19 Semantics and Logic

GILA Y. SHER

Tarski’s seminal work on truth and logical consequence is, perhaps, the single
most important contribution to modern semantics. The recursive definition of
truth in terms of satisfaction and the inductive, step-by-step definition of the
logical syntax on which it is based, the notion of semantic model, the defini-
tions of logical truth and logical consequence, are at the core of contemporary
semantic theories.! Model-theoretic semantics (abstract logic), possible-world
semantics, theories of meaning such as Davidson’s and others’, Montague
semantics and even logical form (LF), a branch of generative syntax, all incor-
porate Tarskian principles.? Tarski’s theory, however, is a logical semantics,
resting, as it does, on an essential division of terms into logical and extra-
logical. In the mid-fifties a generalization of logical terms led to a substantial
expansion of Tarskian semantics with important advances in logic and, more
recently, in linguistics. Philosophically, the new generalization has raised, as
well as provided tools for answering, important questions about logical se-
mantics and its relation to linguistic semantics. In this paper I will discuss
Tarskian semantics and the generalizations that followed in an attempt to
answer some of the ensuing philosophical questions.

1 Tarskian Semantics Before 1957

In “The concept of truth in formalized languages” (1933) Tarski observed that
the task of defining truth for a language with infinitely many sentences is
complicated. We cannot refer to infinitely many sentences directly in a finite
a’ifourse, hence an indirect method is called for. The recursive method natur-
> Suggested itself. The recursive method allows one to define predicates in
ﬁnite;ev manner provided the domain of objects over which they range is itself
o Y definable in a certain specified sense. In particular, if we construct the
Main of objects inductively - i.e. generate it from a directly specified “base”
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(a non-empty set of objects) by means of a finite number of operations - if,
furthermore, the domain is freely generated by this construction (i.e., an object
cannot be constructed in more than one way), and if, finally, we limit our-
selves to predicates whose satisfaction is a matter of the inductive structure of
the objects involved, then we can define the extension of these predicates over
the given domain recursively. Given a set S with a base B and, say, two freely
generating operators, f' and g% the recursive definition of a predicate P (i)
specifies for each atomic element whether it satisfies 7, (ii) provides a recur-
sive rule for each generative operator: a rule that shows whether fa) satisfies
P based on whether a satisfies 2, and a rule that shows whether g(a,b) satisfies
Pbased on whether g, b satisfy P.? In Tarskian semantics the domain of objects
is a set of formulas, and complex formulas are generated from simpler ones by
means of certain logical operators. Another logical term (identity) participates
in the construction of atomic formulas, although atomic formulas do not, in
general, require logical terms. The definition of truth (in terms of satisfaction)
specifies how the truth (satisfaction) of a complex formula is determined by
the truth (satisfaction) of its constituent subformulas and the logical operatox:s
involved. The basic, non-recursive clause includes a specific rule for atomic
formulas containing a logical term (identity) as a constituent, and a general
rule for all other atomic formulas. Briefly, the definitions of the syntax and the
semantics go as follows (I restrict myself here to 1st-order languages with no
functional constants):

1.1 Syntax

Let L be a 1st-order language. We distinguish L by its non-logical constants:
individuals, ¢, ..., ¢, and k-place predicates, P4, ..., Pk~ where jom=20
and k > 0. (The variables, logical symbols and punctuation marks (brackets)
are the familiar ones, and they are common to all 1st-order languages.)

1.1.1 Inductive definition of well-formed formula (wff) of L
Base:

e If P" is a non-logical predicate constant and ¢,,...,t, are individual
terms (individual constants or variables), then "P¢,, ..., t, is a wif.
e If t,, t, are individual terms, then "¢, =4, is a wff.

Inductive clauses:

o If @is a wif, then "~&" is a wif.

o If @ W are wifs, then "@V Y is a wif.

e If @is a wff and x is an individual variable, then FVx@" and "3x& are
wifs.

» Only expressions obtained by one of the base or inductive clauses
above are wifs.
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1.2 Semantics for L

1.2.1 Recursive definition of satisfaction for L (a modern version):

Let A be the universe of discourse (a non-empty set of individuals) and d a
denotation function which assigns to each individual constant ¢ of L a member
of A and to each non-logical n-place predicate constant P" of L a subset of A”
(an n-place relation on A or a subset of A when n = 1). Let G be the collection
of all functions from the set of variables of L into A. For each g € G let g be
its extension to all the individual terms t of L: Z{t) = g(t) if ¢ is a variable,
g(t) = d(t) if t is a constant. Then, relative to A and d, satisfaction of a wff
P by age G-or as I will present it here, the truth value of @ under g, v(P[g]),
(where v(®[g]) € {T,F}) — is defined recursively as follows:

Base:

e o(" P, ... t,°[g)) = T iff (if and only if) (Z(t;), . ...3(t.)) € d(P).
e ("t =1t"[g]) =T iff g(t,) is the same as g(t.).

Recursive clauses:

s o("~&"(g)) = T iff not v(P[g)) = T.

s v(TPVYg)) = T iff v(P[g)) =T or v(¥[g)) = T.

e v("Vx®"/T3xP7[g]) = T iff for every/some individual a in A, v(P[g(a/
=T, w})ére g(a/x) assigns a to x and otherwise is the same as g.

1.2.2 Deﬁnitioyg of truth:

A sentence (closed wff) o is true (relative to A,d) iff its truth value under every
(or some) g € G (it comes to the same thing) is T.

In order to/define the notions of logical truth and logical consequence,
Tarskian senfantics introduces an apparatus of models. Given a 1st-order lan-
guage L (as above), a model ¥ for L is a pair (A,d) where A is any universe
(non-empty set of objects) and d a denotation function defined relative to A as
above. The definitions of truth and satisfaction in a model are also the same
as above, only now A is the universe of the given model and d its denotation
function.

1.2.3  Definitions of logical truth and consequence:

* A sentence o of L is a logical consequence of a set I of sentences of L iff
there is no model U for L in which all the sentences of I” are true and
o is false.

* A sentence o of L is logically true iff it is a logical consequence of any
set of sentences of L (equivalently: iff it is true in every model ¥ for L.)



514 Gila Sher

2 Unanswered Questions

Tarski’s work in semantics led to a torrent of philosophical writings, but sex..
eral important questions concerning the nature of logical semantics and se.-
mantics in general were rarely raised. In particular, the role, scope and nature
of logical terms in Tarskian semantics as well as the relation between logical
and non-logical semantics were never adequately clarified.

(A) The role of logical terms in Tarskian semantics is critical. The construc-
tion of the syntax as well as the definition of truth via satisfaction are based
on fixed functions that correspond to particular constants - identity, truth-
functional connectives, the existential and/or universal quantifiers. It is usu-
ally taken for granted that these constants are logical - that, furthermore, these
are all the logical constants there are. With the exception of Tarski, the early
logicians, and many of their successors, were content with this state of affairé.
No one proposed a direct justification for his choice of quantifiers, though
some produced indirect justifications. Thus, Frege and Russell believed that all
of mathematics is reducible to logic with the “standard” logical terms, and
Quine (perhaps the most influential of the later philosophers of logic) believed
the “remarkable concurrence” of the semantic and proof-theoretic definitions
of logical truth and consequence in “standard” 1st-order logic - completeness
— justified drawing the boundary in the standard way. But the questions natu-
rally arise whether mathematics cannot be reduced to logic with other logical
terms, and whether no other (interesting) logical systems are complete. (In-
deed, we now know that some interesting non-standard systems are.*) Frege
referred to the standard quantifiers as expressions of generality, and in many
textbooks logic is characterized as “general” and “topic neutral” and logical
truths as “necessary.” But in the absence of adequate criteria for generality,
topic neutrality and necessity, why should we think that “not,” “or,” “is,”
“all” and their derivatives are the only carriers of general, topic neutral, nec-
essary truths? Moreover, why should we think that the attributes of general-
ity, topic neutrality and necessity uniquely identify logical truth at all (rather
than a more inclusive - or a narrower — category of truths)?

Already in 1936 Tarski realized the issue of logical terms is crucial for logi-
cal semantics:

Underlying our whole construction [of the semantic definition of logical conse-
quence] is the division of all terms of the language discussed into logical and
extra-logical. This division is certainly not quite arbitrary. If, for example, we
were to include among the extra-logical signs the implication sign, or the univer-
sal quantifier, then our definition of the concept of consequence would lead to
results which obviously contradict ordinary usage. On the other hand, no objec-
tive grounds are known to me which permit us to draw a sharp boundary be-
tween the two groups of terms. It seems to me possible to include among logical
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terms some which are usually regarded by logicians as extra-logical without
running into consequences which stand in sharp contrast to ordinary usage. In
the extreme case we could regard all terms of the language as logical. (Tarski
1936a: 418-9)

The extreme case Tarski referred to is one in which the boundary between
logical and material consequences largely disappears. Such materially valid
arguments as “Bush lost the 1992 US presidential elections; therefore, Clinton
is the US president in 1994” come out logically valid. To avoid this result, a
reasoned distinction between logical and extra-logical terms has to be estab-
lished. Clearly, the task of establishing such a distinction is of utmost impor-
tance for logic. For many years, however, philosophers of logic took the standard
division of terms into logical and extra-logical as given. This was not so much
a matter of choice, but a matter of not knowing how to go about establishing
a reasoned distinction.

