-theoretic test; 
therefore, Tarski did not have the standard notion of logical consequence (/logical term) in mind. [8, 
pp. 65, 70-73] It is clear, however, from Tarski's reference [55, p. 410, fn. 1] that the inference he presents 
is a higher-order inference (see Tarski [53, pp. 279,288]), and in higher-order logic the semantic notion 
of logical consequence is broader than the proof-theoretic notion. While in Sher [46, pp. 342-3] and [47, 
pp. 38-9], I, too, read Tarski's inference as a first-order inference, I showed Etchemendy's conclusion 
could be avoided. My discussion of logical terms below explains why the inference had to be higher-order 
(why its first-order version is not intuitively formally valid). 

22My use of "object" here is general: individuals are objects, and properties (sets), relations and 
functions of objects are objects. The main contrast is with "linguistic expression." Of course, linguistic 
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describe the semantic method as based on the idea that certain linguistic properties 
- properties of linguistic expressions - are grounded in nonlinguistic properties - 
properties of objects related to these expressions in certain specified ways. In the 
case of logical consequence, the linguistic relation l= between F and a is grounded 
in a certain nonlinguistic relation _ between the properties attributed to objects by 
F and those attributed to them by a (between the configuration of objects described 
in F and that described in a). What the semantic definition sets out to accomplish 
is reduction of the former to the latter, and to do so it exploits concepts directly 
connecting language to objects, like reference and satisfaction. 

The nature of the semantic reduction may be obscured by the fact that under cer- 
tain descriptions the reduction appears to be purely linguistic. Thus, we can describe 
the reduction of l= to _ by means of a meta-theoretic schema, "F = a iff GRs," 
where "F l= a" stands for a linguistic statement and "GRs" for an objectual state- 
ment, and where there is an appropriate reference relation between the object- 
language expressions referred to in the former and the objects in the world referred 
to in the latter. Then, if we concentrate on the mechanics of writing bicondition- 
als based on this schema (in the simplest case, on the left we write metalinguistic 
names of object language sentences, on the right - object language sentences or 
their metalinguistic equivalents), we may come to think of the reduction as based 
on a certain relation between the metalanguage and the object language. "Logical 
consequence," we will then say, expresses a "connexion" between expressions of the 
two languages. But semantic concepts express a "connexion" between language 
and the world ("expressions of a language" and "objects and states of affairs re- 
ferred to by these expressions"), hence what is philosophically significant about the 
biconditionals is the fact that one condition is linguistic while the other is objectual. 
The reduction consists in a passage from a statement about language to a statement 
about the world: from a statement about a relation between expressions to a state- 
ment about a relation between objects. In sum, the semantic reduction grounds a 
linguistic relation in an objectual one.23 What kind of objectual relation grounds 
logical consequence? 

Consequence of type X. There are many kinds of consequence: legal consequence, 
arithmetic consequence, and so on. Different kinds of consequence are grounded 
in different relations between objects. Legal consequences are grounded in legal 
relations, arithmetic consequences are grounded in arithmetic relations, etc. Ma- 
terial consequences, in general, are grounded in material relations, and necessary 
consequences in necessary relations. To understand what kind of relations ground 
consequences, let us begin with a non-logical type of consequence, say biological 
consequence. 

Consider the following inferences: 

Clinton is a human male; therefore, Clinton 

(16) evolved from a zygote with one X chromosome. 

expressions can also play the role of objects, but objects are always distinguished from the expressions 
which denote them. 

23j am developing an account of truth based on this analysis in On the Possibility of a Substantive 
Theory of Truth [50]. For an abstract of an earlier version see Sher [48]. 
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(17) Clinton is a human male; therefore, Clinton has a progeny 

Clinton is a US President; therefore, 

(18) Clinton is a US Commander in Chief. 

(19) Clinton is a US President; therefore, Clinton is an Arkansan. 

(16) is a biologically valid inference: it is based on a universal biological relation 
between an individual being a human male and its having a certain chromosomal 
makeup. (17) is an invalid biological inference: it is based on a contingent biological 
relation between sex and progeny. (18) and (19) are not biological inferences at all, 
and from the point of view of biology they are equally invalid. Two factors determine 
whether a given consequence is a genuine biological consequence: (a) the features 
of objects taken into account are biological/non-biological; (b) the grounding 
relation is/is-not biologically universal. In accordance with (a) and (b), a system 
for determining genuine biological consequences will consist of a language with 
distinguished biological terms (terms denoting biological features of objects) and a 
device for distinguishing relations that are biologically universal from those that are 
not. The idea of a system of models representing all biologically possible structures 
of objects naturally suggests itself. I will not go into the details of such a system, 
but the point is that genuine biological consequences are grounded in relations that 
hold in all biologically possible structures of objects, i.e., in all biological models. 
These relations hold due to certain biological laws, in particular, laws governing the 
biological properties denoted by the distinguished terms (in our example: "human 
male," "X chromosome," "progeny"). Biological models obey these laws, and the 
assignment of extensions to the distinguished biological terms is based on them 
(e.g., in all biological models the extension of "x is a human male" is included 
in that of "x evolved from a zygote with one X chromosome"). In this sense the 
distinguished terms are said to be fixed. Biological consequences, however, do not 
depend on the objects and properties denoted by the non-distinguished terms (in 
our example, "Clinton," "US president," etc.), therefore the extensions of these 
terms in various models will vary arbitrarily (subject to some constraints of object- 
expression parity). By construction, genuine biological consequences relative to 
the distinguished biological terms - biological consequences based on universal 
biological laws governing the properties, relations and functions denoted by these 
terms - are truth preserving in all models. To construct a semantic biological system 
we use a meta-theory that (i) tells us what are all the biologically possible structures 
of objects, and (ii) determines the extension of the distinguished terms in each 
biologically possible structure in accordance with the laws of biology. Generally, 
to construct a semantics for consequences of type X we (i) select terms of type X 
(terms denoting features of objects of type X) as distinguished terms of the system, 
and (ii) build an apparatus of models that represent all x-ally possible structures 
of objects. In terms of semantic reduction, we reduce "a is an x-al consequence 
of f" to "fz (F)Wx fz (a)," where R. stands for a relation of x-al (e.g., biological) 
generality and fz is a function that extracts the x-al (in our example, biological) 
contents of F and a. 
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Logical consequence. What distinguishes logical from biological consequences? 
Clearly, logical consequences are not based on biological features of objects and the 
space of logical possibilities is different from the space of biological possibilities. 
What features of objects do logical consequences take into account? What is the 
space of logical possibilities? We are called upon to identify the property x such 
that (a) logical consequences are based on features of objects of type x, and (b) 
logical consequences preserve truth in all %-ally possible structures. 

