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TRUTH, LOGICAL STRUCTURE, AND COMPOSITIONALITY

ABSTRACT. In this paper I examine a cluster of concepts relevant to the methodology
of truth theories: ‘informative definition’, ‘recursive method’, ‘semantic structure’, ‘logical
form’, ‘compositionality’, etc. The interrelations between these concepts, I will try to show,
are more intricate and multi-dimensional than commonly assumed.

1. TRUTH AND RECURSION

In his 1933 paper, “The Concept of Truth in Formalized Languages”,
Tarski drew a tentative connection between the definition of truth (for a
given language) and the recursive method:

If the language investigated only contained a finite number of sentences fixed from the
beginning, and if we could enumerate all these sentences, then the problem of the con-
struction of a correct definition of truth would present no difficulties. For this purpose it
would suffice to complete the following scheme:x ∈ T r if and only if eitherx = x1 and
p1, or x = x2 andp2, . . .or x = xn andpn, the symbols ‘x1’, ‘ x2’, . . . , ‘xn’ being replaced
by structural-descriptive names of all the sentences of the language investigated and ‘p1’,
‘p2’, . . . , ‘pn’ by the corresponding translation of these sentences into the metalanguage.
But the situation is not like this. Whenever a language contains infinitely many sentences,
the definition constructed automatically according to the above scheme would have to
consist of infinitely many words, and such sentences cannot be formulated either in the
metalanguage or in any other language. Our task is thus greatly complicated.

The idea of using the recursive method suggests itself. [188–189]

Tarski’s idea involves, however, an indirect use of the recursive method:

Among the sentences of a language we find expressions of rather varied kinds from the
point of view of logical structure, some quite elementary, others more or less complicated.
It would thus be a question of first giving all the operations by which simple sentences are
combined into composite ones and then determining the way in which the truth or falsity of
composite sentences depends on the truth or falsity of the simpler ones contained in them.
Moreover, certain elementary sentences could be selected, from which, with the help of
the operations mentioned, all the sentences of the language could be constructed; these
selected sentences could be explicitly divided into true and false, by means, for example,
of partial definitions of the type described above. In attempting to realize this idea we are
however confronted with a serious obstacle. Even a superficial analysis of Defs. 10–12 of
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Section 2 shows that in general composite sentences are in no way compounds of simple
sentences. Sentential functions do in fact arise in this way from elementary functions. . . ;
sentences on the contrary are certain special cases of sentential functions. In view of this
fact, no method can be given which would enable us to define the required concept directly
by recursive means. The possibility suggests itself, however, of introducing a more general
concept which is applicable to any sentential function, can be recursively defined, and,
when applied to sentences, leads us directly to the concept of truth. These requirements are
met by the notion ofsatisfaction of a given sentential function by given objects. . . [189]

Referring to the special language of the calculus of classes, Tarski
specifies:

We shall use a recursive method in order to formulate a general definition of satisfaction of
a sentential function by a sequence of classes, which will include as special cases all partial
definitions of this notion that are obtained from the given scheme in the way described
above. For this purpose it will suffice, bearing in mind the definition of sentential function,
to indicate which sequences satisfy the inclusions ‘xk ⊆ xl ’ and then to specify how
the notion we are defining behaves when the three fundamental operations of negation,
disjunction, and universal quantification are performed on sentential functions. [192]

I will not repeat Tarski’s formal account of the definition of truth for
the language of the calculus of classes here, but assuming familiarity with
this account, I will encapsulate it in the following way:

1.1. Definition of Truth forLc

Let Lc be the formalized language of the calculus of classes whose prim-
itive symbols are the individual variables ‘x1’, ‘ x2’, . . . , the non-logical
constant ‘⊆’, the logical constants ‘∼’, ‘ V ’, ‘ ∀’, and the auxiliary symbols
‘(’ and ‘)’.

Let the well-formed formulas and sentences ofLc be defined in the
usual way, and let the meta-language ofLc, MLc, be such that ifs is a
symbol ofLc, thens is a canonical name ofs inMLc ands is a designated

symbol ofMLc having the same meaning (or function) ass.1

1.1.1. Recursive Definition of Satisfaction
Let g be an assignment function forLc, i.e.,g assigns to each individual
variablex

i
of Lc a class,xi , in the “universe” of classes. Then:

(a) If x
i

and x
j

are variables ofLc, thenx
i
⊆ x

j
is satisfied byg iff

x
i
⊆ x

j
.

(b) If 8 is a sentential function ofLc, then∼8 is satisfied byg iff ∼ [8
is satisfied byg].

(c) If 8 and9 are sentential functions ofLc, then8V9 is satisfied byg
iff [8 is satisfied byg] V [9 is satisfied byg].
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(d) If 8 is a sentential function andx a variable ofLc, then∀x8 is satis-
fied byg iff ∀g′[g′ differs fromg at most in its assignment tox→8

is satisfied byg′].

1.1.2. Definition of Truth
σ is a true sentence ofLc iff σ is a sentence ofLc and every assignmentg
for the variables ofLc satisfiesσ .

2. RECURSION AND EXPLANATION

The recursive method makes two important contributions to the theory of
truth: (A) It solves the technical problem of defining truth for a language
with infinitely many sentences by finite means (once semantic values are
assigned to the atomic elements). (B) It provides a template for an in-
formative definition of truth. The informative, or explanatory, power of
the recursive method was passed over by Tarski, but even a superficial
comparison of his recursive definition of truth forLc and a non-recursive
alternative based on his suggestion in the first citation –

The sentenceσ of Lc is true iff [[σ = ∀x
1
(x

1
⊆ x

1
) and∀x1(x1⊆ x1)] or [σ =

∼ ∀x
1
(x

1
⊆ x

1
) and ∼ ∀x1(x1⊆ x1)] or [σ = ∀x

1
∼ (x

1
⊆ x

1
) and∀x1∼ (x1⊆ x1)]

or [σ = ∀x
1
∀x

2
(x

1
⊆ x

2
V x

2
⊆ x

1
) and∀x1∀x2(x1⊆ x2V x2⊆ x1)] or [σ = ∀x

1
∀x

2
(x

1
⊆ x

2
V ∀x

3
∀x

4
(x

2
⊆ x

1
V x

3
⊆ x

4
)V ∀x

5
(x

5
⊆ x

2
)) and ∀x1∀x2(x1⊆ x2V ∀x3∀x4

(x2⊆ x1V x3⊆ x4)V ∀x5(x5⊆ x2)) or . . . ] –

shows that the former is superior to the latter not just in being finite, but in
revealing theprinciplesunderlying the truth and falsity of sentences ofLc.

