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“Tarski’s Thesis” is the claim that a certain invariance condition can serve as our

criterion of logicality. My goal in this paper is to explain the thesis, provide it with a

philosophical justification, and respond to three recent criticisms due to Solomon Feferman.

I.  Criterion of Logicality 

In a 1966 lecture, “What Are the Logical Notions?”, Tarski’s proposed the following

criterion of logicality:    

Invariance under Permutation: A notion is logical iff it is invariant under all
permutations of the individuals in the “world” (or universe of discourse).1 

By “notions” Tarski understood not linguistic or conceptual entities but objects of the

kind referred to by such entities, i.e., objects in the world, including individuals, properties

(sets), relations, and functions. “World” he understood as including both physical and

mathematical objects and as forming a type-theoretic hierarchy, based on Principia Mathematica

or a similar theory. In the present context it will be convenient to view objects as operators

(characteristic functions representing them) and use standard set theory with urelements rather

than Principia Mathematica as our background theory.

By centering his attention on objects or operators (worldly entities) rather than constants

(linguistic entities) Tarski follows the precedent of the Boolean, truth-functional definition of

logical connectives in propositional logic. This definition identifies logical connectives with

certain objects, namely, Boolean truth functions, and it is these objects, rather the names or

descriptions used to refer to them, that are said to capture the idea of logicality on the

propositional level. One advantage of the objectual route is that it avoids complications arising
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2 See Sher (2003). A similar advantage accrues to the objectual, model-theoretic
definition of logical consequence as opposed to the linguistic, substitutional definition of this
concept. (See Tarski 1936 and Sher 1996a.)  

from the vagaries of linguistic usage2. Another advantage is the existence of a richer, more

precise, and more sophisticated machinery for talking about operators than about constants.

Before examining Tarski’s specific criterion, let us consider the idea of a general

criterion of logicality independently of its content. What is the purpose of such a criterion? What

would a systematic principle that demarcates the logical from the non-logical (not just on the

level of propositional connectives but also on the level of quantifiers and other non-propositional

operators) accomplish? The answer, I believe, is this: First, it would bring an end to the current

practice of an ad-hoc, utterly uninformative, definition-by-enumeration of the logical operators

(other than connectives). Second, it would solve a serious problem that threatens to undermine

Tarski’s model-theoretic definition of logical consequence, and with it the entire field of logical

semantics. Furthermore, such a principle it would considerably deepen our understanding of the

nature of logic, expand our ability to approach logic critically, create a fertile domain of

mathematical investigations, help solve outstanding problems in linguistic semantics, and

perhaps make other contributions as well, e.g., explain the relationship between the concept of

logicality and other central philosophical concepts, explain logic’s relation to neighboring fields

(both within and outside philosophy), and so on. 

One would have expected Tarski to motivate his criterion by the problem that threatened

his own definition of “logical consequence”, and whose full import he recognized and brought to

our attention (Tarski 1936), namely, the problem that the definition’s adequacy depended on the

existence of an adequate criterion of logicality. At the time Tarski worried that such a criterion

would never be found (in which case his definition would be forever unjustified), and this

naturally leads us to expect that his 1966 lecture was intended to assuage those worries.   

However, judging from what Tarski explicitly said (and did not say) in his 1966 lecture,
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3 One of the things that Tarski explicitly said (p. 145) is that he was not interested in the
problem of logical consequence (or, as he put it, logical truth) in that lecture.   

his route to the criterion logicality was completely divorced from his early concerns.3 Instead,

Tarski arrived at this criterion based on general considerations concerning the demarcation of

fields of knowledge. His starting point was Klein’s demarcation of geometrical fields based on

their invariance properties. Klein suggested that each geometric field could be characterized by

the invariance condition satisfied by its notions. This condition had the form:

Geometric Invariance: Geometric notion O is invariant under all 1-1
transformations of the geometrical space onto itself which preserve X.

By strengthening X we restrict the transformations taken into account, getting more

specific geometrical notions; by weakening X we increase the transformations taken into

account, getting more general notions. Thus, if X is the requirement that the ratio of distances

between points be preserved, the class of notions satisfying Geometric Invariance is the class of

Euclidean notions. By strengthening X to the requirement that actual distances between points be

preserved we obtain a characterization of narrower geometric notions, namely those applicable

to rigid bodies (which don’t change their size under movements or transformations); and by

weakening X to the requirement that (I will express by saying that) openness (open sets) be

preserved, we obtain a characterization of very broad geometric notions, namely the topological

notions. Now, Tarski asked: What would happen if we weakened X as much as possible, i.e., if

we set no requirements on the transformations taken into account? Then, we would get the

condition.