(B) The Tarskian definition of truth in the form given above (or in any of the
common forms) is inherently uninformative: Essentially, what this definition
says is that “® or ¥ is true iff @ is true or ¥ is true, "Some x is ¢x" is true
iff some individual in the universe satisfies “®x~, and so on. If “or” in "® or
¥ or “some” in "Some x is @®x" is unclear, ambiguous, or imprecise, the
above definition of truth does not assist us in clarifyving, disambiguating, or
rendering it precise. For the connectives, however, we do have an informative
definition available, tied up with a precise criterion of logicality. In the early
days of modern logic the distinctive feature of logical connectives was deter-
mined to be truth-functionality, and, based on this feature, logical connectives
were identified with certain mathematical functions, namely Boolean truth
functions (functions from sequences of truth values to truth values): Negation
was identified with the 1-place function f, where f(T) = F and f.(F) = T,
disjunction was identified with the 2-place function, f,, where f(T,T) = f(T,F)
= f(F,T) = T and f(F,F) = F, etc. The semantic identification of logical con-
nectives with Boolean functions led to the following criterion for logical
connectives:

(LC) A term Cis a logical connective iff there is a natural number n and
a Boolean function f:{T,F}* — {T,F} such that for any n-tuple of
well-formed sentences g, ..., g, "C(g,, ..., g,)" is a well-formed
sentence and its truth value is determined by f[v(q)), ..., v(d,)],
where for 1 <i<n, v(0) is the truth value of o,

This criterion gives a precise and informative answer to the questions: “What
is a logical connective?”, “What are all the logical connectives?”. It decides the
adequacy of a given selection of logical connectives (~ and V constitute a
“complete” selection but & and V do not: we can define all truth-functional
connectives in terms of ~ and V, but not in terms of & and V). And it enables
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us to give a more informative account of the truth conditions of sentential
compounds:

[ ] U(’_o-(D—‘ [g]) = T lfff.(v(¢[g])) = T/
o v(TOVY [g]) = T iff £ (@I u(FIg)) = T.

Whereas in the earlier version the definiens simply simulated the definiendum,
here the definiens includes a precise and informative rendition of the latter.
(Thus, if the colloquial “or” is ambiguous between the exclusive and inclusive
reading, the Boolean function associated with “or” resolves the ambiguity.)

Unlike the logical connectives, the logical predicates and quantifiers are
usually defined by enumeration and the meta-theoretical account does little
more than translate them into colloquial language. It is true that their frequent
use in mathematics has made these terms precise, but no systematic identifi-
cation of the logical predicates and quantifiers with mathematical functions
based on a general criterion of logicality is given.

(C) Tarski’s recursive definition of truth is limited to sentences generated by
means of logical operators. In this definition each logical term receives special
treatment, but all non-logical terms of a given grammatical category are treated
“en masse.” The question naturally arises whether Tarskian semantics is inher-
ently logical. Clearly, in logic, we are interested in studying the contribution
of logical structure to the truth value of sentences, but logical structure is not
the only factor in the truth or falsity of sentences. To what extent is Tarski’s
method limited to logical semantics? Should we think of natural language
semantics as a straightforward extension of Tarski’'s theory?

These questions, thus, are awaiting an answer: (A) Is there a philosophical
basis for the distinction between logical and non-logical terms? (B) Can we
develop a precise mathematical criterion for logical constants and, based on it,
an informative definition of truth? (C) What is the relation between logical and
general semantics? Before 1957 it was hard to answer the first two questions
since no systematic study of logical terms (other than connectives) existed. But
the generalization of the standard quantifiers by Mostowski (1957) changed
this situation: it created a framework within which to develop, compare and
investigate alternative answers to questions about logical terms.

3 Mostowski’s Generalization of the Logical
Quantifiers and Further Developments

In his 1957 paper, “On a generalization of quantifiers,” Mostowski proposed
a semantic criterion for logical quantifiers leading to a new notion of logical
term, considerably broader than the standard one. Before I describe Mostowski's
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criterion I would like to introduce a syntactic—semantic classification of primi-
tive terms that is independent of their logical status. Relative to this classifi-
cation we will be able to view Mostowski’s generalization as a first step in
answering the question: “What terms of what categories are logical, and why?”

Adopting a Fregean conception of quantifiers as properties (relations) of
properties (relations) of individuals, I will present a syntactic classification of
terms into orders and types based on semantic considerations. The order of a
term depends on whether its extension or denotation (in what may be called
its “intended model”) is an individual, a set or n-tuple of individuals, a set of
sets of individuals, etc. (I assume the notion of an empty set of individuals is
distinguished from that of an empty relation of individuals, an empty set of
sets of individuals, etc.) I am leaving functional terms and sentential connec-
tives out, the former for the sake of simplicity, the latter because the problem
of providing a precise criterion of logicality for the connectives has its own,
independent, solution. (See above)

Order:

* A primitive individual term (a term denoting an individual), t. order 0.

* A primitive n-place predicative term (a term whose extension is a set
or relation), P (where n > 0): order m + 1, where m is the order of the
highest argument of P.

On this classification, a 1st-order system consists of primitive terms (or sche-
matic representations of primitive terms) of orders 0, 1 and 2, where all vari-
ables are of order 0 and all primitive terms of order 2 are logical. l.e. a 1st-order
system is a system whose non-logical constants and variables are of order < 1.
Primitive terms of order 0 are called individual constants, of order 1 - predi-
cates, and of order 2 — quantifiers. Restricting ourselves to constants of orders
0, 1 and 2, we can determine their place in the hierarchy uniquely by means
of a simple classification into “types.”

Type:
The type of a primitive term provides information about its arguments.

* A primitive individual term, t. no type (no arguments).
* A primitive n-place predicative term, P: type (t,, ...,t,), where for
1 <1< n, t; = the number of arguments of the i-th argument of P.

Predicates are of type (t,, ... ,t,), where for all 1 <i<n, ¢, =0; quantifiers are
of type (t,,...,t,), where for each1<i<n, t; 20, and for at leastone 1 <i <
n, t; > 0. ldentity is of type (0,0); the existential and universal quantifiers are
of type (1). Natural language constants are naturally classified as follows:
“John” — no type; “is tall” — type (0); “loves” - type (0,0). Mathematical con-
Stants receive the following classification: “one” ~ no type; “there is exactly
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one” — type (1); “there are finitely many” - type (1); “most. .. are ---” - type
(1,1); “is a well ordering” - type (2); the membership predicate of 1st-order set
theories (e.g. ZF) - type (0,0); the 2nd-order membership predicate - type (0,1),
and so on.

Mostowski's generalization can be seen as an answer to the question: “\What
primitive terms of type (1) (i.e. quantifiers of type (1)) are logical?” His answer
is given by the following semantic criterion:

(M) “[Logical] quantifiers should not allow us to distinguish between
different elements of [the underlying universe].” (Mostowski 1957:

13)

Two questions naturally arise: (1) What is the precise content of (M)? In par-
ticular: What does “not distinguishing between different elements” come to?
(2) What is the intuitive justification for viewing logical quantifiers as in (M)?
Mostowski did not give an answer to (2), but he did give a precise answer to
(1). I will begin with Mostowski’s syntactic notion of quantifier.

Syntactically, any predicate of type (1) can be construed as a 1-place opera-
tor binding a formula by means of a variable, i.e. as a quantifier. A quantifier
(of type (1)) satisfying (M) is a logical quantifier. To incorporate 1-place quan-
tifiers in a 1st-order syntax we replace the entry for quantification in the stand-
ard definition by:

» If @is a wff, x is a variable and Q is a logical quantifier, then "Qx@®”
is a wif.

Disengaging ourselves from the notion of “intended model,” we can view
quantifiers, semantically, as functions that assign to each universe A an A-
quantifier, where an A-quantifier is a set of subsets of A or a function from
subsets of A to {T,F}. Thus, the universal quantifier is a function Q7, or shortly,
V, such that for any set of objects, A, V(A) = V,:P(A) — (T,F}, where P(A) is
the power set (set of all subsets) of A. V¥, is defined by: given a subset B of 4,
V.(B) =T iff B=A. 3, is defined by: 3,(B) = T iff B # ¢. Mostowski interpreted
the semantic condition (M) as saying:

(M*) An A-quantifier is logical iff it is invariant under permutations of
A (or, more precisely, permutations of P(A) induced by permuta-
tions of A).