We can distinguish two ways in which the recursive method contributes
to an explanatory definition of truth: (A) The recursive method allows us
to reduce the task of formulating an informative definition of truth for a
given language L to that of formulating an informative definition of truth
(or satisfaction) for the structurally simple sentences (or formulas) ofL.
(B) The recursive method allows us to give an informative account of the
contribution of structural complexity to truth, i.e., of the way in which the
structural features of sentences ofL affect their truth value.

While the two types of explanation may work in tandem, in practice
they have led to two different conceptions of a theory of truth: areduction-
ist conception, exemplified by Field (1972), and astructuralist conception,
exemplified by Davidson (1965, 1967, 1970, etc.). On the reductionist
approach the main task of an informative theory of truth is to explain the
satisfaction conditions of the atomic formulas of a given language or, more
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basically, the reference and application conditions of the primitive, non-
logical singular terms and predicates of that language. On the structuralist
approach the main task is to explain the contribution of structural com-
plexity to truth. On the first approach the burden of explanation falls on the
basic, non-recursive entries in the definition of satisfaction; on the second
on the structural, recursive entries. I have discussed this distinction and the
difficulties involved in the first approach in Sher (1998/9 and 1999). Here
I would like to investigate the nature of structural definitions of truth.

3. TRUTH AND STRUCTURE

What structural complexity is relevant to truth? Three answers that are
sometimes conflated are: (a)logical structure, (b) iterative structure, and
(c) compositional structure.2 One source of this conflation may be Tarski’s
1933 article, since it is a characteristic feature of the definition of truth
presented in this article that the three answers listed above coincide for it.
The set of complex structures taken into account by Tarski’s definition of
truth for Lc = the set of logically complex structures ofLc = the set of
iteratively complex structures ofLc = the set of compositionally complex
structures ofLc. Tarski’s 1933 presentation, however, cannot serve as a
basis for an answer to our question. One difficulty with Tarski’s presenta-
tion is its restriction to a relatively narrow category of languages, namely
that of the “formalized languages of the deductive sciences”. This restric-
tion is unmotivated from our perspective (Tarski’s motivation for excluding
other languages has nothing to do with the relevance or irrelevance of
nonlogical structural features to truth), but it creates an unavoidable bias
towards the first answer. Moreover, even with respect to logical languages
the question cannot be adequately answered based on Tarski’s presenta-
tion. The reason is simple: Tarski did not offer a general formulation of his
theory, choosing to demonstrate its workings by a single, and exceedingly
simple, example instead. This has led to numerous misunderstandings of
his theory, including the claim that he did not develop a general theory
of truth at all (even for logical languages). That Tarski did regard him-
self as developing a general theory of truth (for the designated range
of languages), or a general method for defining truth (for this range of
languages), is, however, clear from the following passage:

For an extensive group of formalized languages it is possible to give a method by which a
correct definition of truth can be constructed for each of them. The general abstract descrip-
tion of this method and of the languages to which it is applicable would be troublesome and
not at all perspicuous. I prefer therefore to introduce the reader to this method in another
way. I shall construct a definition of this kind in connection with a particular concrete
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language and show some of its important consequences. The indications which I shall then
give . . . will, I hope, be sufficient to show how the method illustrated by this example can
be applied to other languages of similar logical construction. [Tarski 1933: 167–8]

By ‘other languages of similar logical construction’ Tarski means lan-
guages differing from the language of the calculus of classes in one respect
only, namely, their order (i.e., having higher-order variables). If we think
of Tarski’s methodas the collection of principles common to all the defini-
tions of truth he would have given to “eligible” languages, then an adequate
account of his method would require a non-trivial generalization of his
example.3 Moreover, Tarski’s paper was written at a time when our un-
derstanding of logical structure was in its infancy. Since then new logical
structures have been discovered (constructed, recognized) and these are not
represented in Tarski’s example. In fact,Lc is so simple that even syntactic
structures widely known in the 1930’s (e.g., complex singular terms) are
not represented in it.

As for the three answers, it is clear that their coincidence in Tarski’s ex-
ample is accidental. Logical, iterative and compositional structures differ
extensionally as well as intensionally: Intensionally, logicality is primar-
ily a philosophical notion, while iterativity is a purely technical notion
and compositionality a methodological notion. Extensionally, some logical
structures are not iterative (e.g., the structure ‘. . . = —’), while some iterat-
ive structures are not logical (e.g., the structure ‘father of (father of (. . . )’).
The case of compositionality is more involved: not all compositional struc-
tures are logical, and not all iterative operators are compositional; but
whether all logical structures are compositional is a matter of controversy
(see below).

4. TRUTH AND LOGICAL STRUCTURE

The notion of logical structure is a philosophically loaded notion: logical
structure gives rise to a special type of inference, playing a special role
in all branches of knowledge, and our understanding of this structure is
tied up with our understanding of that inference.Inference, in general, is
a procedure for “moving” from statements (existent items of knowledge)
to statements (new items of knowledge) without loss oftruth; logical in-
ference rests on a special connection betweenlogical structureand truth.
To explain the contribution of logical structure to truth is to explain this
connection, and to develop an informative theory of the contribution of
logical structure to truth is to delineate the general principles underly-
ing this connection. Now, what distinguishes logical structure from other



200 GILA SHER

types of structure is the type of term appearing in it. Logical structure is
the pattern generated by “highlighting” the logical constants of a given
well-formed expression and “dimming” its non-logical constants, and to
understand the connection between logical structure and truth we must
therefore understand (i) “who” the logical terms are, and (ii) how they
behave semantically.