General Invariance: Notion O is invariant under all 1-1 transformations of
space, or the universe of discourse, or the “world” onto itself (or under all
permutations of the “world”).

This invariance condition takes all 1-1 transformations into account and, as a result,

characterizes our most general notions. What is the science which studies these notions? Tarski

suggested that this science is logic. Logic deals with our most general notions, notions which are
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invariant under all 1-1 transformations of the world onto itself.

Today, we usually adopt a slightly different version of Tarski’s criterion. In fact, Tarski’s

(1966) lecture remained unknown for many years, and the current version is historically traced to

Lindström’s (1966) generalization of Mostowski (1957). This version invokes “isomorphisms”

(or “bijections”) instead of “permutations” (or “transformations”) and refers to a totality

“structures” rather than a to single, universal, “world”. One way to formulate this criterion is: 

Invariance under Isomorphism: An operator O is logical iff it is invariant
under all isomorphisms of its argument-structures

where:

(i) A structure is an m-tuple, m$1, whose first element is a universe, A, (i.e., a non-empty
set of objects treated as individuals, that is, as objects lacking inner structure) and whose
other elements (if any) are set-theoretic constructs of elements of A. 

(ii) Two structures, <A,β1,...,βn> and <A’,β’1,...,β’k>, are isomorphic - <A,β1,...,βn> –
<A’,β’1,...,β’k> - iff n=k and there is a bijection f from A to A’ such that for every 1#i#n,
β’i is the image of βi under f. 

(iii) An operator O represents an object of a given type - an individual, a property of
individuals, an n-place relation of individuals (n>1), an n-place function from individuals
to an individual, a property of properties of individuals (i.e., a monadic 1st-order
quantifier), a relation of properties of individuals (i.e., a relational 1st-order quantifier), a
property of relations of individuals (i.e., a polyadic quantifier), etc. - and specifies its
extension (or constitution) in each universe.

Specifically:

C An operator representing an individual a assigns to each universe A a 0-place function
whose fixed value is a if a0A, and which is treated in some conventional manner
otherwise. 

C An operator representing a 1st-order property assigns to each universe A a function
from all members of A to a truth-value (which, provisionally, we assume is T or F).

C An operator representing an n-place 1st-order relation (n>1) assigns to each universe A
a function from all n-tuples of members of A to {T,F}.

C An operator representing a 1st-order monadic quantifier assigns to each universe A
function from all subsets of A to {T,F}.
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4 Types of arguments are the same as types of operators. (See (iii) above.)

5(A) is the power-set of A.               

C An operator representing a 1st-order binary relational quantifier assigns to each
universe A function from all pairs of subsets of A to {T,F}.

C An operator representing a 1st-order polyadic quantifier (of the simplest type) assigns
to each universe A function from all binary relations on A to {T,F}.

Etc. 

(iv) If O is an operator whose arguments are of types  t1,...,tn,4 A is a universe and β1,...,βn are
constructs of elements of A of types t1,...,tn respectively, then β1,...,βn are arguments of O
in A (or <β1,...,βn> is an argument of O in A) and <A,β1,...,βn> is an argument-structure
of O.   
  
For example: 

(a) The 1st-order property “is red” is represented by an operator, R, which for every universe
A is assigned a function, RA: A → {T,F}, such that for any a0A, RA(a)=T iff a is red. (Its
argument-structures are structures <A,a>, where A is a universe and a0A.)

(b) The 1st-order identity relation is represented by an operator, =,  which for every universe
A is assigned a function, =A: A×A → {T,F}, such that for any a,b0A, =A(a,b)=T iff a=b.
(Its argument-structures are structures <A,a,b> where a,b0A.)                

       
(c) The 1st-order existential quantifier is represented by an operator, ›, such that ›A:(A) →

{T,F}, and for every BfA: ›A(B)=T iff B is not empty.5 (Its argument-structures are
structures <A,B> where BfA.)

 (d) The 1st-order monadic cardinality quantifiers, “There are exactly κ things such that”,
where κ is any cardinal, finite or infinite, are represented by operators, Κ of the same
kind as ›, and such that for every BfA: KA(B)=T iff the cardinality of B - |B| - is κ.
(Their argument-structures are the same as those of ›.)

(e) The 1st-order monadic quantifier “It is a property of humans” is represented by an
operator H of the same kind as ›, and such that for every BfA: HA(B)=T iff all the
members of B are humans. (Its argument-structures are the same as those of ›.)