Le. Q, is logical iff for any permutation p of A and any subset B of A, Q4(B)
= Q4(p'(B)), where p’ is the permutation of P(A) induced by p. (M*) can also be
formulated in terms of (weak) automorphisms (isomorphisms of A-structures):

(M**)  An A-quantifier is logical iff it is invariant under automorphisms
of set A-structures.
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le. Q. is logical iff given a non-empty set A and B, 3’ C A: if (A,(B)) = (A(B))
((AB)) and (A,(B")) are isomorphic), then Q,(B) = Q.(B’). It is easy to see that
the standard quantifiers satisfy Mostowski’s condition.

Now, as in sentential logic, Mostowski was able to represent the truth (sat-
isfaction) conditions of logical A-quantifiers by correlating them with certain
mathematical functions. Given a logical A-quantifier, Mostowski observed that
its truth conditions have to do with the cardinalities of subsets of A and their
complements (in A) and nothing else. Accordingly, 3, and V, can be defined
in the following way: Given a set B C A, 3,(B) = T iff |B| > 0, V,(B) = T iff
A = Bl =0 (l...] is the cardinality of...). We can thus identify 3, and V,
with cardinality functions, 3, and V,,, from pairs of cardinals () such that
B+ v=1Alto T and F, defined by: 3,(8,y) = T iff >0, V,(By) =T iff y=0.
More generally, any function g,:(5,7). — {T,F}, where a is a cardinal number
larger than 0 and (f,7), is the set of all pairs (7) such that §+y= ¢, is an
a-quantifier. Mostowski proved that there is a 1-1 correlation between logical
A-quantifiers, i.e. A-quantifiers satisfving (M=), and a-quantifiers.

How shall we extend (M) to logical quantifiers of type (1) in general, i.e.
unrestricted to A? Mostowski did not go bevond .i-quantifiers, but we can
easily extend his criterion based on the following considerations:

\2) It is natural to view a quantifier Q as logical iff for any universe A,
Q. is a logical A-quantifier.

(b) It is natural to require that a logical quantifier Q be correlated with
the same a-quantifier in any two universes of the same cardinality.

(2) and (b) lead to the following extension of (M=*»):

(M=**+) A quantifier Q (predicate of tyvpe (1)) is logical iff it is invariant
under isomorphisms of set structures.

Le. Q is logical iff for every A # ¢, A’# ¢, BC A and B’ C A" if (A(B)) =
(A'(B"), then Q,(B) = Q.(B’). Quantifiers satisfying (M#**) are often called
“Mostowskian” or “cardinality quantifiers.” Among the many quantifiers fall-
ing under this category is M, standing for some mathematically precise rendi-
tion of “most.” If “most” is taken as “more than half,” then it is defined by
My(B,y) = T iff B> y. Other Mostowskian quantifiers are !4, standing for “ex-
actly §” and defined by !8,(8,y) = T iff § = §; E, standing for “an even number
of” and defined by E(f,7) = T iff B is an even positive integer; !1/2, standing
for “half” and defined by !1/2,(8,7) = T iff B = % and ¥, standing for “finitely
many” and defined by F,(8,7) = T iff B < X, These quantifiers appear in such
sentences as “Most things are different from what you think they are,” “There
are exactly two pennies in my pocket,” “There is an even number of letters in
the English alphabet,” “Half the things are yours,” “There are finitely many
rows in a truth table,” symbolized by "(Mx)Dx”, "(!2x)Px", "(Ex)Lx",
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r(11/2x)Yx™ and "(Vx)[Tx o (Fy)Ryx]", respectively, with the obvious read-
ing of D, P, £, Y, T and R. We can replace the entry for quantifiers i
Tarski’s semantic definition of truth under g as follows: Given a universe 4 of
cardinality a >0,

o y(CQxP[g)) =T iff Q,(By) =T, where B=|ae A: v(P[g(a/ x)]) = )
and y=|{a € A: v(P[g(a/x)]) = F}I.

Intuitively, what this definition says is that "Qx®=x" is true in a mode] 9
with a universe A of cardinality « iff the number of objects in A satisfying ~¢x"
and the number of objects in A not satisfying "®x™ is as Q says. Mostowski’s
generalization was further extended in 1966 by Lindstrém and Tarski (in-
dependently of one another). The extended criterion applies to all terms of
orders 0-2, regardless of type. Following common practice, I will name the
criterion after Lindstrom: :

(L) A term is logical iff it is invariant under isomorphic structures,’

where a structure is an n + 1-tuple, (A(D,,...,.D,)), A#dand D, 1<i<n,is
a member of A, a subset of A or a relation of A. The idea is, roughly, that if
a term is logical, it does not distinguish between structurally identical argu-
ments. Le. if (A(D,,...,D,)) = (A'AD’;, ...,D’,)), then a logical term assigns
the same truth value to (D,, . ..,D,) in the universe A as to (D}, ...,D".) in the
universe A’. Since individual terms have no arguments, they cannot be said to
give the same truth value to structurally identical arguments, and we stipulate
that they do not satisfy the criterion (L). Among the predicates falling under
Lindstrom’s criterion are, in addition to Mostowskian quantifiers, the 1st-
order identity relation and the 2nd-order binary predicate “Most” (type (1,1)),
appearing in such sentences as “Most students passed the test” and symbol-
ized "(M''x)(Sx,Px)". Intuitively, "(M''x)(Sx, Px)" is true iff most of the S's in
the universe of discourse are P’s, i.e. iff the pair (S,P), where S, P are the
extensions of "Sx”, "Px", respectively, satisfies “Most”.® “Most” is logical
according to (L) since for any universes A and A, and S,P C A, §', P’ C A% if
(ALS,P)) = (A’ (S, P)), then (S,P) satisfies “Most” iff (S’,P’) satisfies it. Other
terms satisfying (L) include the 2nd-order ternary predicate, “More. ..
than --- ares*” (type(1,1,1)), as in “More girls than boys passed the test,”
symbolized by "(M'"''x)(Gx,Bx,Px),” the 2nd-order membership predicate,
where “t is a member of B” is symbolized "(MEM"'x)(t,Bx)", the 2nd-
order relational predicate “Well-ordering”, where “R is a well ordering” is
symbolized: "(WO?xy)Rxy", etc.

Among the predicates which do not satisfy (L) are all the predicates of type
1 which fail to satisfy (M=***), the predicate “is tall”, the 1st-order membership
predicate, the 2nd-order predicate “is a relation between humans” (type(2)
and many others. Comparing the two membership predicates, €°° and €°",
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we see the difference between them intuitively as follows: "t; € 0047 is true in
a universe A iff the two individuals assigned to t, and t, in A, a, and a,, are
such that a, = {a;,...). But as members of A (as individuals) 4, and a, are
atomic objects. Therefore, the structures (A,{a; a,)) and {A,{a,,4a,)) are isomor-

hic and no term satisfying (L) distinguishes between them. Le. for any terms
of type (0,0), C*°, satisfying (L): C3-%a,,a,) = T iff C$~%(a,,a;) = T. Since €% does
distinguish between the structures (A/(a,4,)) and (4,(a,a,)) (if a, €5 a, then
a,€5° a)), €% does not satisfy (L). The situation is different with respect to
e®!: € holds between a member and a subset of .4, not between two mem-
bers of A. Therefore, the problem indicated above does not arise: (A,(g,B)) is
never isomorphic to (A,(B,a)). It is easy to see that €™ satisfies (L): Given any
non-empty sets A and A’, if (A,{a,B)) = (A’(a’,B")) then a € B iff a’ € B, i.e.
edaB)=Tiff e{'(a’,B)=T.

Lindstrém’s criterion satisfies Mostowski’s initial condition, (M): A term
invariant under isomorphic structures takes into account only the mathemati-
cal structure of its arguments in a given universe. Since individuals are,
semantically, atomic elements, they are all structurally identical, and their
difference is not detected by any logical (structural) term. Taking Lindstrém’s
criterion as my starting point I will now turn to the three questions posed in
Section 2. T will begin with the second, meta-logical, question: Is there an
informative, constructive definition of logical terms, which exhibits their truth
(satisfaction) conditions in accordance with (L) and shows how to build up
extensions that satisfy them? In Section 6 I will propose an answer to the
question concerning the philosophical foundation of the distinction between
logical and non-logical terms, and in Section 7 I will briefly comment on the
relation between logical and linguistic semantics.

4 A Constructive Definition of Logical Terms

My answer to the second, meta-logical question is positive. I will present two
“constructive” definitions of logical terms: (a) a definition of n-place cardinality
quantifiers, based on Lindstrom (1966), and (b) a definition of logical terms in
general, based on Sher (1991).