Logical terms are sometimes characterized syntactically, but the differ-
ence between logical and non-logical terms – as well as between different
logical terms – is not syntactic: ‘x is identical toy’ and ‘x is a sibling
of y’ are of the same syntactic category but the first is logical while the
second is not; ‘or’ and ‘and’ are also syntactically alike, but they denote
two altogether different logical operators. What distinguishes logical terms
from non-logical terms – and logical terms from each other – is a feature of
content: the relation denoted by ‘x is identical toy’ is formal (in the sense
of not distinguishing between formally identical, orisomorphic, argument-
structures),4 while that denoted by ‘x is a sibling of y’ is biological.
Similarly, the difference between ‘John loves Maryor John loves Jane’
and ‘John loves Maryand John loves Jane’ is a difference incontent,
not a difference insyntax. To determine what type of term is logical is
to determine what type of content is logical, and such a determination is
philosophical rather than a grammatical.

It is common to draw a sharp distinction between form and content,
identifying logic with form and other sciences with content, but the no-
tion of logical form is induced by that of logical content. A theory of the
contribution of logical structure to truth is a theory of the influence of a
particular type of content on truth: logical content as distinct from modal,
physical, biological, and other types of content. The three main tasks of
an informative theory of the influence of logical content on truth are: (A)
Formulate an informative criterion of logical constants (based on their con-
tent); (B) Give a systematic characterization of the satisfaction conditions
of logical constants based on (A) and show how their influence on truth
extends to complex logical structures; (C) Explain how the special con-
nection between logical structure and truth gives rise to logical inference.
Although Tarski’s 1933 theory does not constitute, as it stands, an inform-
ative theory of the contribution of logical structure to truth in our sense, it
does provide, together with his 1936 account of logical consequence and
his 1966 criterion of logical constants, the basic building blocks for such a
theory.5
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5. TRUTH AND ITERATIVE STRUCTURE

Unlike the notion of logical structure, which is largely philosophical, the
notion of iterative structure is purely technical. An iterative structure is
generated by applying an iterative term to an eligible expression (n-tuple of
expressions) in a permissible way, where an iterative term is a term whose
application to a given expression may be reiterated indefinitely. We may
define an iterative term as follows: A unary termt is (strongly) iterativeiff
for any well-formed expressione = ‘ t (e1)’, e is an eligible argument of
t ; ann-ary termt is (strongly) iterative iff for any well-formed expression
e = ’ t (e1, . . . , en)’, at least one of theei ’s (1 6 i 6 n) is of the same
syntactic type ase, and for any eligible argument〈e1, . . . , en〉 of t , the
result of substitutinge for any number ofe’ i ’s sharing its syntactic type is
an eligible argument oft .

The interest of iterative structure for a definition of truth lies in its pro-
ductivity: every iterative operator generates infinitely many well-formed
expressions, and the task of constructing a definition of truth for a language
with iterative operators is therefore infinitistic. A natural device for dealing
with iterative structures is the recursive method. The recursive method, as
we have seen in Tarski’s example, enables us to define truth, satisfaction
and/or reference for languages with iterative terms (and a finite, or finitely
definable, stock of primitive terms) in a finite number of steps, solving
the problem of productivity. Not every language with iterative operators,
however, is a suitable candidate for a recursive semantics. For example, a
language which fails to satisfy the requirement of unique readability may
not be.6

A definition of the contribution ofiterative structure to truth cannot
achieve the same level of informativeness as a definition of the contribution
of logical structure to truth. Iterative terms possess no unity of content, and
no philosophically significant type of inference is associated with them.
How to handle such terms is a technically important question, but philo-
sophically, a theory of the contribution of iterative structure of truth is of
limited significance.

6. TRUTH AND COMPOSITIONALITY

Compositionality is a methodological notion: a constraint on the semantics
of a given language and its relation to the syntax of that language. Many
philosophers require that an adequate theory of truth be compositional, but
some do not. The syntactic notion of compositionality is a relative notion:
to say that a theory of truth is concerned with compositional structure is
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to say that it is concerned with the kind of structure that is amenable to a
compositional semantics.

What is compositional semantics? As of now, the notion of compos-
itional semantics does not have a precise “canonical” definition, but its
intuitive meaning is quite clear:a compositional semantics uniquely de-
termines the semantic value of a complex expression based on (a) the
semantic values of its immediate parts, and (b) the way these parts are
combined. The notion of compositional semantics is often identified with
that of recursive semantics, and a paradigmatic example of such a se-
mantics is that of (classical) sentential logic. This semantics consists of
a pair,〈Syn, Sem〉, whereSynis an inductive, freely generated syntax, and
Semis a recursive definition of truth based on this syntax. Syntactically,
each well-formed expression of a given sentential system is freely, i.e.,
uniquely, generated from a finite number of “atomic” expressions by fi-
nitely many (possibly zero) applications of functional iterative operators.
Semantically, the definition of truth forms a homomorphic image of the
syntactic definition: each atomic sentence is assigned a single truth value,
T or F , and for each logical operator there is a rule which uniquely de-
termines the truth value of a sentence formed by it, given the truth values
of its immediate arguments. Thus, syntactically, the sentence ‘∼ (P&Q)’
is formed from the atomic sentencesP andQ in two steps: (i) application
of the operator ‘&’ to the pair〈P,Q〉, generating ‘(P&Q)’; (ii) application
of ‘∼ to ‘(P&Q)’, generating ‘∼ (P&Q)’. Semantically, the truth value
of ‘∼ (P&Q)’ is formed from the truth values ofP andQ in parallel steps:
(i) application of the ruleV& to the pair〈V (P ), V (Q)〉, whereV (P/Q) is
the truth value ofP/Q andV& is the semantic rule associated with ‘&’:
V& (X, Y ) = T if X = Y = T ; otherwiseV& (X, Y ) = F ; (ii) application
of the ruleV∼ to V (P&Q), whereV∼ is the rule associated with ‘∼’:
V∼(X) = T if X = F ; otherwiseV∼(X) = F ’. Other, more complex
compositional definitions are Tarski’s recursive definition of satisfaction
for Lc and the recursive definitions of satisfaction-in-a-model found in
standard textbooks of mathematical logic.7

7. MUST A DEFINITION OF TRUTH BE COMPOSITIONAL?

The main methodological advantages of a compositional semantics are
those indicated in our discussion of a recursive definition of truth in Section
I above: (i) a compositional semantics allows us to handle an infinite col-
lection of target expressions by finite means; (ii) a compositional semantics
is inherently informative. The first advantage has been widely discussed in
the literature and I will not dwell on it at length here: an adequate se-
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mantics must take into account the productivity, learnability, intelligibility
and communicability of language, and compositionality is said to be either
a necessary or a sufficient condition for satisfying this requirement.8 The
second, and less commonly discussed, advantage has to do with the virtues
of a compositional theory as an informative theory: (a) A compositional
semantics tells us what the basic units of the syntax and the semantics
of a given language are, how the syntax and the semantics are related to
each other, how complex syntactic/semantic units are related to basic syn-
tactic/semantic units, etc. (Janssen, 1997); (b) A compositional semantics
explains the “systematicity” of a given language (Fodor and LePore, 1992);
(c) A compositional semantics creates a template for informative entries in
the definition of reference, satisfaction and/or truth of a given language.