(f) The 1st-order polyadic quantifier “Is a well-ordering” is represented by an operator W
such that WA:(A×A) → {T,F}, and for every RfA×A: WA(R)=T iff R well-orders A.
(Its argument-structures are structures <A,R> where RfA×A.)
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6 E.g., the logical connective “&” when considered as an objectual operator (as when it
appears in an open formula of the form “Bx & Cx”) is represented by an operator 12 such that 12

A:(A)×(A) → (A)  and for every B,CfA: 1A(B,C) = the intersection of B and C. For the
sake of determining its logicality we represent this functional quantifier by the relational
quantifier 13 such that 13

A:(A)×(A)×(A) →{T,F},and for any B,C,DfA:
13

A(B,C,D)=T iff D is the intersection of B and C. (Its argument-structures are structures
<A,B,C,D> where B,C,DfA.) 

7 These are defined as follows:

  (i) The 1st-order monadic quantifier “There are uncountably many” is represented by an
operator, U, of the same kind as ›, and such that for every BfA: UA(B)=T iff B is
uncountable. (Its argument-structures are the same as those of ›.)

(ii) The 1st-order monadic quantifier “Most” (as in “Most things are B”) is represented by an
operator, M1, of the same kind as ›, and such that for every BfA: M1

A(B)=T iff |B|>|A-
B|.(Its argument-structures are the same as those of ›.)

(iii) The 1st-order relational quantifier “Most” (as in “Most B’s are C’s”) is represented by an
operator M2 such that M2

A:(A)×(A) → {T,F}, and for every B,CfA: M2
A(B,C)=T iff

|B1C|>|B-C|. (Its argument-structures are structures <A,B,C> where B,CfA.)

And so on.

We now define:  

An n-place operator O is invariant under all isomorphisms of its argument-structures
 iff

for any of its argument-structures, <A, β1,...,βn> and <A’,β’1,...,β’n>:
 if <A,β1,...,βn> – <A’,β’1,...,β’n>, then OA(β1,...,βn)=OA’(β’1,...,β’n).

It is easy to see that all the standard logical operators - e.g., (b) and (c), as well as the

logical connectives when considered as objectual operators6 - are logical according to this

criterion, and that all blatantly non-logical operators - operators like (a) and (e) - are not. But the

Invariance-under-Isomorphism criterion is a substantive criterion that does not just repeat what

we think of as logical prior to a systematic, theoretical reflection. Quantifiers like the infinitistic

(d)’s and (f) are also logical. Other non-standard logical operators include the uncountability

quantifier and the monadic and relational “most”.7 In general, mathematical operators as they
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8These operators are defined as follows: 

(i) The 1st-order membership relation is represented by an operator, 0, of the same type as
=, such that for any a,b in A, 0A(a,b)=T iff b is a set and a is a member of b. (Its
argument-structures are the same as those of =.)                

(ii) The 2nd-order membership relation is represented by an operator, 0,  which for every
universe A is assigned a function, 0A: A×(A) → {T,F}, such that for any a in A and B
included in or equal to A, 0A(a,B)=T iff a is a member of B. (Its argument-structures are
structures <A,a,B> where a is in A and B is included in or is equal to A.) 

appear in 1st-order theories - e.g., the 1st-order set-membership operator (0) - are not logical, but

when raised to a higher order - e.g., the 2nd-order set-membership operator (0) - they are

logical.8

What about the logical connectives considered, as they usually are, as propositional

operators? There are two ways to deal with propositional connectives: either we expand the

notion structure so that the Invariance-under-Isomorphism criterion applies to such operators, or

we give a disjunctive criterion of logicality, dealing with propositional and objectual operators

separately. Not surprisingly mathematicians (e.g., Tarski and Lindström) have opted for the

former, but as a philosopher I prefer the latter. I think that the philosophical idea underlying

logicality is realized on different levels of abstraction for the two types of operator, and to signal

this difference I define:

Logicality: An operator is logical iff it either satisfies the Truth-Functionality
criterion for propositional operators or it satisfies the Invariance-under-
Isomorphism criterion for objectual operators. 
 

Leaving the relation between Truth-Functionality and Invariance-under-Isomorphism aside for a

moment, our next question is: What is the philosophical meaning of the Invariance-under-

Isomorphism criterion?

II. Philosophical Significance of Invariance-under-Isomorphism
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9 “Fewer” here means “proper subset” rather than “smaller cardinality”, as when we say
that the set of odd positive integers has fewer elements than the set of positive integers.

The idea that logic is characterized by an invariance condition - i.e., by the things it does

not distinguish between - has a long history. Kant, for example, says that “[general logic] treats

of understanding without any regard to difference in the objects to which the understanding may

be directed” (1981/7: A52/B76), and Frege says that “[p]ure logic ... disregard[s] the particular

characteristics of objects” (1879: 5). But this trait can be construed in different ways, and two

philosophical construals of Invariance-under-Isomorphism are: (a) generality (Tarski 1966), and

(b) formality (Sher 1991).