To find x we search for the most basic intuitive characteristics of distinctly logical 
consequences. Following Tarski (see citation on the first page of the present paper) 
I will identify the two central features of logical consequence as necessity and 
formality.24 Necessity, we have seen, is by itself a problematic notion, but formality 
can be viewed as a modifier of necessity: not all necessary consequences are logical, 
only formal-and-necessary (or formally necessary) consequences are. The key to 
understanding logical consequence is, thus, formality. 

What is the intuitive notion of formality? It is common to view formality as a 
purely syntactic notion, and from this point of view the formality of logical conse- 
quence is a syntactic, rather than a semantic, feature. Tarski may have unwittingly 
encouraged this view of formality: logical consequence is formal, Tarski said, in be- 
ing "uniquely determined by theform of the sentences between which it holds" [55, 
p. 414, my emphasis], and what is sentential form if not a syntactic notion? The 
notion of sentential form, however, is not an absolute notion. Russell, for exam- 
ple, distinguished between logical and grammatical form: "I met Jones" and "I 
met a man" have the same (traditional) grammatical form but not the same logical 
form; [42, p. 168] "I am tired and hungry" and "I am tired and I am hungry" have 
the same logical form but not the same grammatical form. Sentential form is partly 
a matter of what a given theory is trying to accomplish, and from the point of view 
of the semantic definition, syntax is driven by semantic considerations. Let me 
explain. Not all grammatical distinctions are relevant to a given notion of conse- 
quence. For example, the distinction between active and passive voice is irrelevant 
to biological consequences and, as a result, is not included in the syntax of a the- 
ory of biological consequence. The central syntactic notion of a given theory of 
consequence is that of "distinguished (fixed) term," and this notion is determined 
based on semantic considerations, namely: what kind of features of objects the 
given notion of consequence takes into account. 

Now, if we already know what the distinguished terms of a given theory of conse- 
quence are - what its underlying notion of sentential form is - we can characterize its 
consequence relation based on this form. In particular, if we assume the standard 
notion of logical term, we can reconstruct the intuitive notion of logical conse- 
quence that (in an idealized sense) led to this choice of distinguished terms. For 
example, the standard logical terms do not distinguish empirical features of objects, 
hence logical consequence is not empirical; the standard terms do not distinguish 
the identity of individuals in a universe of discourse, hence logical consequence 
does not distinguish it either. And these, indeed, are the very features that Tarski 

241 will not be able to engage in a historical investigation of Tarski's text here. My interpretation is 
offered as a way of reading the text that allows us to make good sense of the semantic definition. If the 
reader's interpretation of Tarski is incompatible with mine, he/she may attribute the proposed analysis 
to me. 
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attributed to logical consequence due to its formal nature: "since we are concerned 
here with the concept of logical, i.e.,formal, consequence, and hence with a relation 
which is uniquely determined by the form of the sentences between which it holds 
[standard logical form], this relation cannot be influenced in any way by empirical 
knowledge, and in particular by knowledge of the objects to which the sentence a 
or the sentences of the class F refer. The consequence relation cannot be affected 
by replacing the designations of the objects referred to in these sentences by the 
designations of any other objects." [55, pp. 414-5]25 

However, while taking the logical terms for granted simplified Tarski's task, it 
also weakened his theory. (See discussion of Tarski's paper in Section 1.) An 
informative answer to the question of logical consequence requires an informative 
solution to the problem of logical terms, and for that reason I will not assume a 
notion of logical term at the outset. Rather than asking: What kind of consequence 
do the standard logical terms give rise to? - I will pose the question of logical 
consequence in a more complex form: What kind of consequence, based on what 
kind of terms, is intuitively logical? 

Consider two paradigmatic examples of a logically valid inference. 

Everything is predetermined; everything is known in advance; 

therefore, everything is predetermined and known in advance. 

(21) Some Gods are descended from Zeus; therefore, some 

Gods are descended from Zeus or descended from Hades. 

What features of objects (individuals, properties, relations) do these inferences 
take into account? Clearly not the metaphysical property of being predetermined 
or the epistemological property of being known in advance. Likewise, neither 
the identity of Zeus or Hades nor the property of being a God or the relation 
of being a descendant of play any role in the logical validity of these inferences. 
The properties and relations that do play a role are those denoted by "or," "and," 
"some" and "every," and for that reason "or," "and," "some" and "every" play the 
role of logical terms in these inferences. But what property is denoted by "some"? 
There are those who believe that no property is denoted by "some": "some" is 
a syncategorematic term, and syncategorematic terms do not denote. The view 
of logical terms as syncategorematic expressions may agree with the conventional 
approach to logic but is incompatible with the semantic approach. Semantics 
construes the relation of logical consequence as essentially involving objects, but 
if logical terms are purely conventional, how can they serve as a basis for an 
objectual relation? The conventional approach to logical terms is, however, not 
the only approach known to us. Frege analyzed the standard logical quantifiers 
as standing for "objectual" properties of concepts: properties having to do with 
the size of their extensions. ("Existence is a property of concepts"; "Affirmation 
of existence is in fact nothing but denial of the number nought." [11, p. 65]) The 
objectual tradition was revived (in a somewhat altered form) by Mostowski in 