The last point can be explained by reference to Tarski’s definition of
truth for Lc. Consider Tarski’s recursive entries for the logical connect-
ives ‘∼’ and ‘V ’. We may read these entries in two ways, as providing
informative or uninformative satisfaction conditions for formulas ofLc.
The second reading is deflationist. On this reading, what Tarski is saying
is that ‘not 8’ is satisfied byg iff 8 is not satisfied byg, and ‘8 or
9 ’ is satisfied byg iff 8 is satisfied byg or 9 is satisfied byg. If the
meaning of ‘not’ or ‘or’ in the definiendum is unclear (if, for example,
it is not clear whether ‘not’ is bivalent or trivalent, or whether ‘or’ is
inclusive or exclusive), the satisfaction entries for ‘not’ and ‘or’ do not
remove this unclarity. More importantly, the entries for ‘not’ and ‘or’ do
not explain in what way the satisfaction conditions for formulas governed
by these connectives arelogical. On the first reading, Tarski’s entries for
‘not’ and ‘or’ are shortcuts for a more elaborate treatment of the logical
connectives (of the type described in Section IV above). This treatment
includes (i) a general criterion for logical connectives, (ii) a philosophical
explanation/justification of this criterion, (iii) a definition of logical con-
nectives as Boolean truth-functions, (iv) a formulation of the satisfaction
conditions of formulas governed by logical connectives by reference to the
corresponding truth functions. An informative rendition of Tarski’s entire
definition of truth forLc will require an analogous treatment of logical
quantifiers.

The question arises, however, whether every theory of truth which ful-
fills both the desideratum ofmanageabilityand that ofinformativenessis
compositional. We can divide this question into two parts: (A) Can every
such theory be given a compositional formulation? (B) Are all theories ful-
filling these desiderata compositional? New results due to Janssen (1986)
and Zadrozny (1994) establish a positive answer to the first question: For
every reasonable semantic theory there is an equivalent compositional
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semantics. But the answer to the second question is open. Hintikka and
Sandu, for example, have argued that some non-compositional semantic
theories are not only highly informative, but are in fact superior to the best
available compositional alternatives.

Below I will present two examples of non-compositional definitions of
truth. Both definitions account for the learnability of language, and each is
highly informative relative to certain significant explanatory goals.

8. A PARTIALLY COMPOSITIONAL DEFINITION OF TRUTH

In the familiar logical languages of standard sentential, 1st-order and
higher-order logic, each logical operator can be affixed to a given argument
(or n-tuple of arguments) in one way.9 This is also the case with languages
of generalized 1st-order logic (see Mostowski 1957, Lindström 1966, Sher
1991, Chs. 2–4, and elsewhere). In these languages a logical structure
is uniquely determined by specifying which logical operator generates it
from which expressions. If, however, some of the operators can be com-
bined with “eligible” expressions in more than one way, and if, moreover,
different combinations of the same operator with the same expressions
yield formulas with different truth conditions, a mode of combination has
to be specified. This complication does not significantly affect the task
of constructing a systematic semantics for a given language so long as
there exists a finite upper bound on the number of modes of combination
available to each operator. But if for some operators no such upper bound
exists, the semantics is essentially affected. The languages of standard
and generalized 1st-order logic with partially-ordered quantifications are
of this kind.

The structure of a partially-ordered quantification was first introduced
by Henkin (1959). Henkin constructed a language in which standard
quantifier-expressions (i.e., expressions of the form ‘Qx’, where Q is
either∀ or ∃ andx is an individual variable) can be combined in any partial
order to generate a well-formed quantifier-prefix. Given a quantifier-prefix
Q and a formula8, ‘Q8’ is a well-formed formula.10 Now, we know
from the familiar semantics of standard, linear logical languages that quan-
tifier order affects the satisfaction conditions of formulas. Differences
in quantifier-order represent differences in the government-dependence
relations between quantifier-expressions, and differences involving the
government-dependence relations of universal and existential quantifiers
have significant semantic ramifications. Thus, a formula of the form

∀x∃y8xy(1)
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is satisfied by an assignmentg iff the extension of ‘8xy’ underg is a re-
lation with a universal (left) domain, but this condition is neither sufficient
nor necessary forg to satisfy

∃x∀y8xy.(2)

Since there is no finite upper bound to the size of quantifier-prefixes, there
is no finite upper limit on the number of modes of combination available to
each quantifier in languages of partial ordering. This, together with the fact
that differences in quantifier-order are semantically material, imply that the
semantics of languages of partial order is essentially different from that of
languages of linear order (e.g., the familiar logical languages).

How shall we construct a semantics for a language of partial order? One
method which naturally suggests itself is theTranslation Method: If we can
translate all well-formed formulas of the target language into an auxiliary
language for which we have a familiar semantics, then we will be able
to delineate the satisfaction conditions of formulas of the target language
using that semantics. The resulting theory will not be the usual two-unit
compositional system in which the semantic definition is a homomorphic
image of the syntactic definition, but rather a three-unit system consist-
ing of: (a) a syntactic definition of the target language; (b) an algorithm
for translating well-formed formulas of that language to formulas of the
auxiliary language; (c) a compositional truth definition for the auxiliary
language.

Such a semantics was constructed by Henkin for the 1st-order language
(or rather family of languages) of partial order with standard quantifiers,
henceforth POL. Henkin’s auxiliary language is the familiar language of
2nd-order logic with functional variables, and its semantics is the famil-
iar compositional semantics of (linear) 2nd-order logic. The translation
algorithm is, however, not compositional, and as a result the semantics is
partially non-compositional. In spite of its partial non-compositionality,
however, the theory satisfies the two methodological requirements of (i)
a finite semantics for an infinite language, and (ii) a highly informative
semantics (in some important respect). The first requirement is satisfied
due to the algorithmic nature of the translation procedure. The second
– due to the clear and transparent way in which the theory explains the
influence of quantifier-ordering on truth.