4.1 A constructive definition of n-place cardinality
quantifiers

In his 1966 paper Lindstrém extended Mostowski’s “constructive” definition
to cardinality quantifiers in general. Lindstrém proved that if a logical term of
type (1,1, ...,1) satisfies (L), then all it takes into account is the cardinalities of
2" sets in a given universe. More particularly, if a quantifier Q' satisfies (L),
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then the truth of “Q'™! B’s are C’s"” is fully determined by the cardinalities of
B-C, C-B, BN C and A-(B U C), where B and C are the extensions of B and
C’, respectively, and A is the universe of discourse. (Mathematically, the tryth.
conditions of Q' are based on the size of the atoms of the Boolean algebra
generated by B and C in A.) We can thus identify Q'”, semantically, with a
function, Q" from cardinal numbers a (sizes of universes) to O-quantifiers,

o7, where Q}7 is a function from quadruples of cardinals, (8, % §, {), whose
sum is a into (T,F}.* (If « represents the size of A, then f3,76,{ represent the
cardinalities of B-C, C-B, B N C and A~«B U C), respectively, where B and ¢
are any subsets of A.) For example, we identify Most'™" with M', defined by:
for any cardinal a, MJ7(B,%6,{) = T iff §> B. The totality of 4-place cardinality
functions as above determines the totality of binary “cardinality” quantifiers,
and each cardinality function embeds a set of instructions for constructing an
n-tuple of sets that satisfy the corresponding logical term. (To construct a pair
of sets such that (B,C) satisfying M'™' in A we partition A to four subsets, A,
A, A; and A, such |4l > |A)L and we let B= A, U A;and C = A, U A,))

We incorporate 2-place cardinality quantifiers in a 1st-order Tarskian sys-
tem by adding a new entry to the syntax and the semantics:

o If @ ¥ are wifs, x is a variable and Q'™ is a 2-place quantifier, then
rQ"ix(®,¥) is a wif.

o v(Q"'X(@,¥)[g)) = Tiff Qu(B76 ) =T, where f=|{a e A: v(P[g(a/
x)) = T and v(‘Y[g(a/x)]) = Fll, v = Ha € A: v(P[g](a/x)]) = F and
v(¥[g(a/x)]) = Tll, 6= l{a € A: v(P[g(a/x)]) = v(¥[g(a/x)]) = T}, and
¢ =l{a e A v(P[g(a/x)]) = v(¥[g(a/x)]) = F}l.

4.2 A constructive definition of logical terms in general

Not all logical terms satisfying (L) are cardinality quantifiers, therefore a gen-
eral definition of logical terms requires a different method from the one em-
ployed above. Presently, I will give an outline of such a general definition. For
the purposes of demonstration I will limit myself to terms of types (0,0), (1)
and (2). The account will proceed from the bottom up: starting with a universe
A, I will describe a method for determining (or constructing) the extensions of
all logical terms in A. This method will produce a set-theoretical representa-
tion of logical terms in general. I will proceed in four steps.

Step 1. Take any model  with a universe A of cardinality « and consider
three sets: 51 — the set of all pairs of individuals in A (S1 = A x A), 52 — the set
of all subsets of A (S2 = P(A)), and S3 - the set of all sets of pairs of individuals
in A (53 = P(A x A)). Subsets of S1 constitute extensions of terms of type (0,0)
(e.g. =) in A, subsets of S2 constitute extensions of terms of type (1) (e.g:
YV and Most!) in A, and subsets of S3 are extensions of terms of type (2)
(Is-Symmetric?) in A. Our first task is to construct the extensions of logical

terms of these types in U. 4
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Step 2. We know that logical terms do not distinguish between objects (pairs
of individuals, sets, relations) which are structurally identical. So we can think
of logical terms in the following way: if a logical term holds of an object with
structure ¥ in ¥, then it holds of all objects with structure & in 2. Thus, given
any subset of 51, S2 or 53, we extend it to an extension of a logical term (of
type (0,0), 1) or (2)) by closing it under automorphisms. For example, if A =
{abcdl and S C 52 = {{a),{b,c})), then, since (A({a})) = (A({E)) = (ALlch) =
(A{dh) and (ALlb.ch)) = (Alab))) = (Alac)) = (ALla,d)) = (AL(bd))
(A({c.d})), the closure of S, S*, is {{a),{b).{c),{d).{a,b}.{a,c}, {a.d},{b,c}, {b.d},{c.d}}. By
construction, S* satisfies the invariance condition (L) for A-structures (struc-
tures with A as their universe), hence S+ is the extension of some logical term
over all models with universe A, namely the logical quantifier “either-one-or-
twol,” or, shortly “1-2},” whose syntactic correlate appears in formulas of the
form 7(1-2'x)@x". In this way the closure of each subset of S1, S2 and S3
constitutes the extension of some logical term restricted to A.

Step 3. Logical terms, however, satisfy the invariance condition (L) not only
relative to one universe, but also across universes. Therefore, logical terms
over U should not be constructed from elements of .4, but from “neutral”
elements, elements that can be used to identify extensions in any universe of
cardinality a = JA]. One way to satisfy this requirement is to construct logical
terms using indices of members of A as our building blocks. We can take «
itself, i.e. the set of ordinals smaller than @, as our index set.” We start by
assigning indices to elements of A by some (any) index function i from A onto
a. We then replace the extensions of the logical terms over ¥ by their indices.
Thus, in the example above, we assign to ab,c,d the indices 0,1,2,3 and we
replace S* by §™ = {{0},{1},{2},{3}.{0,1},{0,2},{0,3},{1,2},{1,3},{2,3}}. The result is an
extension of an o-logical-term, in this case, a logical quantifier, 1-2,. We say
that a B € S2 satisfies 1-2, (in ¥) iff for some indexing of A by «, the index
image of B is in the extension of 1-2, (i.e. is a member of §7). In a similar way
we construct a-logical-terms of types (0,0) and (2).

Step 4. Finally, we “construct” unrestricted logical terms by grouping o-
logical-terms together into classes, where each class contains exactly one a-
logical-term for each cardinal a. Each class is a logical term (an unrestricted
logical term), and the construction of each logical term embeds a structural
description of the objects satisfying it in each model. Put otherwise, the rep-
resentation of each logical term includes “instructions” for constructing its
extension in a given model as well as determining, with respect to any given
element (in our example, a pair of individuals, a subset of the universe, or a
binary relation on the universe) whether it satisfies the given logical term in
that model. Technically, I will construe both a-logical-terms and (unrestricted)
logical terms as functions. A logical term assigns to each cardinal @ an o-
logical-term, and an a-logical-term assigns to each element of « of the right
type (a pair of ordinals, a set of ordinals, a set of pairs of ordinals, etc.) a truth
value, T or F. Thus, if o = 4, 1-21({1)) = 1-2({0,3)) = T and 1-2}(¢) = 1-
24({0,1,2)) = F.°

mn
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This completes my construction. The construction is, of course, an idealizeq
one, using resources (i.e. proper classes) that go beyond standard set theories
But it gives us a definition analogous to the Boolean definition of the logicai
connectives: i.e., a definition that embeds rules for determining what satisfies
a given logical term. In sentential logic logical terms do not distinguish be.
tween sentences with the same truth value, hence sentences are representeq by
truth values and logical terms are defined as functions on truth values, [p,
(Lindstrém) 1st-order logic logical terms do not distinguish between objects
(denotations and extensions of expressions) with the same mathematical (set
theoretical) structure, hence objects are represented by mathematical (set theo-
retical) structures and logical terms are defined as functions on such stryc.
tures. The semantic construction of Lindstrém logical terms is of course more
complex than that of the logical terms of sentential logic, but that was to be
expected.

To include logical terms of types (0,0), (1), and (2) in a 1st-order Tarskian
system, we adjust the syntax and the semantics in the following way:

4.3 Syntax

o If R is a logical term of type (0,0) and t,, t, individual terms, then
ROt is a wif.

o If Q' is a logical term of type (1), ® is a wff and x is a variable,
then 7(Q'x)®" is a wif.

e If Q%is a logical term of type (2), @ is a wff and x, y are variables, then
(Qxy)P" is a wif.

4.4 Semantics

Relative to a universe A of cardinality ¢, a denotation function 4, an assign-
ment g and an indexing i of A by ¢,

o o("R™,4,7(g)) = T iff RIU(E(1))i(E() = T, where i(3(t,)), i(3(ty)) are
the indices of g(t,), (§(t.), respectively.
Informally: g satisfies "R*%t, iff R2™ assigns the value T to the pair
of indices of the individuals assigned to t; and t, by g/d.

o v((Qx)P[g]) =T iff Qi(lla € A: v(P[g(a/x)]) =T}) =T, where I{.. .} is
the set of indices of all members of {...}.
Informally: g satisfies "(Q'x)®x" iff Q) assigns the value T to the set of
indices of all a € A such that g(a/x) satisfies "®x".