25(a) See fn. 1 above. (b) The claim that relations definable by means of the standard logical terms 
(and variables) alone do not "distinguish the identity of individuals in the universe of discourse" was 
established in Lindenbaum and Tarski [23]. 
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the mid 50's, and has since evolved to a fruitful and influential trend within logic 
and linguistics. (See Mostowski [31] and Lindstrom [24]; for developments in 
logic see Barwise and Feferman [2] and the bibliography there; for developments 
in linguistics see Barwise and Cooper [1], Higginbotham and May [16], Keenan 
and Stavi [18], van Benthem [58, 59], Gardenfors [13], May [27], Westersta'hl [61], 
etc.) Following this tradition, I will view logical terms as genuinely denoting terms: 
"Some" denotes the second-level property of being nonempty, "every" denotes the 
second-level property of being universal, i.e., having an empty complement (in a 
given universe), "and" (in contexts like those above) stands for the operation of 
intersection, "or" stands for union.26 

Now, two common characteristics of the properties (operations) denoted by these 
terms are formality and generality. These terms denote properties that are formal 
and general roughly in the sense of being structural or mathematical and applying 
to objects (extensions of predicates) in general. Based on this observation, we can 
explain the logical validity of (20) and (21) as grounded in certain general relations 
between formal features of objects. (20) is based on the fact that whenever two 
classes of objects are universal (in a given domain), their intersection is universal (in 
that domain), (21) is based on the fact that whenever a class of objects is nonempty, 
its union with a second class of objects is nonempty. These relations intuitively 
satisfy the pretheoretic requirements of necessity and formality: (i) they take into 
account only formal features of objects, and (ii) they are based on laws (governing 
these formal features) that hold in all formally possible (hence, possible) structures 
of objects. (Intuitively, all possible structures of objects are formally possible.) We 
can say that the relation of logical consequence is grounded in certain general laws 
of formal structure: "The intersection of universal classes is universal," "The union 
of a nonempty class with another (possibly identical) class is nonempty," etc. It is 
not a general law of formal structure that the intersection of nonempty classes is 
nonempty, hence 

(22) Something is predetermined; something is accidental; 

therefore, something is predetermined and accidental 

is not logically valid. It is a general law of formal structure that class inclusion is 
transitive, hence 

All descendants of Zeus are descendants of Cronus; all 

(23) descendants of Cronus are descendants of Gaea; therefore, 

all descendants of Zeus are descendants of Gaea 

is logically valid. And similarly for other inferences. It is a well-known fact that 
in standard logic valid inferences are reducible to certain formal (set-theoretical) 
truths. On the present analysis this is not an accidental by-product of our choice 
of a medium for formulating logic: biological inferences are reducible to biological 
truths and logical inferences are (by their nature) reducible to formal truths. Logic, 
on the present conception, takes certain general laws of formal structure and, using 
the machinery of logical terms, turns them into general laws of reasoning, applicable 

26While it is essential for my account that logical terms denote properties, I do not want to commit 

my account to a particular theory of properties. 
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in any field of discourse. The fact that biological, physical, psychological, historical, 
... structures obey the general laws of formal structure explains the generality 
("topic neutrality") of logic: Some reference to formal structure (to complements 
and unions of properties, identity of individuals, non-emptiness of extensions, 
etc.) is interwoven in all discourse, and therefore logic (the logic of negation and 
disjunction, identity, existential quantification, etc.) is universally applicable."27 

Our analysis has led to the following solution to the problem of logical conse- 
quence. The characteristic property of logical consequence (the logical property 
X) is formality: logical consequences take into account formal features of objects; 
logical consequences preserve truth in all formally possible structures of objects. 
Speaking in terms of semantic reduction we can say that Tarski's definition reduces 
"a is a logical consequence of F" to "f (F)-qf (a), " where f is a function (based 
on the logical terms) that "picks" the formal content or skeleton of what the sen- 
tence a and the "theory" F say about objects, and R stands for the relation of 
formal generality, roughly "whenever," ranging over all formally possible structures 
of objects. 

A system for identifying logical consequences. To construct a semantic apparatus 
for identifying logical consequences based on this reduction, the "Tarskian" logician 
builds a system that consists of a language and a machinery of models. The 
primitive vocabulary is divided into logical terms, terms representing those formal 
features of objects that the system takes into account (for example, in standard 
mathematical logic, being nonempty), and non-logical terms, terms representing 
nonformal features of objects and formal features not taken into account by the 
system (for example, in standard first-order logic, being green and being finite). 
The model-theoretic machinery consists of an apparatus of models and a definition 
of the logical terms. Intuitively, a (logical) model represents a formally possible 
structure of objects relative to the primitive terms of a given language. All and 
only features of objects "detectable" by the logical terms need to be represented by 
models: identities and differences of individuals, complements of extensions (which 
requires a specification of a universe), certain cardinality features, etc. Since all the 
relevant features are extensional, objects are represented in models extensionally. 
Models are subject to formal constraints (e.g., a set and its complement have no 
common elements) but not to metaphysical, physical, behavioral, ... constraints. 
The non-logical terms are strongly variable: any formally possible denotation in 
accordance with their formal "skeleton" (i.e., their being individual terms, n-place 
relation of individuals, etc.) is represented in some model. The logical terms, on 
the other hand, denotefixed formal properties of objects, and their denotations are 
subject to the laws governing these properties. These terms are fixed not in the sense 
that they denote the same entity in each model (the denotation of the universal 
quantifier in a model with 10 elements differs from its denotation in a model with 
11 elements). Rather, while non-logical terms are defined within models, logical 
terms are defined by fixed functions over models. Looking at the system as a 