I will not be able to present a full account of the semantics of POL
here. (For a precise account of the syntax and translation algorithm see
Walkoe 1970 or Sher 1997; the standard semantics of 2nd-order languages
is described in many textbooks of mathematical logic.) But to demonstrate
the way in which Henkin’s semantics explains how quantifier-ordering
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affects the satisfaction conditions of given formulas I will present two
examples of the steps involved in the translation algorithm. As the reader
will immediately recognize, the algorithm is the familiar Skolem algorithm
extended to partially-ordered quantifications.

Consider the following two formulas of POL:

∀x∃y∀z∃wRxyzw,(3)

and

∀x∃y
Rxyzw.

∀z∃w
(4)

whereR is a relational expression. (3) is a linear formula, i.e., a formula
of standard (linear) 1st-order logic, while (4) is properly partially-ordered.
The translation algorithm transforms (3) into

∃f 1∃h2∀x∀zR(x, f (x), y, h(x, z)), 11(5)

and (4) into

∃f 1∃h1∀x∀zR(x, f (x), y, h(z)).(6)

Each transformation proceeds in four steps:

Transformation of (3) to (5)
Step I: Each existential quantifier-expression (or, shortly, existential
quantifier) is assigned arank. The rank of an existential quantifier
is the number of its “essential” dependencies, i.e., the number of
universal quantifiers governing it.

Rank(∃y) = 1; Rank(∃w) = 2.

Step II: Each existential quantifier of rank n is assigned a new n-place
functional variable,f n.

∃y − f 1; ∃w − h2.

Step III: Each existential quantifier of rankn is assigned ann-
place functional term “which traces its essential dependencies”,
f (x1, . . . , xn), wheref is the functional variable associated with it and
x1, . . . , xn are all the variables in the universal quantifiers governing
it.

∃y − f (x); ∃w − h(x, z).
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Step IV: (3) is transformed into (5).

Transformation of (4) to (6)
Step I: Rank(∃y) = 1; Rank(∃w) = 1.
Step II: ∃y − f 1; ∃w − h1.
Step III: ∃y − f (x); ∃w − h(z).
Step IV: (4) is transformed into (6).

These transformations explain how quantifier-dependencies affect the
truth conditions of a given sentence by correlating “essential” de-
pendencies with functional operations. Every dependence of the form
‘∀x1 . . . xn∃y’ is represented by ann-place function, and its exact con-
stitution is represented by the choice of variables in the corresponding
functional expression: the dependence of ‘∃w’ on the single quantifier ‘∀z’
in (4) is reflected in the fact that in (6) ‘w’ is replaced by a 1-place func-
tional expression whose argument is ‘z’, namely ‘h(z)’, and its dependence
on the two quantifiers ‘∀x’ and ‘∀z’ in (3) is reflected in the fact that in (5)
‘w’ is replaced by ‘h(x, z)’.

Intuitively, the difference in satisfaction conditions between (3) and (4)
is reflected in the difference in meaning between:

Every villager has a relative who hates-and-is-hated-by some
relative of every townsman,

(7)

understood as

Every villagerV has a relativeRv such that for every townsman
T , there is a townsman relativeRt , such thatRv hates-and-is-
hated-byRt ,

(8)

and

Every villager has a relativeandevery townsman has a relative
whoall hate each other,

(9)

understood as

Every villagerV has a relativeRv and every townsmanT has
a relativeRt such that all theRv ’s hate-and-are-hated-by all the
Rt ’s,

(10)

i.e., as

There is a group with relatives of all the villagers and a
group with relatives of all the townsman, such that each
villager-relative in the first group hates-and-is-hated by all the
townsman-relatives in the second group.

(11)
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(These sentences are variations on an example due to Hintikka 1973).
Whereas linear dependencies induce (multiple) tree-like truth con-

ditions, non-linear dependencies induce a more complex type of truth
conditions. Linear quantifications say that there are so many thingsx for
each of whichthere are thus many thingsy, for each of which. . . , . . . there
are that many thingsz such thatx, y, . . ., and z stand in the quantified
relationR. In contrast, non-linear or “branching” quantifications of the
type of (4) say that there is a group with so many elements and a group with
thus many elements such thateachelement of the first group stands toall
elements of the second group in the relationR. The satisfaction conditions
associated with linear quantifications are of the type ‘for each there are’;
those associated with branching quantifications are of the type ‘each-all’.
(See Sher 1990).

Recently, POL was also given a direct and fully compositional se-
mantics (Hodges, 1997). This semantics, however, does not offer as clear
an account of the relation between quantifier-ordering and satisfaction-
conditions, and therefore is not (as it stands) a viable alternative to
Henkin’s semantics. Moreover, the translational method allows us to deal
with richer languages than POL, while the compositional method has yet
to be extended to such languages. Thus, a translational semantics exists for
the 1st-order language of partially-orderedgeneralizedquantifiers (of the
syntactic type of ‘∀’ and ‘∃’), henceforth GPOL, but not (yet) a compos-
itional semantics. I will not present here a full account of the semantics
of GPOL (for details see Sher 1997), but as in the case of Henkin’s se-
mantics, I will demonstrate the workings of its translation algorithm by a
few examples.12

The main difference between the translation algorithms of POL and
GPOL has to do with the fact that certain features of∀ and∃ are not shared
by all GPOL quantifiers. Thus, in POL only dependencies of existential
on universal quantifiers are “essential”, and “essential” dependencies are
all functional, but this is not the case in GPOL. For that reason, Henkin’s
algorithm associates 2nd-order terms only with existential quantifiers (in
a given prefix) and these terms are all functional, but the translation al-
gorithm of GPOL associates 2nd-order terms witheveryquantifier (in a
prefix) and these terms are allrelational (rather than functional). Let us
take two very simple examples:

Q1xQ2yRxy(12)
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and

Q1x

Rxy,

Q2y

(13)

whereQ1 and Q2 are any generalized quantifiers (of the designated
syntactic type). The translation algorithm of GPOL transforms (12) into

∃X1∃Y 2(Q1xXx & X is a maximal set such that∀x(Xx →
Q2yYxy) & Y is a maximal relation such that∀x∀y(Yxy →
Rxy))

(14)

and (13) into

∃X1∃Y 1(Q1xXx & Q2yYy & 〈X,Y 〉 is a maximal pair such
that∀x∀y(Xx & Yy → Rxy)).13

(15)

Each transformation proceeds in six steps:

Transformation of (12) to (14)

Step I: Each quantifier (expression) is assigned arank. The rank of
a quantifier is the number of its dependencies (i.e., the number of
quantifiers governing it) +1.