A. Generality. In proposing his logicality criterion Tarski continually emphasized the fact

that notions invariant under more transformations are more general than notions invariant under

fewer 9 transformations. Thus, in geometry, we have more transformations preserving the ratio of

distances between points than transformations preserving the actual distances between them, and

more transformations preserving openness than transformations preserving the ratio of distances.

Accordingly, notions invariant under transformations preserving openness are more general than

those invariant under transformations preserving the ratio of distances, and the latter are more

general than notions invariant under transformations preserving actual distances.

To obtain the most general notions we renounce all restrictive conditions on the

transformations partaking in the invariance condition. And invariance under transformations

characterizes the logical notions. The distinctive mark of logicality, on this conception, is thus

utmost generality, and this trait is captured by the Invariance-under-Isomorphism (or -

permutation) criterion.

Thus Tarski’s says:

Now suppose we continue this idea, and consider still wider classes of
transformations. In the extreme case, we would consider the class of all one-one
transformations of the space, or universe of discourse, or ‘world’, onto itself.
What will be the science which deals with the notions invariant under this widest
class of transformations? Here we will have very few notions, all of a very
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general character. I suggest that they are the logical notions. [1966: 149. My
underlines.]

It is natural to associate utmost generality with another characteristic feature of logic,

topic neutrality, and this seems to strengthen the plausibility of interpreting Invariance-under-

isomorphism as maximal generality.

But does Invariance-under-Isomorphism yield the most general notions? In “logicality

and Invariance” (2006) Dennis Bonnay challenges the identification of Invariance-under-

Isomorphism with maximal generality: 

The [interpretation] in terms of generality rests on the assumption that the class of
permutations is the most general class of transformations. This is because
permutations do not respect any extra-structure, such as e.g. the topological
structure of space. Let us have a closer look at this idea. Permutation invariance
just says that as soon as there is an automorphism linking <M,A> and <M,A’>, a
quantifier Q acting on M has to give A and A’ the same value. On one hand, this is
indeed liberal, because no further structure beyond the extensions A and A’ on M
is taken into account. But on the other hand, this is quite demanding: for <M,A>
and <M,A’> to be similar from a logical point of view, they have to share exactly
the same structure - they have to be isomorphic. Now there are a lot of other
concepts of similarity between structures which are used in model theory and in
algebra which are far less demanding. Instead of requiring that the structure is
fully preserved they lower down the requirement to some approximate
preservation. And this would amount in turn to using a wider class of
transformations, and the resulting invariant operations would be more general.
Why should we refrain from resorting to these other concepts? To sum up, even if
one grants that generality is a good way to approach logicality, there is no
evidence that the class of all permutations is the good class of transformations to
do the job. [Bonnay 2006: 6-7]

Bonnay’s point is well taken. In the extreme case we can remove all constraints on the

functions involved, requiring logical operators to be invariant under all functions (from

argument-structures to argument structures) whatsoever. This would give us the utmost general

notions (in one reasonable sense of the word), but these notions would have very little to do with

what we think of as logic. All the standard logical notions would fail this criterion, and the

notions that would satisfy it would be such notions as: “is an individual”, “is a property of

individuals”, “is an n-place relation of individuals (n>1)”, “is a property of properties of



10

individuals”, etc. Logic, according to this characterization, would be a theory of semantic types,

not a theory of inference (or transmission of truth) as we intend it to be. I conclude that: (a)

Invariance-under-Isomorphism does not mean utmost generality, and (b) if we want to preserve

any semblance to what we intuitively mean by logic, we cannot regard utmost generality, or for

that matter topic neutrality, as the mark of logic.

B. Formality. On my interpretation (Sher 1991 and elsewhere), the Invariance-under-

Isomorphism criterion is a criterion of formality or structurality: isomorphic structures are

formally identical; identity-up-to-isomorphism is formal identity. The basic idea is that logic is a

theory of reasoning based on the formal (structural) laws governing our thinking on the one hand

and reality on the other, and the Invariance-under-Isomorphism criterion says that to be formal is

to treat isomorphic structures as the same structures. Formal operators do not distinguish

between isomorphic arguments (or rather between isomorphic argument-structures, since some

formal features of arguments depend on the formal traits of the underlying universe.). 

The view that Invariance-under-Isomorphism captures the concept of formality (or

structurality) is well-known from the philosophy of mathematics. Structuralists, in particular,

view mathematics as the science of structure (or formal structure), and Invariance-under-

Isomorphism as a mark of structurality. The Invariance-under-Isomorphism criterion

characterizes logic as a theory of formal or structural inference, inference based on the laws

governing formal or structural operators.