* v((Qxy)P'[g)) = T iff Q, (I((ab) € A x A: v(P[g(a/x)b/y)) =TH =T
Informally: g satisfies (Qxy)@xy” iff Q2 assigns the value T to the set
of all pairs of indices of 4, b € A, such that g(a/x)(b/y) satisfies "Pxy -
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While Lindstrém’s criterion does lead to a precise, informative definition of
»gical terms (and truth), no rationale was offered for his criterion. True, his
otion of logical term satisfies Mostowski’s requirement that logical terms do
ot distinguish the identity (individuality) of objects in a given universe, but
‘hy should we take Mostowski’s requirement as a criterion for logicality? A
artial justification was given by Tarski who arrived at (essentially) the same
riterion as Lindstrém. Taking his cue from Klein's program for classifying
eometric disciplines according to the transformations of space under which
1eir concepts are invariant, Tarski suggested:

... suppose we continue the idea, and consider still wider classes of transforma-
tions. In the extreme case, we would consider the class of all one-one transfor-
mations of the space, or universe of discourse, or ‘world’, onto itself. What will
be the science which deals with the notions invariant under this widest class of
transformations? Here we will have very few notions, all of a very general char-
acter. I suggest that they are the logical notions, that we call a notion ‘logical’ if
itis invariant under all possible one-one transformations of the world onto itself.
(Tarski 1986/1966: 149)

3y way of justifying his proposal, Tarski said: “[This] suggestion perhaps
.ounds strange — the only way of seeing whether it is a reasonable suggestion
s to discuss some of its consequences, to see what it leads to, what we have
0 believe in if we agree to use the term ‘logical’ in this sense.” (Tarski 1986/
1966: 149-50) And what this criterion commits us to believe in, Tarski went on
0 say, is that no individual constant expresses a logical notion, that the only
dinary logical relations of order 1 are the universal relation, the empty re-
ation, identity and diversity; that the only logical notions of order 2, type
h=1,...t,=1) are cardinality notions; that all classical mathematical notions
of order >1 are logical notions, etc. The totality of logical notions under this
criterion coincides with the totality of terms definable by “purely logical means”
in the system of Principia Mathematica, hence, Tarski concluded, the criterion
stands “in agreement, if not with all prevailing usage of the term ‘logical
notion’, at least with one usage which actually is encountered in practice.”
(Tarski 1986/1966: 145) Tarski, however, did not tell us why, or even whether,
this particular usage should be preferred to others. Why should we not prefer
a more restricted usage? a more liberal usage? an altogether different usage?

At least one philosopher, Etchemendy (1990), claims that Tarskian logic
does not embed any rational criterion for logical terms, that, in fact, any term
whatsoever can serve as a logical term in Tarskian logic. The inevitable con-
sequence is that the very distinction between logical and non-logical truths
(consequences) collapses. (Assume “is human” and “is mortal” are included in
a Tarskian system as logical terms, based on the following semantic rules:

* ©("Is human (t)"[g]) = T iff 3(t) € {a € A: a is human).
* o("Is mortal (t)[g)) = T iff g(t) € {a € A: a is mortal}.
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Then the intuitively logically indeterminate sentence “All humans are morta}s~
comes out logically true.)

Other questions regarding the distinction between logical and non-logical
terms come from linguistics, especially the linguistic theory of generalizeq
quantifiers.

5 The Linguistic Theory of Generalized Quaniifiers

Linguists have found the logical theory of generalized quantifiers a fertile
ground for applications. We can divide the surge of linguistic investigations
of generalized quantifiers into two waves.!" In the first wave linguistic deter-
miners were correlated with 2-place cardinality quantifiers; in the second
various linguistic constructions were analyzed as “polyadic” quantifiers. The
first wave began with Barwise and Cooper (1981), Higginbotham and Mav
(1981) and Keenan and Stavi (1986/1981). Influenced by Montague’s analysi's
of noun phrases as 2nd-order entities on the one hand and by Mostowski’s
generalization of the logical quantifiers on the other, Barwise and Cooper
suggested that NP’s in general are generalized quantifiers. The logician’s quan-
tifiers correspond to the linguist’s determiners, and the linguist’s quantifiers
are NP’s. A quantified formula is obtained in two steps: First a determiner is
attached to an open formula to form a quantifier, then the quantifier is at-
tached to an open formula to form a quantified formula. The combination
of “most” (a determiner) and “students” (an open formula, “x is a student”)
yields a quantifier, “most students,” and the combination of “most students”
and “passed the test” (an open formula) yields a sentence, “Most students
passed the test,” symbolized ~Most (students) Z[Passed the test (x)]". What is,
for the logician, a 2-place quantification of the form "Q''x(@®x, ¥x)" is, for the
linguist, a 1-place quantification of the form "D(®) %[ ¥x]™. Semantically, deter-
miners are defined as functions from sets to quantifiers (construed as sets of
sets). E.g. Most({x: x is a student}) = Most—students (the set of all sets which
include most students as members). Quantifiers are defined as functions from
sets to truth values. E.g. Most—students({x: x passed the test}) = T/F. (Most-
students(X) = T iff X € Most—students.) Some determiners are logical, others are
non-logical. Determiners expressing the standard logical notions (e.g. “all.”
“some,” “no,” “neither,” “at least/at most/exactly 2”) are logical; determiners
expressing other notions (e.g. “most,” “many,” “few,” “a few,” “all but John")
are non-logical.”* Quantifiers are, in general, non-logical: “most students,” “most
teachers,” “all children,” “all elephants” are distinct non-logical quantifiers.
Since NP’s in general are quantifiers, proper names are also quantifiers: “Mer-
cury is a planet” has the form "Mercury %[x is a planet]”. This sentence comes
out true iff the quantifier “Mercury” (the set of all sets which include Mercury
as a member) assigns the value T to the set of all planets. The account also
accommodates quantifications with a single open formula. In “Something is
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blue,” for example, “Some” is a determiner, “thing” is an open formula and
“Some(thing)” is a quantifier. The sentence is symbolized: "Some(thing)
#[Blue(x)]".

The only rule that applies to quantifiers (non-logical entities) as “part of the
logic,” according to Barwise and Cooper, is conservaticity (or the “living on”
condition). We can express this rule in terms of the linguist’s quantifiers by:
D(B)[C] = T iff D(B)[B N C] =T, and in terms of the logician’s quantifiers by:
Q(B,C) =T iff Q(B,B N C) = T. Informally, conservativity savs that the first set
(the extension of the left open formula) in a linguistic quantification deter-
mines the relevant universe of discourse. “All,” “some,” “most,” are conserva-
tive (“Most students passed the test” is equivalent to “Most students are
students who passed the test”), while “only” and “There are more...than
---" are not conservative (“Only women are allowed in the club” is not equiva-
lent to “Only women are women who are allowed in the club”).

Whereas Barwise and Cooper accepted only determiners defined in terms of
the standard logical quantifiers as logical, other linguists and logicians (Keenan
& Stavi 1986/1981, van Benthem 1983, Westerstadhl 1935) took Lindstrém'’s
criterion as a criterion for logical determiners, viewing invariance under iso-
morphic structures as expressing the idea that logical terms are topic neutral
(van Benthem and Westerstahl). But, according to some of these researchers,
various conditions restrict the scope of logical (and non-logical) determiners.
Among these are, in addition to conservativity, (i) Continuity (van Benthem,
1983): a determiner D assigns the value T “continuously,” i.e.if GG C C C G
and D(B)(C,] = D(B)[C,), then D(B)[C,] = D(B)[C] = D(B);C-). This is a particular
case of graduality: “a determiner should not change its mind too often.” (457)
(ii) Constancy (Westerstahl 1985): if A C A’ and D is a determiner, then D, and
D, coincide over A. (iii) Uniformity (van Benthem, 1983): “the behaviour of D
should be regular (“the same”) across all universes” (457), where “regular (is
the same)” is open to a “hierarchy” of interpretations. None of these require-
ments is satisfied by all binary Mostowskian quantifiers: “Only” is not con-
servative, “An even number of” is not continuous, “Half the objects in the
universe are both ... and ---” is not constant, and the quantifier Q defined by:
Q(a) = Most, if a is even and Few, if ais odd or infinite, is not uniform.

The second wave of linguistic applications of generalized logic centered
around polyadic quantifiers, quantifiers binding a formula, or a finite sequence
of formulas, by means of two or more variables. (See, among others,
Higginbotham & May 1981, Keenan 1987b, May 1989, van Benthem 1989, Sher
1991.) Already in 1981 Higginbotham and May suggested that polyadic quan-
tifiers will help us solve nagging problems of cross reference and “bijective”
wh-questions. Thus by positing-a polyadic, “All-Some” quantifier in two vari-
ables, we can explain the anaphoric relations in cross reference*(Bach-Peters)
Sentences like “Every pilot who shot at it hit some Mig that chased him.”
Polyadic analysis can also explain how questions with multiple singular wh-
Phrases have a bijective interpretation, e.g. how “Which man saw which
Woman?” allows the bijective answer: “John saw Jane, and Ron saw Nancy.”
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Other examples of polyadic constructions in natural language are “Different
students answered different questions on the exam” (Keenan 1987b), “No one
loves no one” (May 1989), “For every drop of rain that falls, a flower grows”
(Boolos 1981)”, etc. Branching quantifiers, or non-linearly ordered quantifier
prefixes, can also be regarded as polyadic quantifiers (Van Benthem 1989),
Examples of statements analyzed in the literature as branching quantifications
are “Some relative of each villager and some relative of each townsman hate
each other” (Hintikka 1973b), “Quite a few boys in my class and most girls in
your class have all dated each other” (Barwise 1979), “Most of my friends have
applied to the same few graduate programs” and “Most of my right hand
gloves and most of my left hand gloves match (one to one)” (Sher 1990). What
is distinctive of these sentences is the occurrence of two or more Mostowskian
quantifiers neither one of which is in the scope of the other.