271 will not go into epistemological issues concerning the background theory of formal structure here. 
On the relationship between the development of mathematical and logical theories see Sher [47, pp. 133- 
4]. One way to challenge a given system of logic, on the present analysis, is to challenge the universal 
applicability of its underlying notion of formal structure. The challenge of fuzzy logic to "classical" logic 
is naturally viewed along these lines (fuzzy vs. classical sets). 
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whole, we may say that the primitive non-logical terms and their denotations in 
models constitute the base of the system; the logical terms and their semantic 
definitions - its superstructure. The two parts of the system are brought together by 
"superimposing" the logical apparatus on the non-logical base. Syntactically, this 
is done by the definition of well-formed formulae (wffs), in which the logical terms 
are distinct formula building operators; semantically, by the definition of "truth in 
a model" which is based on (i) the logical structure of wffs, (ii) the model-theoretic 
definitions of the logical-terms. Thus, the definition of truth in a model says that 
"'xDx" is true in S2t iff the extension of "(Dx" in St is not empty, etc. By construction, 
consequences preserving truth in all models, i.e., consequences satisfying Tarski's 
definition, are formal and necessary, i.e., logical. I will call a logic constructed in 
the way just described a Tarskian logic. 

A background theory of formal structure. Tarskian logic is embedded in a general 
theory of formal structure. The "totality" of models, the definition of logical terms, 
the extension of "truth in A," are all determined based on this theory. In standard 
logic the background theory is ZFC, but from the point of view of the present 
conception this is not essential. The general architecture of "Tarskian" semantics 
requires a background theory of formal structure but it is not tied to ZFC (or to 
any other specific theory). On the other hand, ZFC (unlike relativity theory, Greek 
mythology, or even group theory) is the right kind of theory for this purpose. 

A criterion for logical terms. Logic, on my account, is a theory of formal reason- 
ing, and it is the job of logical terms to represent the formal properties and relations 
on which this reasoning is based. Intuitively, the distinguished terms of standard 
mathematical logic satisfy this requirement, but our analysis indicates that any for- 
mal property can serve as a basis for formally necessary, i.e., logical, consequences. 
Take, for instance, finiteness. Consider the inferences 

(24) Earth has exactly one satellite; therefore, Earth has less than ten satellites, 

and 

(25) 
Earth has exactly one satellite; therefore, 

(25) Earth has only finitely many satellites. 

The two inferences are equally formal and necessary and both share the same logical 
form (in both, both premise and conclusion attribute some cardinality property to 
a certain set of objects). Yet, from the point of view of standard first-order logic 
(24) is valid while (25) is not, and this result is directly connected to the fact that 
"less than ten" can be defined in terms of the logical constants of this logic while 
"finitely many" cannot. What expressions can play the role of distinguished terms 
in logic? 

Two natural criteria for logical terms are: (a) logical terms are structural, (b) 
logical terms are mathematical. There is a clear similarity between my view of formal 
structure and the structuralists' view of structures (e.g., Resnik [41]). Starting with 
a particular situation, say, the child Danny and his six "action figures," we abstract 
from the particular objects and properties present and we obtain a structure, or 
in Resnik's terminology, a pattern, of seven individuals, one of them distinguished 
and standing to all the other individuals in a certain relation R. This pattern 
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fits many situations: Henry the Eighth and his six wives, the number six and the 
natural numbers smaller than it, etc. In each of these structures we have seven 
individuals, in each R is not empty, in each R has a complement, hence "seven," 
" "some, "not" are structural notions. Abstracting from the number of individuals 
in the above structure we obtain structures with different numbers of individuals 
and, accordingly, new structural notions: "three," "ten," "No," etc. However, 
from my point of view it is important that there are many kinds of structure, 
obtained by abstraction from different kinds of features. Thus, biological concepts 
(e.g., "mammal") are obtained by abstraction, and biological inferences, in general, 
involve abstraction. (E.g., "Cerberus is a mammal; therefore, Cerberus has a heart" 
does not take into account the identity of Cerberus). Any theory can be viewed 
as a description of some structure, but not all structures play a role in defining the 
notion of logical constant. To distinguish the structures and structural features that 
play a role in logic I talk about formal structures and formal objects (properties, 
relations and functions of objects). This leads to our second proposal. 

It would be natural to identify "formal" with "mathematical" and, following the 
structuralists, define the identity conditions of mathematical structures in terms of 
isomorphism. This suggestion comes close to capturing my intention, but certain 
clarifications are required. Consider the mathematical statement "two is not equal 
to three." Standard mathematical logic is ambivalent with respect to this sentence: 
depending on how we construe number expressions - as individual constants, first- 
order quantifiers, or predicates of standard higher-order logic - this sentence comes 
out either logically true or logically indeterminate. Are the numerals formal terms? 
Are they formal under some but not all construals? Which ones? Why? 

In his 1957 paper, On a Generalization of Quantifiers, Mostowski proposed a 
condition on quantifiers that, in my view, captures the intuitive idea of formality: 
"[Formal] quantifiers should not allow us to distinguish between different elements 
of [the universe of discourse]." [31, p. 13] Defining a quantifier as a 1-place op- 
erator which, given a universe (i.e., nonempty set) A, denotes an A-quantifier - a 
function from the power set of A, SD (A), to TF - Mostowski interpreted the above 
condition as saying that a [formal] A-quantifier is invariant under permutations of 
S (A) induced by permutations of A. Mostowski's quantifiers correspond to 1 -place 
second-level predicates whose arguments are 1-place (first-level) predicates. More 
generally, we can define such a predicate, X, as denoting, in any given universe, A, 
a set of subsets of A, PA. P is a formal predicate if for any universes A and A', 
and any subsets B and B' of A and A' respectively: if KA, (B)) -v (A', (B')), then 
B E PA if B' E PA',. This criterion captures the intuitive idea that a formal term 
distinguishes only formal features of its arguments: P is a formal predicate if P 
does not distinguish between isomorphic arguments. The same characterization 
can be applied to terms in general: 