Rank(Q1x) = 1; Rank(Q2y) = 2.

Step II: Each quantifier of rank n is assigned a new n-place relational
variable,Xn.

Q1x −X1; Q2y − Y 2.

Step III: Each quantifier of rankn is assigned ann-place relational
formula “which traces its dependencies”,Xx1 . . . xn, whereX is the
relational variable associated with it andx1, . . . , xn are the variables
in it and in all the quantifiers governing it.

Q1x −Xx; Q2y − Yxy.
Step IV: Each quantifier is assigned a formula expressing its satisfac-
tion conditions relative to the quantifiers governing it, if any.

Q1x − Q1xXx; Q2y − X is a maximal set such that∀x(Xx →
Q2yYxy).14

Step V: The quantified formula is assigned a formula that expresses its
satisfaction conditions relative to the innermost quantifiers binding it.
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Rxy − Y is a maximal relation such that∀x∀y(Yxy → Rxy).15

Step VI: (12) is transformed into (14).

Transformation of (13) to (15)

Step I: Rank(Q1x) = 1; Rank(Q2y) = 1.
Step II: Q1x −X1; Q2y − Y 1.
Step III: Q1x −Xx; Q2y − Yy.
Step IV:Q1x −Q1xXx; Q2y −Q2yYy.
Step V: Rxy − 〈X,Y 〉 is a maximal pair such that∀x∀y(Xx&Yy →
Rxy).16

Step VI: (13) is transformed into (15).

Intuitively, the difference in truth conditions between (12) and (13) can
be explained by the following examples:

Six boys have (each) dated six girls,(16)

and

(Exactly) six boys and (exactly) six girls have all dated each
other.

(17)

(16) says that there is a maximal set with exactly six boys each one of
which has dated exactly six girls (possibly not the same girls). (17) says
that there is a set with exactly six boys and a set with exactly 6 girls, and
this pair of sets is a maximal pair such that each boy in the first set has
dated all the girls in the second set.17 As in the case of (3) and (4), linear
quantification is (multiple-) tree-like, while genuine branching quantific-
ation requires the existence of a “massive nucleus” of objects standing
in a given relation; linear quantifiers stand in the “for each. . . there are”
relation, while (genuine) branching quantifiers stand in the “each. . . all”
relation.

Based on the procedure delineated above we transform

Q1xQ2y

Rxyzw

Q3zQ4w

(18)

into

∃X1∃Y 2∃Z1∃W 2[Q1xXx & X is a maximal set such that
∀x(Xx → Q2yYxy) & Q3zZz & Z is a maximal set such
that ∀x(Xz → Q4wWzw) & 〈Y,W 〉 is a maximal pair such
that∀x∀y∀z∀w(Yxy & Wzw→ Rxyzw)],

(19)
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and similar translations exist for other well-formed formulas of GPOL.18

Like Henkin’s semantics for POL, the translational semantics of GPOL
provides a clear account of the way quantifier ordering affects the truth
conditions of a given sentence. Each quantifier is assigned (i) a relational
formula tracing its dependencies, (ii) a formula expressing its satisfac-
tion condition relative to its governors, and (iii) a maximality condition
constraining the satisfaction conditions of its dependents. Together, these
explain its share in the truth conditions of the quantified sentence. The
truth-conditions of the sentence as a whole are given through its transla-
tion, and due to the transparent nature of the latter, the role played by its
specific quantifiers and their specific ordering is clarified. We may liken
the translational semantics of partially-ordered quantifiers to Russell’s se-
mantics of definite descriptions: in both cases an unwieldy structure is
treated by acontextual definition, i.e., a method for translating any well-
formed formula in which this structure occurs into another formula in
which it does not occur and which has a familiar – in fact, a compositional
– semantics.

My second example of a non-compositional yet informative definition
of truth belongs to an interesting and important category of definitions
which I will call “Conceptual bridge” definitions.

9. “ CONCEPT-BRIDGING” DEFINITIONS

We have encountered two definitions of truth: A compositional defini-
tion centering on the contribution of logical structure (as determined by
logical constants) to truth, and a partially-compositional definition cen-
tering on the influence of quantifier-order on truth. The first definition
aims at explicating the “logical component” in truth, the second – the
“quantifier-ordering component”. Both definitions aim at capturing the
central principles underlying the influence of the target component on
truth, regardless of choice of terminology: Any term can be used in the
definition, so long as the goals of informativeness, precision and accur-
acy are well-served. This, however, is not the case with all definitions
of truth or, for that matter, of other notions. Some definitions aim at
constructing abridgebetween two sets of concepts: a set of concepts asso-
ciated with the definiendum, and a set of concepts used in, and associated
with, the definiens. I will call this type of definition a “synthesizing” or
“concept-bridging” definition. Synthesizing definitions are the antithesis
of “analytic” or “conventional” definitions. They create new, at times unex-
pected connections between two areas of thought, two methods of inquiry.
By forging these connections they open the way to a merger of two sci-
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ences or to a fertilization of one science by the conceptual tools of the
other. A paradigm example of aconcept-bridgingdefinition, or a cluster of
such definitions, is the cluster of Cartesian definitions of geometric notions
in algebraic terms. These definitions bring algebraic methods to geometry
and geometric intuitions to algebra, with fruitful results for both fields.
Another example of concept-bridging definitions is the family ofreductive
definitions. Reductive definitions set out to explain the concepts, practices
and phenomena of one science in terms of those of another, explaining
chemical notions in physical terms (Physicalism), mathematical notions in
logical terms (Logicism), etc. Such definitions play an important methodo-
logical role, unifying, simplifying and minimizing the cognitive enterprise.
(Logicism, for example, reduces the two tasks of explaining logic as well
as mathematics to the one task of explaining logic.)