None of the conditions mentioned above has survived the passage from
determiners to polyadic quantifiers: the only constraint on polyadic quantifi-
ers is logicality, construed as invariance. But the nature of invariance (“Invari-
ance under what?”) is an open question. Some have interpreted invariance in
Lindstrém’s sense (Keenan 1987b, van Benthem 1989), but others have ques-
tioned the type of invariance involved. Thus Higginbotham and May (1981)
asked whether for binary polyadic quantifiers the condition is invariance under
isomorphisms based on permutations of individuals (Lindstrém), permuta-
tions of pairs of individuals, permutations of pairs of individuals with a dis-
tinguished first or second element, etc.

Mostowski, Lindstrém, Tarski, Etchemendy, linguists studying natural lan-
guage quantifiers, and others (Tharp 1975, Peacocke 1976, Hacking 1979,
McCarthy 1981, etc.) have come up with an array of views (and points of
view) regarding the existence and content of criteria for logicality. One way to
approach the issue is to predicate it on a more fundamental question, for
example (Tharp 1975): “What is the task (the point, the intended contribution)
of logic?” If we can identify a central task of logic and determine what role
logical terms play in carrying out this task, we will be able to view the distinc-
tion between logical and non-logical terms as a distinction between terms that
can and terms that cannot fill this role, or terms that will and terms that will
not contribute to the logical project by “acting” as logical terms. Below, I will
present my own solution to the question of logicality based, in part, on Sher
1991. Although my general approach is influenced by Tharp, my analysis and
subsequent solution are very different from his.

6 A Philosophical Basis for the Distinction
Between Logical and Non-Logical Terms

The primary task of logic is often conceived of as the development of a method
for identifying logical consequences, logical truths being a particular case. But
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given this conception, the question immediately arises: “What kind of conse-
quences are logical?” Many say that logical consequences are due to the struc-
ture of sentences, where structure is a function of the specific logical terms
present and their arrangement. Thus, Quine (1970: 48) says: “Logical implica-
tion [consequence] rests wholly on how the truth functions, quantifiers, and
variables stack up. It rests wholly on what we may call, in a word, the logical
structure of the . .. sentences [involved].” This characterization, however, gives
rise to the question: “Which terms are logical? (What is the logical structure of
a given sentence?)” So, from the point of view of our present inquiry (into the
notion of logical term) this approach is unhelpful. What we need, in order to
demarcate the logical terms, is an intuitive characterization of logical conse-
quence that is independent of this demarcation.

A characterization of logical consequence satisfying this requirement was
given by Tarski in “On the Concept of Logical Consequence” (1936a). Accord-
ing to Tarski (as I read him), a consequence is logical iff it satisfies two fun-
damental conditions: (a) necessity, and (b) formality. In Tarski’s words: “Certain
considerations of an intuitive nature will form our starting point. Consider
any class K of sentences and a sentence X which follows from the sentences
of this class. From an intuitive standpoint it can never happen that both the class
K consists only of true sentences and the sentence X is false. Moreover, ... we
are concerned here with the concept of logical, i.e. formal, consequence....”
(Tarski, 1936a: 414)" In some accounts of logical consequence necessity, but
not formality, is mentioned as a primary trait (see Etchemendy, 1990, and
references there). But these accounts, Tarski tells us, miss the distinctive fea-
ture of logical, as opposed to other types of consequence. Logical consequence
satisfies a more stringent condition than mere necessity: logical consequence
is formal and necessary (formally necessary).

Taking Tarski’s characterization as my starting point, I would first like to
say a few words about formality. It is common to view formality as a syntactic
condition: the formality of logical consequence is captured by the various
syntactic definitions, while its necessity is captured by the semantic definition.
I believe this approach is wrongheaded. The intuitive notion of logical conse-
quence includes the idea that logical consequence is necessary in a special
way, namely, in a formal way. To capture the intended notion of logical con-
sequence, the semantic account cannot disregard the formal nature of intui-
tively logical consequences. Two examples of intuitively necessary but
non-formal consequences are: (i) “The ball is all blue; therefore, it is not yel-
low,” and (ii) “John is a bachelor; therefore he is unmarried.” These inferences
clearly rest on non-formal principles — metaphysico-physical principles in the
first case and lexical conventions in the second - and this fact can be used to
explain why we tend not to view them as strictly logical.

Tarski examined two syntactic definitions of logical consequence and found
them lacking: the standard proof theoretical definition, and a substitutional
definition. 1 will begin with the proof theoretical definition. In modern termi-
nology we can formulate this definition as follows: Given a standard 1st-, or
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higher-order, logic £ with a set of axioms, s, and a set of rules of proof, %.
if I' is a set of sentences of £ and o is a sentence of ¥, then o is a logica]
consequence of I iff there is a (finite) proof of ¢ from I (using the axioms in
sl and the rules in R). Now, consider the inference “P(0), P(1),..., P(n), . .. ;
therefore all natural numbers have the property P,” expressed either in 1st- or
in higher-order logic. This inference is intuitively formal and necessary, yet it
cannot be established by means of the standard proof method. Furthermore,
it follows from Godel’s incompleteness theorem that not even by adding (rea-
sonable) rules of proof can we establish all intuitively formal and necessar
consequences. ’

The second syntactic definition of logical consequence is substitutional. This
definition says that given a natural (interpreted) language L, o is a logical
consequence of I' iff there is no uniform substitution for the primitive non-
logical constants of L (by grammatically compatible primitive terms of L) under
which all the sentences of I come out true and ¢ comes out false. There are
(at least) three problems with this definition: the first was pointed out. by
Tarski (1936a) and the other two are drawn from an analysis of Etchemendy
(1990).% ’

(i) The substitutional definition is exceedingly sensitive to the richness of the
non-logical lexicon: if L has a limited non-logical vocabulary, then certain
consequences which fail the intuitive test pass the substitutional test. For ex-
ample, let “Tarski,” “Godel,” “is a logician” and “is a male” be the only non-
logical constants of L. The intuitively incorrect consequence “Tarski is a male;
therefore Tarski is a logician” comes out logically valid in L.

(ii) The substitutional method does not have the resources for distinguish-
ing between logical and non-logical terms. Its only resources are grammar,
lexicon and the notion of preservation of material truth under substitutions,
and these do not suffice to decide the logical status of a given term. The
substitutional method, therefore, reduces the distinction between logical and
non-logical terms to an arbitrary, or conventional, distinction between “fixed”
and “non-fixed” terms, and the notion of logical consequence is relativized to
arbitrary divisions of terms into fixed and non-fixed.' It can easily be seen that
relative to some selections of fixed terms, the “wrong” consequences pass the
substitutional test, while relative to others, the “right” consequences fail. Thus,
if “Tarski” and “is a logician” are among the fixed terms, “Tarski is a male;
therefore Tarski is a logician” passes the substitutional test (and this happens
no matter how rich the lexicon of L is). And if “(“ and )" are the only fixed
terms, then, assuming the language is modestly rich, “P&(Q&R); therefore
(P&Q)&R” fails the substitutional test.

(iii) The substitutional method takes into account only facts about the actx{a{
world. According to the substitutional definition a sentence is logically true iff
all its substitutional variants are true - true simpliciter, i.e. true in the actual
world. Thus, from the point of view of the substitutional theory logical truth
is actual truth preserved under variations in language (non-fixed constant.fa)- It
follows that if a non-formal, non-necessary truth is insensitive to the non-fixed
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constants of the language, in particular, if it does not contain non-fixed terms,
it is automatically judged to be logically true. This problem arises even on the
standard selection of logical terms: “There are at least two objects” is express-
ible by purely logical vocabulary ("3x3y(x = y)"), hence its truth is equated
with its logical truth. This sentence is a paradigm of logical indeterminacy, but
having no substitutional instances other than itself, it comes out logically true.
The same distortion occurs in the case of logical consequence: Assuming the
standard selection of logical terms, “There are exactly two objects; therefore
X" passes the substitutional test for any sentence X.”