(F) A term is formal iff it is invariant under isomorphic structures [24, 57], 

or, more informatively, a term is logical iff its evaluation commutes with all isomor- 
phisms of domains. A term with no arguments is not formal in the sense that it 
does not distinguish any features of objects, formal or nonformal.8 

28For more extended discussions and conditions on the definition of logical (formal) terms, see 
Sher [46] and [47, Ch. 3]. A response to a challenge due to McCarthy [28] appears in Sher [47, p. 64]. A 
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We can now explain the difference between the individual constant "two" and 
the quantifier "two" by saying that the latter, but not the former, is a formal term. 
Speaking in terms of objects we can say that formal objects are not just elements of 
formal structures, they are themselves formal structures. Among the terms satisfy- 
ing (F) are identity and the standard quantifiers, all n-place cardinality quantifiers 
("There are at-least/exactly/at-most 6x such that," where ( is any cardinal, "There 
are finitely/denumerably/non-denumerably many x such that," "most x such that 

," etc.). Other formal terms based on (F) are the second-level well-ordering 
relation, the second-level membership relation, and so on. The first-level predicates 
"x is green," "x is a number," "x is a member of y" etc., are not formal. Neither are 
the second-level predicates "X is a property of Napoleon," "R is a relation between 
physical objects," and others. To see why the first-level membership relation is not 
formal, consider the two structures (A, (Tarski, Gddel)) and (A', (D, {(D})), where 
A = {Tarski, Gddel} and A' = {f(, {(D}}. These structures are isomorphic, yet 
{f(, {(D}} >E"is a member of"A but (Tarski, Gddel) i"is a member of"A. 

When it comes to sentential connectives, we can regard their formality as based on 
"not distinguishing the identity of propositions." Intuitively, sentential connectives 
are formal iff they distinguish only patterns of propositions possessing truth values 
and nothing else. The interpretation of logical connectives as (denoting) Boolean 
truth functions reflects just this intuition. 

So far I have characterized formal constants in terms of the features of objects they 
"detect." We can also characterize them in terms of the structures they "generate." 
Thus, applied to the first argument of a 2-place relation R E A2, the universal 
quantifier generates a set that stands in a certain formal relation to R, namely, 
{b E A : {a E A : aRb}is universal in A}; applied to B C A, the negation 
operator generates a set that stands in a certain formal relation to B, namely, the 
complement of B in A, etc. Invariance under isomorphic structures can be used as 
a formality criterion for all "structure generators.5"29 

Universal logic. Given an interpreted language 2 (a natural, scientific or math- 
ematical language), we categorize the primitive vocabulary of 2 in a "Fregean" 
manner, i.e., (i) the type of a term is determined based on the type of its arguments, 
(ii) no prior division of terms to logical and non-logical is assumed. We correlate 
the syntactic typology with a semantic (objectual) typology (relative to a universe 
A) in the natural way: the syntactic type of an individual constant is correlated with 
the semantic type of a member of A; the syntactic type of an n-place predicate of 

"constructive" definition of logical terms based on (F) is given in Sher [47, Ch. 4]. (An abridged version 
is presented in Sher [49].) Wilfrid Hodges notes the following concise formulation of the definition of 
formal terms for logics of an arbitrary order: Let A be a set. The universe over A, Y (A), is defined by 
induction on the ordinals: Yo(A) = A; , +I(A) = V, (A) U. 5(Y"a(A)); X(A) = UO,<, 5 (A), when 
3 is a limit ordinal. Y (A) = Uc, ordinalY%(A) A term C is formal iff for any nonempty sets A, B: if 
e : A 4 B is a bijection, then e* (CA) = CB, where e* is the isomorphism of Y(A) onto Y (B) induced 
by e. (The use of "universe" here is different form that in the text. Below, I use "universe" to refer to 
a nonempty set under a certain role ("the universe of a structure," or "the universe of a model").) The 
notion of formal term can be naturally extended to infinitistic languages. 

29 (a) From this point of view we interpret the standard logical connectives primarily as (denoting) set 
operators and only secondarily as (denoting) truth functions. (b) The invariance criterion for structure 
generators is based on the principle that if an n-place term C is a formal structure generator, then for all A, 
A': CA,(D,.. ., D/) = D' if CA (DI,..., D,) = D and (A, (DI,..., D, D)) -(A', (D'D.* D', D')) 



DID TARSKI COMMIT "TARSKI'S FALLACY"? 679 

individuals is correlated with the semantic type of a member of SD (A'), etc. (I will 
not go into details here.) We define the notion of an eligible logical term of 2 based 
on (F) as follows:30 

( ) is an eligible logical term of 2 iff F is either a truth functional 

connective of 2 or a predicate of 2 satisfying (F). 

We select a set, S, of logical terms of 2 based on (EL),3' and we construct a logical 
system, 2, in the way described above. (The set of logical constants of 2 represents 
E; its set of non-logical constants represents the primitive non-logical vocabulary 
of 2.) We apply Tarski's test to 2 and, translating back to 2, we obtain the the set 
of logical consequences of 2 relative to E. 