What is the relation between logic and mathematics under this interpretation? I will

attend to this question in the next section, but in the meantime let me say that on the “formalist”

conception of logic, logic and mathematics are interconnected theories, approaching the same

topic, the formal, from different, yet interrelated, perspectives. Mathematics investigates the laws

of formal structure; logic applies these laws in general reasoning. Logic includes mathematics,

raised to a higher-order, so it can be applied in inference in general. The idea is that formal

operators - union, intersection, complementation, non-emptiness, majority (“most”), finiteness,
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10 Among other things, the Invariance-under-Isomorphism criterion does for objectual
logical operators what the Boolean, truth-functional criterion did for propositional logical
operators, namely, provide a complete, precise, systematic definition, fleshing out their structure,
and explaining how they “work”. (How they work is best shown by a “constructive” or “bottom-
top” definition of logical operators. Such a definition is formulated in Sher 1991, Ch. 4, and is
informally described in Sher 1996b.) 

and others - are applicable to structures of objects studied in all areas of knowledge, and

therefore inferences based on the laws governing them are valid in all areas. 

This universal applicability of the formal operators explains logic’s generality and topic

neutrality. Logic does not distinguish between different topics of discourse since the formal laws

governing the behavior of individuals, properties and relations in different areas are the same. (In

all areas individuals are identical to themselves, the union of non-empty properties is non-empty,

etc.) Their differences concern something other than these formal laws, and logic abstracts from

such differences. Comparing the two characterizations of logic associated with the Invariance-

under-Isomorphism criterion, then, we can say that the formality of logic ensures its generality

(not absolute generality, but a very high degree of generality), while the generality of logic does

not ensure its formality. This is but one advantage of taking formality rather than generality as

the mark of logic. In the remainder of this paper I will assume Invariance-under-Isomorphism

characterizes logicality as formality. 

III. Philosophical Justification of the Invariance-under-Isomorphism Criterion 

Now that we have a basic understanding of the Invariance-under-Isomorphism criterion,

our next task is to provide a philosophical justification for this criterion. I think it is quite clear

that this criterion satisfies the first methodological desideratum mentioned in Section I above,

namely, systematicity and informativeness (i.e., a genuine principle of logicality as opposed to a

definition by enumeration).10 But it also satisfies the other desiderata. For example, it has opened

new areas of research in mathematics and linguistics and helped solve standing problems in both
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11 For example, it has led to the development of “model-theoretic logic” and
“generalized-quantifier theory”. Some remarkable results of these new fields are Lindström’s
characterization of (standard) first-order logic, Keisler’s completeness proof for 1st-order logic
with the quantifier “uncountably many”, the solution to the problem of determiners in linguistic
semantics, and the theories of polyadic and branching quantifiers in natural language. The
literature here is enormous. For a small sampling see Keisler (1970), Lindström (1974), Barwise
& Feferman (1985), Higginbotham & May (1981), Barwise & Cooper (1981), Keenan & Stavi
(1986), Van Benthem (1983 & 1989), Westerståhl (1985 & 1987), Keenan (1987), and Sher
(1991, Chs. 2,4 and 5).

disciplines.11 Here, however, I would like to focus on substantive philosophical points that

support this criterion, i.e., give it what may be called “a foundational justification”. By this I

mean showing how the philosophical conception of logic associated with this criterion - namely,

the “formalist” conception briefly delineated in the last section - is capable of providing a

foundation for logic largely due to its association with this criterion. 

A Methodological Quandary: Holistic vs. Foundationalist Foundation. In thinking about

a foundation for logic most of us think in foundationalist terms: we think that the only way to

establish logic is by using epistemic resources that are more basic than those produced by logic

itself. And this leads us to a pessimistic conclusion: since no sufficiently rich branch of

knowledge is more basic than logic, there is no possibility of establishing logic; a foundation for,

or a justification of, logic is in principle impossible. The source of the problem, it is easy to see,

is the foundationalist conception of the foundation (justification) relation as intuitively strongly

ordered. Specifically, foundationalism requires that our entire system of knowledge be ordered

by an anti-reflexive partial-ordering, that this ordering have an absolute base consisting of

minimal (initial, atomic) elements, and that each non-minimal element in the system be

connected to some minimal element(s) by a finite chain. This central feature of the

foundationalist method is its Achilles heel; due to it, foundationalism has, in principle, no

resources for grounding the basic constituents of knowledge - the disciplines constituting the

lowest echelon in the foundationalist hierarchy. In particular, foundationalism is incapable of

providing a foundation for logic. As a basic branch of knowledge, logic can partake in the
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foundation of other sciences, but no science (or combination of sciences) can provide a

foundation for logic. Having postulated (i) that any resource for founding logic must be more

basic than the resources produced by logic itself, and (ii) that there are no (or not enough)

resources more basic than those produced by logic, foundationalism is incapable of founding

logic. 