Tarski rejected the proof-theoretical and substitutional definitions and de-
cided to use a different method. The “semantic” method, developed in Tarski
(1933) naturally suggested itself to him. Below I will present my own version of
Tarski’s theory. I will show how the considerations motivating this theory pro-
vide a philosophical foundation for Lindstrém'’s criterion, and how, given this
criterion, the theory avoids the limitations and pitfalls of the proof-theoretical
and substitutional definitions.

What is a semantic theory? Following Tarski I view semantic theories as
theories that deal with concepts relating language to the world (in a broad
sense): “We shall understand by semantics the totality of considerations con-
cerning those concepts which, roughly speaking, express certain connexions
between the expressions of a language and the objects and states of affairs
referred to by these expressions.” (Tarski 1936b: 401) There are two types of
semantic concepts: those that satisfy this characterization directly and those
that satisfy it indirectly. “Reference” and “satisfaction” fall under the first
category, “truth” and “logical consequence” under the second. Reference is a
relation between a term and an object it refers to, and satisfaction is a relation
between a formula and an object (a sequence of objects, a function from the
variables of the language to objects in the universe) satisfying it. Truth and
logical consequence, however, are linguistic properties (relations): truth is a
property of sentences, and logical consequence is a relation between a sen-
tence and a set of sentences. Why do we view them zs semantic? One common
answer is that truth and logical consequence are semantic because they are
definable in terms of semantic relations (reference and satisfaction). I think
this answer puts the cart before the horse. Truth is definable in terms of ref-
erence and satisfaction because it has to do with objects and their relations to
language. Truth holds or does not hold of a given sentence s iff the objects
referred to in s possess the properties (stand in the relations) attributed to
them by . More generally, a linguistic property is semantic iff it holds (or fails
to hold) of a given linguistic entity € due to certain facts about the objects
referred to in ; and similarly for relations. To view logical consequence as a
semantic relation is, thus, to view it as a relation between linguistic entities,
based on a relation between the objects referred to by these entities. Semantics
reduces statements about language to statements about objects. I will not
be able to discuss the reduction of “truth” here,’ but in the case of “logical
consequence” semantics reduces “The sentence o is a logical consequence of
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the set of sentences I'” to something like “The properties attributed to objects
by o stand in the (objectual) relation @ to the properties attributed to objects
by I To understand the nature of logical consequence as a semantic relation
is thus to understand (i) the nature of reference, and (ii) the nature of the
objectual relation Q. Leaving reference aside, we can view the intuitive con-
ditions on logical consequence - necessity and formality — as conditions on @,
Necessity requires that @ hold necessarily; formality — that R take into account
only formal features of the objects and properties (relations) involved. What is
the objectual relation R?

Consider the intuitively logically valid inference, (1): “Something is white
and tasty; therefore, something is tasty.” Why is (1) logically valid? Adopting
Mostowski’s way of viewing quantifiers, we can say that (1) is logically valid
because (i) its premise says that the intersection of the sets of white and tasty
things is not empty, (ii) its conclusion says that one of the intersected sets,
namely the set of tasty things, is not empty, and (iii) whenever an intersection
of sets is not empty, each of the intersected sets is not empty. Looked at in this
way, semantics reduces “o is a logical consequence of I'” to “f(c) R f(I),”
where f extracts the relevant content of ¢ and I" (in our example: a set is not
empty [ f(o], its intersection with another set is not empty [f(I')]), and R is an
objectual expression of generality, roughly “whenever.”

In Tractatus Logico—Philosophicus, 6.1231-6.1232, Wittgenstein seemingly re-
jected this way of looking at logical consequence. Speaking in terms of “logical
truth” (“logical proposition”, in his terminology), Wittgenstein said: “The mark
of a logical proposition is not general validity. To be general means no more
than to be accidentally valid for all things.” This observation led Wittgenstein
to object to the reduction of logic to generality, and a similar objection was
made recently by Etchemendy (1990)."" But Wittgenstein's problem does not
arise on our analysis: logical consequence is not reducible to just any kind of
generality, logical consequence is reducible to a special kind of generality, to
generality satisfying the intuitive constraints of necessity and formality. Ne-
cessity and formality constrain both the function fand the scope of “whenever”.
Formality requires that logical consequence depend only on formal features of
the objects involved (non-emptiness of sets and intersections), not their mate-
rial features (whiteness and tastiness of things), and necessity requires that
“whenever” not be restricted to any particular universes, but range over all
possible universes. Combining necessity and formality, we can say that logical
consequence is reducible to formal generality. It is a formally universal fact (a
fact that holds in all formally possible structures of objects) that if an inter-
section of sets is not empty, each of the intersected sets is not empty, and it
is due to this formal and necessary fact that (1) is logically, i.e. formally and
necessarily, valid.

Tarskian semantics systematizes the reduction of logical truth and logical
consequence to formal universality. What is the role of logical terms in this
reduction? Consider (1) above. The formal relation underlying (1) is not
affected by changes in the extensions of “white” and “tasty,” but changes in
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the extension of “something” and “and” may very well affect it. We can explain
the difference between the two pairs of terms by the fact that the formal
relationship underlying (1) holds no matter what (formally possible) sets of
individuals “white” and “tasty” denote: Given any formally possible universe
of individuals and any two sets of individuals in this universe (sets of white
and tasty things, sets of black and sour things, etc.), if the intersection of the
two sets is non-empty, so is each set non-empty. But the same does not hold
for unions: It is formally possible for a union of two sets to be non-empty
while one of the sets is empty. Similarly, it is formallv possible for an inter-
section of two sets to be empty without either set being empty. This is the
reason the validity of (1) depends on “and” and “something.” If we replace
the denotation of “and” by the denotation of “or” or the denotation of “some-
thing” by the denotation of “nothing,” (1) will turn legically invalid. “And”
(in"...x...and ... x ...") denotes an intersection, “something” denotes the
property of being non-empty, and the laws governing the intersection and
non-emptiness of sets hold in all formally possible structures.

The role of logical terms in Tarskian logic is, thus, to mark formal features
and structures of objects, the kind of features and structures responsible for
logical consequences. Since logical terms have denotations in all formally
possible structures of objects, logical terms are “universal” terms, terms denot-
ing properties applicable to all formally possible objects: humans, dogs, cells,
atoms, colors, natural numbers, real numbers, etc. The standard logical terms
satisfy this requirement, hence consequences based on these terms are genu-
inely logical. But the question naturally arises whether all formally necessary
consequences are based on the standard logical terms. Consider the inferences
(1) “There is exactly one human; therefore, there are finitely many humans,”
and (2) “There is exactly one human; therefore there zre at most ten humans.”
In standard 1st-order logic (2) is considered logically valid while (1) is logic-
ally indeterminate. But is (1) less formally necessary than (2)? Is it intuitively
more possible for a singleton set to be infinite than to include ten elements and
above?

The task of Tarskian semantics, as I understand it, is to provide a “com-
plete” system for detecting logical, i.e. formal and necessary, consequences.
One way of achieving this result is by turning to standard higher-order logic,
but another way is to extend standard 1st-order logic by adding new logical
terms (e.g. the quantifier “there are finitely many x”). How do we determine
the totality of logical terms? To determine the totality of logical terms is to
determine the totality of formal (universal) structures of objects. Each formal
Structure is the extension of some logical term, and each logical term denotes
2 formal structure. To identify formal structures we will use the best universal
theory of formal structure available (a theory applicable to structures of any
kind of individuals). Currently ZF (with urelements) or one of its variants
appears to be a reasonable choice. Based on this theory we will develop a
criterion for formal identity of structures, and based on this criterion we will
say that a term is logical iff it does not distinguish between formally identical
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structures. But this is exactly what Lindstrém'’s criterion says, based on the
model-theoretic notion of structure. A term is logical iff it is invariant under
isomorphic structures. Le. a term is logical iff it does not distinguish isomor-
phic extensions of its arguments. Based on this criterion, all cardinality quan.
tifiers are logical, the 2nd-order property of being a symmetric (transitive,
reflexive) relation is logical, etc. More generally, any mathematical term defin-
able as a higher-order term is essentially logical. Take, for example, the term
“two.” As an individual term “two” denotes a particular individual - the
number two — hence it fails the logicality test, but as a higher-order term “2~
denotes a formal structure — the set of all sets isomorphic to {0,1} — hence is
a bona fide logical term. (This comparison explains why individual constants
are not included in (L): individual constants denote atomic objects, objects
with no structure, formal or non-formal.)