The criterion (EL), in abstraction from 2, leads to the idea of logic as afamily of 
systems for identifying formal and necessary, i.e., logical, consequences. The various 
systems differ in their logical constants, but all share the property of being formal in 
the sense that (i) their logical predicates satisfy (F), (ii) their logical connectives are 
truth-functional, and (iii) their apparatus of models represents all formally possible 
structures of objects relative to the logical (formal) vocabulary. We may think of 
this family of logical systems as universal logic.32 Universal logic represents a certain 
totality of logical systems based on the "formal" or "Tarskian" conception of logic. 
If we restrict ourselves to the family of logics with a non-logical vocabulary of levels 
o and 1 (individual terms and predicates of individuals), and a logical vocabulary 
of truth-functional connectives plus predicates of levels 1 and 2 (predicates with 
arguments of levels 0 and/or 1), we arrive at a class of logics "for" languages with a 
first-level non-logical vocabulary. I will call this class universalfirst-order logic. The 
notion of universal first-order logic partly coincides with those of model theoretic 
and abstract logic. Its fruitfulness is demonstrated by prolific meta-logical results: 
Lindstrdm's theorems, various completeness and incompleteness results, etc., and 
numerous mathematical and linguistic applications. (See articles and references in 
Barwise and Feferman [2] and Gairdenfors [13].) The term "first-order logic" is often 
reserved for standard first-order systems, but from the present perspective any system 
of universal first-order logic is a first-order logic. (We may view the standard system 
as "elementary" first-order logic.) The Ldwenheim-Skolem theorem points to a 
certain redundancy in the standard first-order notion of model, but this redundancy 
disappears when we think of models within the framework of universal first-order 
logic. Indeed, we can view the Ldwenheim-Skolem theorem as an incompleteness 
theorem for standard first-order logic: certain intuitively formal features of objects, 
in particular, those having to do with uncountable cardinalities, are not detected by 

30 (a) Strictly speaking, there is no need to separate the cases of connectives and predicates. See fns. 
28 and 29 above, as well as Lindstr6m [24]. (b) (EL), and the associated notion of "universal logic," 
are not intended to detract from the value of intensional logics. My analysis, however, does point to a 
difference between the philosophical principles underlying mathematical logic and those underlying the 
various intensional logics. 

31 Some predicates of the natural/scientific/mathematical language ? may not have a determined 
extension in every universe A, and this could interfere with the application of (EL). There are, however, 
familiar conventional solutions to this problem. 

32In Sher [47] I used the term "unrestricted logic," abbreviated as "UL." Several of my students read 
"UL" as "universal logic," and after thinking the matter over I decided to adopt their reading. 
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this logic. It takes a broader system (family of systems) of logic to account for the 
notion of first-order logical consequence - consequence based on formal features 
of individuals and their properties (relations) - in full generality. 

Questions and objections. I will clarify certain aspects of the methodology of my 
conception by responding to possible questions and objections. 

Q: On your account the extension of "logical consequence" depends on truths of 
some non-logical background theory. But isn't logic prior to (stronger than, more 
certain than) all other theories? Doesn't your account lead to an unduly weak notion 
of logic? A: This question raises an important methodological issue that I will only 
be able to touch upon briefly here. The demand that logic should not depend on any 
non-logical theory comes from a foundationalist approach to logic. My own view 
of logic is, however, non-foundationalist. This is not just an external preference that 
I bring into my discussion of logic, but it is an integral part of the Tarskian project. 
This project starts with certain intuitive characteristics of logical consequence, and 
turns them into substantive (informative, non-trivial) conditions on an adequate 
definition of this logical concept. Foundationalism does not permit us to approach 
the definition of logical concepts in this way. On the foundationalist approach logic 
provides a foundation for other disciplines, but nothing (other than logic itself) 
provides a foundation for logic. The foundationalist approach encourages an all- 
or-nothing attitude towards logic: being an ultimate foundation, logic is viewed 
either as something that does not require a justification (i.e., we accept logic on 
faith, based on some infallible intuition, etc.), or as something that cannot be 
justified (i.e., we accept, or discard, logic as arbitrary, accidental, conventional). 
Either way, the foundationalist does not ask, and does not explain, why logic is 
the way it is. The non-foundationalist approach of the present paper, on the other 
hand, demands an informative account of logic. It requires that we think of logic 
in critical and constructive terms, and it does not accept a hand waiving response 
to such basic questions as the question of logical terms. Logic is thought of as a 
dynamic discipline whose development is shaped by the ingenuity and imagination 
of its developers, the changing conceptions of its nature and purpose, problems both 
internal and external (e.g., applicability to, or compatibility with, other disciplines), 
etc. On a non-foundationalist approach logic is, of course, not above our theories 
of formal structure (or, for that matter, any theory) and the point of constructing a 
definition of "logical consequence" is to systematize, or develop, a certain interesting 
and useful notion of consequence; Tarski's notion of logical consequence is not 
stronger than that of formal-and-necessary, i.e., broadly speaking, mathematical 
consequence, and the relation between logic and mathematics is that of interrelated 
disciplines, the advancement of one contributing to the advancement of the other. 
The fact that the emergence of modern logic coincided with the development of 
a rigorous set theory is not accidental, on this view: logic requires a powerful 
background theory of formal structure as much as set theory requires a powerful 
logical machinery.33 There are, of course, certain methodological constraints on 
the relations between logic and mathematics. For example, we cannot reduce logic 
to mathematics and then reduce mathematics to logic. However, my approach is 

33See Vaught [60] for another aspect of the relation between modern semantics and set theory. 



DID TARSKI COMMIT "TARSKI'S FALLACY"? 681 

compatible with a wide variety of philosophies of mathematics (various strands of 
structuralism, Platonism, constructivism and naturalism.) 

Q: Tarski's definition reduces logical consequence to preservation of truth in all 
models. But how do you know that no accidental feature is common to all models? 
A: The roots of this objection can be traced to Wittgenstein who said: "The mark of 
a logical proposition is not general validity. To be general means no more than to be 
accidentally valid for all things." [62, 6.123 1] While Wittgenstein's objection applies 
to the interpretational conception of logic, it does not apply to my conception, 
where logical consequence is reducible not to just any kind of generality, but to a 
special kind of generality, namely, formal and necessary generality.34 Speaking in 
terms of models: Suppose there is an accidental property H, of all models for a 
given language. The notion of model is defined within some background theory, 
i, based on its notion of "formal structure." If T is an adequate theory of formal 
structure, then T includes the theorem "Some formal structure A does not possess 
the property H" and, in accordance with this theorem, the apparatus of models 
defined in T will include a model representing a formal structure in which H does 
not hold. Similarly, if H is a necessary feature of formal structures, T will require 
that all formal structures possess the property H, in which case all Tarskian models 
will possess this property. 