While some definitions are originally designed as concept- or field-
bridging definitions, not all concept-bridging definitions are constructed
with that aim in mind. By identifying linguistic with logical complexity
Tarski had (either intentionally or fortuitously) oriented his 1933 definition
of truth towards logic, laying the ground for a fruitful synthesis of logic
and semantics. His definition, with its special entries for logical constants
(generators of logical structures), provided the resources for a semantic
definition of logical consequence(Tarski 1936), and this, in turn, opened
the way to a systematic development of logical semantics (model theory).

Tarski’s “bridge building” definition is compositional, but the idea of
forging a fruitful bridge between two sets of concepts is not inherently
connected with compositionality. Hintikka’s game-theoretic definition of
truth for languages with partially-ordered standard quantifiers (POL) is a
case in point.

10. A NON-COMPOSITIONAL DEFINITION OF TRUTH

In numerous writings Hintikka and Sandu have developed a game-theoretic
semantics for languages of partial order with standard quantifiers. (See,
for example, Hintikka 1996 and Hintikka & Sandu 1997.) This semantics
has two parts: (i) a syntax for languages of partial order with standard
quantifiers and (ii) a non-compositional, game-theoretic definition of truth
for sentences of that language. The basic idea is described by Hintikka and
Sandu (1997) as follows:

The leading ideas of game-theoretical semantics. . . can be seen best from . . . the semantics
of quantifiers. In using quantifiers and in theorizing about them, it is hard not to use
game-laden terms, especially if one thinks of seeking and finding as a game. In traditional
informal mathematical jargon, quantifiers are routinely expressed by such phrases as
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“given any value ofx, one can find a value ofy such that”. In several natural languages,
existence is expressed by phrases translatable as “one can find”.

. . .

[A] game-theoretical treatment of quantification theory. . . is . . . [a] codification of
[such] natural and time-honored ways of thinking and speaking. . . .(363)

The central notion of game-theoretic semantics is the notion ofstrategy.
Each sentence is associated with a zero-sum game between two characters,
one trying to verify it and the other trying to falsify it. Hintikka named the
two characters ‘Myself’ and ‘Nature’; I will use ‘Humanity’ and ‘Nature’.
The game proceeds according to fixed rules reflecting the satisfaction con-
ditions of the logical constants appearing in the sentence. (For details see
above references.) Astrategyis a set of rules – or functions – which tell
a player how to proceed in the game; awinning strategyensures a Win.
A sentence is true iff there is awinning strategyfor verifying it, i.e., iff
Humanity has a strategy which enables her to win regardless of Nature’s
moves. A sentence is false iff there is a winning strategy for falsifying
it, i.e., iff Nature has a strategy which enables him to win regardless of
Humanity’s moves. (These definitions assume a non-bivalent semantics.)

The game-theoretic method is especially suitable for languages with
standard quantifiers due to the functional nature of their essential de-
pendencies. A strategy for a partially-ordered sentence corresponds to
a string of Skolem functions instantiating the functional variables of its
Henkin translation, and awinning strategy(for Humanity) corresponds to
a string of functions “verifying” this translation. Henkin, indeed, offered
his translational semantics as a systematization of an intuitive game-
theoretic interpretation, and Hintikka resystematized these intuitions using
the resources of the mathematical theory of games.

The game-theoretic semantics of POL can be viewed as a mere al-
ternative to the translational semantics delineated above, but by bringing
together game-theoretical and semantic notions Hintikka and Sandu set the
ground for a new and potentially fruitful synthesis: a synthesis of a cluster
of notions revolving aroundinformation: informational dependenceand
independence, choice under conditions of perfector imperfect information,
etc., and a cluster of notions revolving aroundscope: quantifier scope,
partial-ordering, governmentanddependence, etc.19

The notion of information is central to games: at each step in a game
each player is given either full, or partial, or null information about earlier
moves in the game, and this information (or lack thereof) is pertinent to
his/her choice of action at that step:
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In games like chess, each player has access to the entire earlier history of the game, but
in many others a player’s knowledge of what has happened earlier is incomplete. In this
case we are dealing with a game withimperfect information. A move made in ignorance
of another one is said to beinformationally independentof the latter. For instance, in many
card games one does not know which cards one’s opponent has picked up earlier. (Hintikka
& Sandu 1989: 571–572, my italics)

In semantic games informational dependence corresponds toquantifier-
dependenceand informational independence toquantifier-independence.
Quantifier dependence and independence are, in turn, a matter ofscope.
Thus, in

∀x∃y∀z∃wR(x, y, z,w),(1)

‘∃w′ is in the scope of both ‘∀z’ and ‘∀x’; therefore it is dependent on
both; while in

∀x∃y
R(x, y, z,w)

∀z∃w
(2)

‘∃w’ is in the scope of ‘∀z’ but not ‘∀x’; therefore it is dependent on the
first but not on the second. In linear quantifications each quantifier either
governs or is dependent on any other quantifier; in non-linear quantifica-
tions this is not the case. Accordingly, the semantic games associated with
linear quantifications are games ofperfect information, while those associ-
ated with non-linear quantifications are games ofimperfect information. To
see how scope differences have to do with access to information, compare
the game associated with (1) with that associated with (2). The first game
proceeds as follows:

Game (1):

Step 1 [∀x]: Nature (initial falsifier) chooses an individuala in the uni-
verse as a value forx (with the aim of falsifying the
sentence).

Step 2 [∃y]: Humanity (initial verifier) is given information on Nature’s
choice in Step 1, and based on this information chooses an
individual b in the universe as a value fory (with the aim of
countering Nature’s move).

Step 3 [∀z]: Nature chooses an individualc in the universe as a value for
z.

Step 4 [∃w]: Humanity is given information on Nature’s choices in Steps
1 and 3and based on this information chooses an individual
d in the universe as a value forw.
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In this game Humanity hasperfect informationabout Nature’s moves: in
Step 2 Humanity knows what move Nature made in Step 1, and in Step 4
she knows what moves he made in Steps 1 and 3. But in the second game
Humanity has only partial information about his moves:

Game (2):

Step 1 [∀x]: Nature chooses an individuala as a value forx.