In view of these considerations, it is clear that a foundation for logic must be holistic. I

will not be able to explain in great detail the idea of a holistic foundation, or foundational

holism, here. (For an extended discussion see Sher 2006.) But a few points have to be made:  

C  Foundational holism would provide a foundation for logic in the sense of describing its
basic mechanisms, justifying the definitions of central meta-logical concepts, solving
standing problems in the philosophy of logic, identifying constraints on logic, elucidating
the relation between logicality and related concepts, sorting out and accounting for the
distinctive characteristics of logic, explaining logic’s role in our system of knowledge,
throwing new light on the relation between logic and mathematics, providing critical
tools for detecting errors and making improvements in logical theory, etc. 

C  Foundational holism is not coherentist. It requires that knowledge be grounded in
reality; in fact, it strengthens foundationalism by requiring that every branch of
knowledge be grounded in reality. But, being holistic, it permits us to use all the
resources available to us in providing such a grounding.  

C  Foundational holism does not require an absolute, infallible foundation, but it requires
a solid foundation.

C Foundational holism requires a theoretical, and not just an intuitive, grounding of logic,
including a theoretical grounding of logic in reality.  

C  Foundational holism rejects vicious circularity, but not circularity per se. Which
circularity is vicious is determined by holistic methods.

Having made this methodological point, I will proceed to show how the formalist

conception of logic accomplishes some of the foundationalist tasks mentioned above due to its

association with the Invariance-under-Isomorphism criterion.

A. Explanation of logic’s connection to truth. It is commonplace to say that as a theory of

logical truth (a kind of truth) and of logical consequence (a transmission of truth from truth-



14

12 ‘C’ is a symbol of an unspecified kind for logical consequence.

bearers to truth-bearers on certain grounds) logic is intimately connected with truth. But what,

exactly, are the nature and of this connection and its constraints on logic? Let us start with

general theoretical considerations : 

Assuming the classical idea that truth importantly involves some correspondence relation

between truth-bearers and reality, let us consider two truth-bearers, S1 and S2, whose truth-

conditions straightforwardly and paradigmatically exemplify this idea. (For the sake of

simplicity, let us further assume that S1 and S2 are distinct and non-synonymous.) Now, suppose

that according to some logical theory, L, S2 is a logical consequence of S1. In symbols:

(1) (Level of Logic)  S1  C12  S2

Further suppose that S1 is true. Then (1) says that the truth of S1 extends to, or is transmitted to,

or is preserved by, S2: 

(2) (Level of Language) T(S1) ----------> T(S2). 

((1) says something stronger than that, but let us attend to the weaker claim first). 

Let S1 and S2 be the situations that have to be realized for S1 and S2 to be true and that

would guarantee their truth were they to be realized. Figuratively: 

(3) (Level of Language) T(S1)                T(S2).
   ^    ^

(Level of World)      S1                     S2.

Now, suppose that in the world S1 is the case but S2 is not. (In the extreme case, S1 rules out S2.)

I.e.,

(4) (Level of World) <S1 , S\ 2>  (in the extreme case: S1 fi S\ 2).

Then, our logical theory is wrong. No matter what L says, S2 is not a logical consequence of S1:

(5) (Level of Logic) S1   I  S2.

Logic, indeed, is constrained by truth more deeply than the above consideration suggests.
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Suppose that in the world both S1 and S2 are the case, but S1 being the case does not require S2

being the case: 

(6) (Level of World) <S1, S2, S1 i S2>

Then, again:

(7) (Level of Language) S1  I  S2.

Now, an adequate criterion of logicality has to explain, or be incorporated in an account

that explains, this alethic constraint on logic. The formalist interpretation of the Invariance-

under-Isomorphism criterion delineated in the last section is embedded in a “formalist” account

of logic that does just that. We can sum up its main points as follows:13

(i) The logical constituents of truth-bearers - especially, their logical constants - represent
formal properties, relations, and functions, where formality is interpreted as Invariance-
under-Isomorphism.

(ii) The logical form of truth-bearers is obtained by holding their logical constants fixed
and treating their non-logical constants as variable.