Q: The vindication of Tarski's conjecture, according to your analysis, requires 
the existence of an adequate background theory of formal structure. How do you 
know that such a theory exists? A: In evaluating a conception of logic within a non- 
foundationalist methodology we have to distinguish the task ofjustifying its general 
structure and the task of justifying its background theories. An extreme holist 
might say that we cannot justify one theory within our total system of knowledge 
without justifying all the others, but the same motivation that led me to reject the 
foundationalist approach (its being an all-or-nothing approach) leads me to reject 
extreme holism. My project is not that of justifying logic by justifying the whole of 
knowledge. The challenge I responded to, in writing this article, is a challenge to the 
general architecture of logic, and many questions concerning the use of a particular 
background theory, though interesting and important, do not directly pertain to this 
challenge. Of course, if someone had shown that the very idea of a general theory of 
formal structure is deeply flawed, that would have undermined my conception. But 
no one, to the best of my knowledge, has shown this. On the contrary, the success of 
axiomatic set theory in overcoming Russell's paradox, the fact that no new paradoxes 
have been discovered, the relative consistency of the axioms of ZFC, the agreement 
of modern set theory with the whole of classical mathematics, the existence of several 
potentially viable alternatives to the set-theoretical approach to formal structure 
(Hellman's modal structuralism, Chihara's constructible mathematics, etc.), yield 
support to my presumption that an adequate theory of formal structure is, in 
principle, possible, and substantial portions of such a theory already exist.35 

Q: Set theory, and other theories that can serve as a basis for a theory of formal 
structure, are theories of existent formal structures, not theories of formally possible 

34Garcia-Carpintero [12] regards Wittgenstein's objection as underlying Etchemendy's criticism. 
Wittgenstein himself goes on to say that "the general validity of logic might be called essential" [62, 
6.1232]. In my view, logical validity is grounded in a special kind of "essential generality." 

35See Boolos [4, 5] for issues pertaining to the adequacy of ZF as a background theory. 
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structures. A: The reductive approach to modal notions is based on the idea that 
imprecise intuitive notions can be reduced to clear yet adequately strong precise 
notions. The success of the reduction is measured by (i) the simplicity and clarity 
of the reductant notions and (ii) their ability to support the strong modal notions. 
Metaphysical semantics fails to satisfy (i), linguistic semantics fails to satisfy (ii). On 
my conception, formal possibility is reduced to mathematical existence and formal 
necessity to mathematical generality: "It is formally possible that (F " to "There 
exists at least one mathematical (set theoretical) structure 6 such that (F holds in 
6" and "It is formally necessary that (F " to "For all mathematical (set theoretical) 
structures 6, (F holds in 6." While there are many ways to look at mathematics 
in general and set theory in particular, the relevant question in the present context 
is whether set theoretical existence and generality are both sufficiently clear and 
sufficiently strong to account for the intuitive notion of formal possibility. I will 
not attempt to decide between ZFC and other theories of formal structure here, but 
my view is that the notion of existence in ZFC satisfies (i) and (ii), hence ZFC is 
a reasonable candidate for the reduction of logical consequence. In this context, 
I read the axiom of infinity as saying that an infinite set (structure) of objects is 
formally possible, I read Cantor's theorem as saying that it is formally necessary 
that there are more subsets of a given set (or structure) of objects, it, than members 
of it, and so on.36 Now, we may not be able to axiomatize our idea of formal 
necessity/possibility with complete generality (Gddel's incompleteness theorem), 
but I do not regard this as a serious threat to my conception. If our theory of 
logic is based on the idea that logical consequence is formally necessary, then it is 
bound to reside within the limits of our ability to understand (and systematize) the 
intuitive notion of formal necessity. This does not mean that anything goes, but that 
in the end we have to judge the adequacy of a background theory for logic based on 
relatively, not absolutely, stringent standards. On a positive note, this means that 
logic stands to benefit from advances in related disciplines, for example, a solution 
to the continuum problem.37 

Q: There is a sense in which the decision on a background theory for logic rests 
on contingent matters, for example, the question whether the universe is finite or 
infinite. Intuitively, both finitism and "infinitism" are logically consistent. A: First, 
I would like to state the obvious, namely, only a controversy with regard to the 
size of formally possible structures, not materially existent structures, is relevant to 
my conception. Second, the controversy over infinite structures stands to predicate 
logic in the same way that the controversy over bivalence stands to sentential logic. 
To use bivalence as a background assumption for standard sentential logic is not to 
commit ourselves to the view that many-valued theories of truth are inconsistent. 
Similarly, to use infinitism as a background assumption of universal logic is not to 
claim that finitism is inconsistent. (Indeed, we can formulate finitist theories within 
an infinitistic logic.) But the same need not hold in the opposite direction. If (in 

36My interpretation of mathematical theorems in the present context is "modalistic," but note the 
direction of explanation: it is mathematics that explains (systematizes, clarifies) the notion of formal 
possibility rather than the other way around. For a discussion of modalism see, for example, Parsons [33]. 
On the direction of explanation see Putnam [35]. 