Step 2 [∃y]: Humanity is given information on Nature’s choice in Step 1,
and based on this information chooses an individualb as a
value fory.

Step 3 [∀z]: Nature chooses an individualc as a value forz.

Step 4 [∃w]: Humanity is given information on Nature’s choice in Step
3 (but not Step 1), and based on this (partial) information
chooses an individuald as a value forw.

Here, in Step 4 Humanity has no information on Nature’s move in Step 1;
the information given her in Step 2 is taken away. In both games Humanity
wins iff she chooses two individuals,c and d, such that given Nature’s
choice ofa andb, a, b, c andd stand in the relationR. But in game (1)
Humanity acts under conditions of full information, while in Game (2) she
acts under conditions of partial information.

Thinking of semantic games as played by Humanity against Nature
suggests that truth is a “game of knowledge”. Another metaphor for players
in such games is ‘Us against Them’. In game (1) Us is a unified team. Each
action is taken by the team as a whole, and the team has full (informational)
access to past moves. In game (2) Us is divided into two teams which
have no contact with each other. Each team is given information on one
of Them’s moves and acts in ignorance of its other move (and the other
team’s action). Us win iff the two teams make the “right” choice in spite
of having no communication. Under this metaphor (2) is true iff Us have
an initial winning strategy that does not require sharing of information
between its teams. Other suggestive metaphors include a game between
isolated prisoners and an interrogator, a game in which two “independent”
particles proceed without “knowledge” of each other’s moves, yet their
movement is (or has the similitude of being) “coordinated”, etc. (All these
metaphors suggest further uses of the semantics).

Under what conditions is there a winning strategy for a sentence under
conditions of imperfect information? Game theoretic semantics istruth-
conditional(Hintikka, 1987). Whether a verifying strategy exists depends,
therefore, on how things are in the world, i.e., on the pattern of individuals
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standing in the quantified relation (in our example,R). Our analysis in the
last section suggests that the pattern satisfying (1) is that of a “multiple
tree” while the pattern satisfying (2) is that of a “massive nucleus” (of
objects standing inR). This special feature of the “branching” situation
explains why each team of Us can make the right choice in ignorance of the
other’s: when Reality is especially cooperative (when the relation contains
a “massive nucleus”) knowledge can be obtained under conditions of less
than perfect information.

11. CONCLUSION

In this paper I have offered a few observations on the methodology of
structural theories of truth. Truth is a multi-dimensional concept, and a
methodology of truth-theories must recognize this feature. The notion
of structure is partly topic-related: there is logical structure – structure
induced by highlighting the logical constituents of sentences - modal struc-
ture, epistemic structure, and even physical and biological structure. To
understand the role different types of structure play in determining the
truth value of sentences is to understand the principles governing the se-
mantic behavior of the respective “distinguished” constants (the principles
governing logical constants being different from those governing modal,
epistemic and other types of constant.) Unlike the notion of logical struc-
ture, the notion of iterative structure is content-neutral, but (perhaps just
for this reason) its philosophical significance is more limited. The notion
of compositional structure is rather involved, having to do with the interre-
lation between semantics and syntax. While compositionality is conducive
to clarity and informativeness, some explanatory goals are better served by
non-compositional, or partially compositional, theories.

NOTES

1 The same convention applies to defined symbols ofLc, e.g., ‘→’. Below, parentheses
will be omitted when convenient.
2 See, for example, Davidson (1973: 71) and LePore and Ludwig (1999). By saying that in
these places the authors conflate the three answers I don’t mean that they are unaware of,
say, uses ‘logicality’ that differ from those of ‘compositionality’, but that in the context
of a theory of truth (or a truth-conditional theory of meaning) they see no reason for
distinguishing the two concepts.
3 For a more detailed discussion of this point see Sher (1999).
4 An argument-structure for a 2-place relation between individuals is a structure of the
form 〈A, 〈a, b〉〉, whereA is a non-empty set anda, b are members ofA.
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5 For further elaboration of the points made in this Section see Sher (1996, 1998/9, 2000).
6 See, e.g., Enderton (1972): 26.
7 For an excellent account of compositionality, see Janssen (1997).
8 Davidson was especially influential in introducing this theme. For the view that a
learnable language need not be compositional see, e.g., Schiffer (1987).
9 By a ‘standard’ logical language I mean a language with the standard logical constants.
I think of the standard quantifiers (∀ and∃) as generating a well-formed expression from a
pair of expressions – a variable and a well-formed formula.
10 Henkin allows formulas with infinitely many occurrences of primitive expressions, but
here I will limit myself to finitely long formulas.
11 Whenever the arity of a functional or a relational symbol is clear from the context, I
remove its superscript.
12 This translation algorithm extends pioneering work by Barwise (1979) on the se-
mantics of branching monotone-increasing generalized quantifiers, and it applies to any
partially-ordered generalized quantifiers (of the syntactic type of ‘∀’ and ‘∃’) regardless of
monotonicity. Some examples of such quantifiers are ‘At least/Exactly/At Mostα’, where
α is any cardinal number, ‘Most’, ‘Finitely/Infinitely/Countably/Uncountably Many’, and
‘An Even/Odd Number of’. (Q is monotone-increasing iff ‘Qx 8 & ∀x(8→ 9)’ implies
‘Qx 9’. ‘At least α’ is monotone-increasing, while ‘exactlyα’ and ‘at mostα’ are not.
Both∀ and∃ are monotone-increasing.) For another approach to the extension of Barwise’s
semantics see Westerståhl (1987).
13 For simplifications of (14) and (15) when the quantifiers involved are monotone-
increasing, see footnotes 14 and 15.
14 If all the quantifiers governingQ2 are monotone-increasing, the maximality require-
ment may be omitted. In that case the quantifier condition associated withQ2y would be
‘∀x(Xx → Q2yYxy)’.
15 If all the quantifiers binding ‘Rxy’ are monotone-increasing, the maximality require-
ment may be omitted.
16 See footnote 15.
17 I have used ‘datedeach other’ in (17) to make the English formulation smoother; this
has nothing to do with the branching structure as a quantifier structure.
18 It is easy to see that when (18) is instantiated by (4), the corresponding instantiation of
(19) is equivalent to (6).
19 This game-theoretic semantics has other goals and results, but I will limit my discussion
here to the general connection it forges between information and quantifier-order.
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