(iii) Corresponding to a truth-bearer S is a situation, S, that would make S true if it were
to be realized; corresponding to the logical form of S is the formal skeleton of S, which
contains those parameters of S which correspond to its logical constituents. For example,
corresponding to “Something is white and round” is a structure, <A, B, C> where A is
the intended universe of discourse, B is the collection of white things in A, C is the
collection of round things in A, and the intersection of B and C is not empty. The formal
skeleton of S contains the formal parameters of S corresponding to the logical constants
of S, namely: intersection and non-emptiness (a cardinality parameter).

(iv) Logical consequence is a relation between truth-bearers which represents a universal
formal law connecting the situation corresponding to the “premise” truth-bearers to the
one corresponding to the “conclusion” truth-bearer. Alternatively, logical consequence
correspond to, and is largely due to, a law connecting the formal skeleton of the
“premise” situations to the formal skeleton of the “conclusion” situation. This law is
universal in the sense that it holds in all formally-possible situations, or in all possible
formal-structures. For example:
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Something is white

is a logical-consequence of 

Something is white and round 

because it is a formal law that whenever an intersection of two subsets is not empty, the
first of these subsets is not empty; it is not a logical consequence of 

Something is white or round

because it is not a formal law that whenever a union of two subsets is not empty, the first
of these subsets is not empty. 

If we regard formal laws as formally necessary, we can concisely represent the present
conception of logical consequence thus:

Level of Language: S1     logically implies      S2.
                    ^

Level of World:      S1  formally necessitates  S2.
 

(v) In contemporary (Tarskian) semantics we represent the formally-possible situations
vis-a-vis a given language by the totality of models for that language. Universal formal
laws are represented by regularities across all models. 

(vi) This explains the standard (Tarskian) semantic definition of logical consequence: S is
a logical-consequence of K iff S is true in all models (i.e., formally-possible situations) in
which all the members of K are true. I.e., when S is a logical consequence of K, this is
due to some formal law connecting the situations corresponding to S and K.

Note: This account assumes a background theory of formal structure, used to formulate

the logicality criterion, delineate the totality of formally-possible situations represented by

models, determine the laws governing them (i.e., the formal laws underlying logical

consequence), etc. The appeal to such a background theory is licensed by the holistic

methodology of the account. This is an important point that is easy to miss. Indeed, it is so

common to associate the foundational goal with the foundationalist method and the holistic

method with the renunciation of this goal, that many philosophers evaluate any foundational
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14 In the case of logic, one relevant example is Etchemendy (1999). Etchemendy thinks
that due to the incompleteness of any reasonable background theory of formal structure we
cannot establish the formal necessity of Tarskian consequences. (See his criticism of Sher 1996a
in fn. 25 of his 2002 paper). This claim is right for a foundationalist, who requires absolute
certainty and intuitive completeness (hence also technical completeness) of a putative
foundation, but not for a holist who, contesting the appropriateness of such demands, allows the
background theory of formal structure, like all human theories, to be short of perfect (and
technically incomplete). I will presently attend to the incompleteness problem in a little more
detail, but the point here is that while Etchemendy himself is, for all I know, a holist, he applies
foundationalist standards to the foundational claims in Sher (1996a), despite the fact that they are
explicitly offered as holistic claims. He seems not to appreciate the possibility of a holistic
foundation, or foundational holism. 

proposal based on foundationalist standards.14

The holistic approach enables us to maneuver the limitations of the background theory in

a rational and effective manner. Consider, for example, the incompleteness phenomenon. The

holist reasons that in the same way that we are forced to use incomplete mathematical

background-theories in providing a foundation for physics, so we are forced to use incomplete

mathematical background-theories in providing a foundation for logic. To the extent that no

perfect, complete theory of formal structure is available (temporarily or in principle) but some

quite advanced theories do exists, we rely on the best background theory we can find, and avow

ignorance with respect to those cases of logical truth and consequence that this theory cannot

handle. 

Yet the holist can still hold on to the classical concept of truth, i.e., ensure that there is a

fact of the matter about how, say, the “continuum quantifier” behaves. This he does by using a

complete version of his chosen background theory - specifically, the theory of some model of his

theory of formal structure - to determine facts about the behavior of logical operators and the

laws governing them, and an incomplete axiomatization to derive whatever knowledge he can

have of those facts. Truth is anchored in a complete (if inaccessible) theory of formal structure,

knowledge - in an effectively axiomatized, hence accessible (if incomplete) version of that

theory. The facts are as they are, but knowledge is in principle limited. 



18

B. Explanation of logic’s role in knowledge and its place in our system of knowledge.

The formalist account of logic enables us to explain the role played by logic in our system of

knowledge (and to the extent that this explanation is compelling, it is also supported by it).