37For example, if we solved the continuum problem we could apply Tarski's definition within logics 
containing the pair of quantifiers (21%x) and (81x). 
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the extreme case) the finitist is saying that an infinite structure of objects is formally 
impossible, then a theory requiring infinite models is, for him/her, unsatisfiable. 
Someone may feel that formal possibility is not pure enough for logic, that logical 
concepts should be defined in terms of "purer" notions. But aside from a trivial 
reduction of logic to logic it is not clear to me what notions would qualify. One of 
the points I have tried to make in this paper is that the task of accounting for logic 
does not force us to choose between an impossible problem and an inept solution: 
between some kind of rarefied, lofty explanation and a purely material explanation. 

?4. Did Tarski commit "Tarski's Fallacy"? Has modern logic committed a fal- 
lacy? In this paper I have examined Tarski's definition of logical consequence with 
respect to three conceptions of logic. Etchemendy's claim that Tarski's definition 
yields a material rather than a logical notion of consequence holds for the interpre- 
tational (or, more generally, linguistic) conception, but the view that modern logic 
is an interpretational theory is not supported by the evidence. Etchemendy seems 
to derive this view (at least in part) from a simple disjunctive argument: Either 
modern logic is interpretational or modern logic is representational; modern logic 
is not representational; therefore, modern logic is interpretational. The dilemma on 
which this argument rests is, however, inherently problematic. How do we justify the 
claim that there are just two (viable) interpretations of modern logic? Etchemendy 
does not bring any explicit argument in support of his dilemma. Implicitly, he may 
be reasoning as follows: Logical consequence is based either on language or on 
the world; interpretational semantics is the theory that logic is based on language; 
representational semantics is the theory that logic is based on the world; ergo the 
dilemma. But this reasoning involves an uncritical uniqueness assumption: there is 
exactly one theory of logic as based on language and exactly one theory of logic as 
based on the world. Furthermore, the very idea of logic "being based on language" 
or "being based on the world" is simplistic. There are many aspects of language 
(the aspect studied by the grammarian, the aspect studied by the stylist, etc.) and 
many aspects of the world (the aspect studied by the physicist, those studied by the 
biologist, metaphysician, etc.). The question is not simply whether logic is based 
on language or the world; the question is what aspect of language and what aspect 
of the world (indeed, what aspect of the language-world relation) logic is based on. 

Both the representational and the interpretational answers to the question of logic 
are inadequate. Representational semantics construes logic as based on general 
metaphysics (metaphysical features of objects), but "logical consequence" is not 
the same notion as "metaphysical (necessary) consequence." Using a notoriously 
abstruse and unwieldy notion to define a comparatively clear and transparent one 
is methodologically unsound. Interpretational semantics is an attempt to derive 
the notion of logical consequence from the idea of arbitrary distinguished terms by 
means of a theory of material truth. Interpretational semantics, however, tries to 
do too much with too little, and not surprisingly its notion of logical consequence 
collapses to material consequence. 

One of the main obstacles to developing an adequate account of logic has been 
the characterization of "truth in virtue of form." In his introduction to the second 
edition of The principles of mathematics, Russell said: "It seems clear that there 
must be some way of defining logic otherwise than in relation to a particular logical 
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language. The fundamental characteristic of logic, obviously, is that which is 
indicated when we say that logical propositions are true in virtue of their form. ... 
I am unable to give any clear account of what is meant by saying that a proposition 
is 'true in virtue of its form.' But this phrase, inadequate as it is, points, I think, 
to the problem which must be solved if an adequate definition of logic is to be 
found." [43, xii] The formal conception of logical consequence outlined in this paper 
offers a definite solution to this problem, culminating in a precise and unequivocal 
criterion for logical constants, namely (EL). Etchemendy [9, Ch. 9] discards the 
issue of logical constants as a "red herring," but it is important to keep in mind 
the context in which his claim is made. Etchemendy assumes that modern logic is 
an interpretational system, and on this assumption the view that a demarcation of 
logical terms will rescue logic from the fallacies is indeed a "myth": interpretational 
semantics falls prey to the third as well as the second material consequence fallacy, 
and a solution to the problem of logical terms will not avert the third fallacy. 

My philosophical conception owes much to internal developments in logic. 
Mostowski's generalization of the logical quantifiers and Lindstrdm's (and Tarski's) 
extension of Mostowski's generalization created a new environment for meta-logical 
investigations. By offering a genuine, systematic alternative to the standard selec- 
tion of logical terms, this environment has made it possible to conduct a general 
philosophical critique of the notion of logical term and with it, in a sense, the 
notion of logic. While Mostowski's and Lindstrdm's generalizations have had a 
profound influence on the development of mathematical logic as well as linguistic 
semantics, many philosophers still restrict their deliberations to standard first-order 
logic. My account closes the gap between the philosopher's and the working lo- 
gician's (and linguist's) notions of logical semantics. I believe that, in addition to 
profuse mathematical and linguistic results, the new, broader perspective on logic 
has numerous philosophical ramifications: for ontology (ontological commitment 
and ontological relativity), for the philosophy of mind ("the logic of thought," 
mind/brain computation, for the theory of truth, for the theory of meaning, and 
for the philosophy of mathematics (e.g., logicism). I have examined some of these 
ramifications in Sher [47, Ch. 6]. See also Shagrir [44, Ch. 2] 

Due to limitations of space I have not discussed Tarski's 1936 [55] paper in 
detail here. I have pointed out that Tarski, as far as we know, never identified 
the proof referred to in his 1936 paper, and I have concluded that, in the absence 
of any supporting evidence, the claim that Tarski committed "Tarski's fallacy" is 
unsubstantiated. There is, however, a widespread (though largely undocumented) 
view that Tarski "got things wrong" in his 1936 paper. The examination of this 
view must wait for another occasion.38 In the present paper I have investigated the 
modern definition of logical consequence that emerged from Tarski's paper. This 
definition, I hope I have shown, is coherent and well motivated and, within the 
bounds of "universal logic," it does captures the intuitive notion. 

38For one explanation of presumed gaps in Tarski [55] see Hodges [17]. 
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