The characterization of logical terms as universal and formal allows us to
explain how Tarskian semantics avoids one of the stumbling blocks of
substitutional semantics, namely, the relativity of its notion of consequence to
arbitrary selections of fixed terms: Lindstrém’s criterion precludes the use of
any non-formal or non-universal terms (“Tarski,” “is a logician,” etc.) as logi-
cal (fixed) terms, ruling out inferences obtained by holding such terms fixed.
The two remaining problems are circumvented by the introduction of Tarskian
models and their specific features. Models, in Tarskian semantics, represent
formally possible structures of objects, and the notion of truth in all models
(truth in all models of I) is not dependent either upon the size of the non-
logical vocabulary or upon the size (and other contingent traits) of the actual
world: Whether “Tarski” is the only singular term of L or not, “Tarski” is
assigned a great many distinct individuals in different models for L, enough
to establish a counter-example to “Tarski is X”, for any non-logical primitive
predicate X. Likewise, truth in a Tarskian model is not truth in the actual
world, but truth in a formally possible structure, and the notion of formally
possible structure is not constricted by contingent facts (e.g. the cardinality of
the actual universe).®

7 The Logical Nature of Tarskian Semantics

The third question I raised in this paper was: Is Tarskian semantics specifically
designed to accommodate the needs of logic, or can the same apparatus be
used to explain other aspects of the relation between language and the world?
A complete answer to this question is beyond the scope of the present paper,
but I would like to point out two ways in which Tarskian semantics is inher-
ently logical: (a) its choice of “fixed” terms, (b) its method of representing
objects and states of affairs. The first point should be obvious by now: Tarskian
semantics, even Tarski’s general definition of truth (Tarski 1933), is restricted
to languages whose “fixed” terms are logical, and the recursive definition of
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truth via satisfaction reflects this fact. This definition employs “fixed” func-
tions which correspond to the logical terms of the language, and these func-
tions take into account only formal features of objects in their domain.

The second point has to do with the way objects and states of affairs are
represented in Tarskian semantics, i.e. with its apparatus of models. Briefly,
we can present this point as follows: As a logical semantics, Tarskian seman-
tics is interested in features of objects and states of affairs that ‘contribute to
logical consequences and only those. That is to sav, Tarskian semantics is
concerned with (universal) formal features of objects and states of affairs and
nothing else. Tarskian models disregard the diversity of objects and the mul-
titude of non-formal properties thev possess (non-formal relations in which
they stand). All objects, physical and mental, abstract and concrete, micro-
scopic and macroscopic, fictional and real, are represented as members of a set
theoretical entity, the “universe” of a model, i.e. a set. All properties of these
diverse objects are represented as sets of members of the universe, all relations
are represented as sets of n-tuples of members of the universe, etc. Nothing is
possibly both dead and alive, but in some Tarskian models things are. Tarskian
semantics respects the exclusionary relation between “Exactly two things are
X" and “Exactly three things are X” since this relation is formal, but it does
not respect the exclusionary relation between “x is dead” and “x is alive” since
this relation is not formal. Similarly, Tarskian semantics reduces the multitude
of ways in which objects possess properties and stand in relations to a single
formal relation, set membership, in spite of the fact that an object possesses,
say, a moral property (e.g. being virtuous), or a propositional attitude prop-
erty (e.g. wishing to be president) in a largely different way from that in which
it possesses a physical property (e.g. occupying spatio-temporal region xyzw).
But Tarskian semantics is not interested in these differences. Set membership
is adequate for possession of formal properties, and for the purposes of Tarskian
semantics, there is no need for something more elaborate. From the point of
view of Tarskian semantics, only the formal skeleton of “object x possesses
property P” is relevant.

With this my discussion of semantics and logic has come to an end. I have
asked three questions in this paper: (A) Is there a philosophical basis for the
distinction between logical and non-logical terms? (B) Can we develop a con-
structive definition of logical terms based on (A)? (C) To what extent is mod-
ern semantics tied up with logic? I proposed an outline of a positive answer
to (A) and (B) and some considerations pertaining to (C). Modern semantics
sprang out of a distinctly logical conception of semantics. This conception
originated in Tarski’s theories of truth and logical consequence in the 1930s
and has recently been extended following the generalization of logical terms
by Mostowski and others. I have shown that the line drawn by Lindstrém
(and the later Tarski) between logical and non-logical terms is philosophically
sound, and I have given an outline of a constructive definition of logical terms
modeled after the Boolean definition of the logical connectives. As for the
many branches and developments in modern semantics, to the extent that
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these are an outgrowth of Tarskian semantics they are rooted in a logical theory
of the relation between language and the world. How far semantics can ang
should go beyond its logical roots is left an open question.

NOTES

U W

10

See Tarski (1933) and (1936a). The inductive definition of syntax is not original
with Tarski (note Hilbert and Ackermann 1928), but its central place in semantics
is due to Tarski.

See, among others, Barwise and Feferman (1985), Hughes and Cresswell (1968),
Hintikka (1969), Davidson (1984), Montague (1974), May (1985) and many of the
references below.

See Enderton (1972), Section 1.2.

For an example, see Keisler (1970). ;
Lindstrém’s criterion is slightly different from (L): (i) it includes connectives,
(ii) it does not apply to all predicates of orders 1-2. More specifically, it does not
apply to relations involving individuals (e.g. the relation & of type (2,0), where
(R, a) € Q iff R is an ordering relation with a smallest element and a is its smallest
element.) Tarski’s criterion does apply to all predicates, but he uses a slightly
different conceptual scheme.

Lindstrém’s symbolization is slightly more complicated. He would write
“Qxy(Px, ¥y)” where [ write "Qx(Px, ¥x)".

I use “Q'! B’s are C’s” to represent the general case of a predication of type 1-1
although some predications of this type (e.g. “There are more B’s than C's”) would
be more naturally represented by a different locution.

Unlike Q}!, Q''is a “class” function rather than a “set” function, i.e. a class, rather
than a set of pairs. In what follows I use the term “function” for both. It should
be clear from the context whether “set” or “class” is meant.

Here I treat cardinals as sets of ordinals, but ordinals have to be treated as atomic
elements: {1} and {{0}}, for example, represent different extensions, indeed, exten-
sions of terms of different types.

It follows from this step that logical terms may “mean” different things in uni-
verses of different cardinalities. Thus, a function, 3;V,, that assigns to all finite
universes A the quantifier 5, and to all infinite universes B the quantifier Vj is a
logical term. This may sound strange at first, but we must remember that even if
C =D, (A(C)) and (B(D)) are structurally different, and so various logical quan-
tifiers distinguish between them. In fact, many “natural” quantifiers are sensitive
to the size of the underlying universe. Thus “most'” assigns the value T to (a,b.c,4]
in a universe with 6 individuals but not in a universe with 60,000 individuals.
Ratio quantifiers can be construed as exploiting the fact that quantifiers may vary
according to the size of the given universe: “1/2” is “exactly one” in a universe
with two elements, “exactly two” in a universe with four elements, etc. In con-
structing specific logical apparati various considerations beyond logicality are, of
course, taken into account: we may wish to restrict ourselves to “natural” logical
terms, logical terms that are useful for a particular purpose, etc. Clearly, many
factors combine to determine the logical apparatus of natural language.
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11

12

13

14

15

16

17

18

19

20

This division is both analytical and historical, although historically, there are a few
exceptions (e.g. Higginbotham and May, 1981).

It should be emphasized that I am referring to Barwise and Cooper’s claim that
these determiners are non-logical in the sense that they do not denote unary quan-
tifiers of first-order logic. Van Benthem (1986) and (1989), Westerstahl (1989), and
Keenan (this volume) characterize logical determiners as those which denote func-
tions that are permutation invariant for isomorphic structures on the given uni-
verse. On the latter view of logicality, “most”, for example, can be taken to denote
a logical binary determiner relation. See Lappin (1995b) for a discussion of gener-
alized quantifiers and logicality.

Boolos identified statements of this kind as “non-firstorderizable” (relative to the
standard 1st-order system). For a polyadic analysis of such statements, see Sher
(1991: 103).

The first underline is mine.

See Sher (forthcoming).

Compare with Quine’s analysis of substitutional quantification. In substitutional
quantification, according to Quine, the choice of substitution classes is arbitrary:
“substitutional quantification makes good sense, explicable in terms of truth and
substitution, no matter what substitution class we take — even that whose sole
member is the left-hand parenthesis.” (1969: 106)

The notion “actual world” is ambiguous, but all we need here is the fact that the
concept of truth simpliciter involves a more restricted notion of “world” than the
concept of formal and necessary truth.

I am currently working on a paper on Tarski’s theory of truth. My account is
revisionist in the sense that it is concerned with what Tarski’s theory actually does,
not with what “the historical” Tarski said it does.

The connection between Etchemendy and Wittgenstein was pointed by Garcia-
Carpintero (1993).

My reasons for regarding formal terms as logical are primarily philosophical. The
question whether linguistically (empirically), too, formal terms should be regarded
as logical requires a separate investigation. May (1991: 353) gives a preliminary
positive answer based on the difference between the way a child acquires formal
terms and the way s/he acquires non-formal terms. The promising work on natural
language polyadic quantifiers (i.e. quantifiers based on (L)) also yields support to
the “formal” view of logical terms. The difference between philosophical and lin-
guistic conceptions of logicality is discussed in Lappin (1991).
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