According to this explanation logic plays a dual role in knowledge: first, it sets general

constraints on what counts as knowledge, and second, it creates useful tools for expanding and

correcting our knowledge. Let us consider the latter first:

Expansion of knowledge. Being finite and relatively short-living creatures, we cannot

hope to establish all our knowledge directly but have to resort to such indirect means as

inference to obtain a considerable portion of our knowledge. In inference we use our knowledge

of the relations between objects or situations plus some knowledge of these objects or situations

to obtain new knowledge which, as inferred knowledge, does not require independent

verification. For example, if we have knowledge about the chemical constitution of objects and

the relations between chemical structures, we can use this knowledge to obtain new knowledge

about objects. But while chemical laws enable us to expand our knowledge in a small number of

areas, formal laws enable us to expand it in all areas. Given that formal features of objects are

constantly referred to in all discourse - one cannot talk about anything without saying that certain

objects are in the complement or intersection of certain properties, that certain properties are

non-empty, or universal, or have κ objects falling under them, etc. - we can use our knowledge of

these features to develop a wholesale method of expanding our knowledge. Logic, on this

conception, utilizes our knowledge of the formal behavior of objects to formulate rules of

inference that sanction our movement from what we know to what (prior to this movement) we

did not know. Knowledge of some formal laws may be more useful for expanding our overall

knowledge than knowledge of others, so it might be useful to build limited logical systems

geared to those features. But in principle logic can provide us with rules for expanding our

knowledge based on any laws governing the formal behavior of objects.

Constraints on knowledge. Due to the prevalence of formal features of objects and our
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constant reference to such features in discourse and theorizing, the threat of formal errors in our

system of knowledge looms large. But due to the fact that the formal does not distinguish

between different domains of knowledge, it is possible to take care of such errors in “one fell

swoop”, so to speak, i.e., in a way that protects all (or most) fields of knowledge at once. This

opportunity is seized by logic. Logic builds into our language rules that prevent us from making

errors pertaining to the (law-governed) formal behavior of objects in any area. For example, by

telling us that statements of the form “Φa & ~Φa” are false (or that a combination of statements

of the form “Φa” and “-Φa” is inconsistent) logic prevents us from making certain errors

concerning the behavior of objects under the complementarity operation (in any field). By telling

us that inferences of the form “(œx)(›y)Φxy; therefore (›y)(œx)Φxy” are invalid, logic prevents

us from assuming certain symmetries exist where they do not. And so on.

C. Solution to Tarski’s problem. In his 1936 paper, “On the Concept of Logical

Consequence”, Tarski sought a definition of “logical consequence” that would satisfy two

intuitive constraints: 

Certain considerations of an intuitive nature will form our starting-point. Consider
any class K of sentences and a sentence X which follows from the sentences of
this class. From an intuitive standpoint it can never happen that both the class K
consists only of true sentences and the sentence X is false. Moreover, since we are
concerned here with the concept of logical, i.e., formal, consequence, and thus
with a relation which is to be uniquely determined by the form of the sentences
between which it holds, this relation cannot be influenced in any way by
empirical knowledge, and in particular by knowledge of the objects to which the
sentence X or the sentences of the class K refer. The consequence relation cannot
be affected by replacing the designations of the objects referred to in these
sentences by the designations of any other objects. The two circumstances just
indicated, ... seem to be very characteristic and essential for the proper concept of
consequence. [Tarski 1936: 414-5]

Based on these considerations Tarski formulated his semantic definition of “logical

consequence”:

The sentence X follows logically from the sentences of the class K if and only if
every model of the class K is also a model of the sentence X. [Ibid.: 417]
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Is this an adequate definition? Does it satisfy the intuitive constraints? At

first Tarski gave a positive answer: 

It seems to me that everyone who understands the content of the above definition
must admit that it agrees quite well with common usage. This becomes still
clearer from its various consequences. In particular, it can be proved, on the basis
of this definition, that every consequence of true sentences must be true, and also
that the consequence relation which holds between given sentences is completely
independent of the sense of the extra-logical constants which occur in these
sentences. [Ibid.]

But soon he qualified his answer:

I am not at all of the opinion that in the result of the above discussion the problem
of a materially adequate definition of the concept of consequence has been
completely solved. On the contrary, I still see several open questions, ... one of
which - perhaps the most important - I shall point out here. [Ibid.: 418]

This question was the demarcation of logical constants: 

Underlying our whole construction is the division of all terms of the language
discussed into logical and extra-logical. This division is certainly not quite
arbitrary. If, for example, we were to include among the extra-logical signs the
implication sign, or the universal quantifier, then our definition of the concept of
consequence would lead to results which obviously contradict ordinary usage. On
the other hand, no objective grounds are known to me which permit us to draw a
sharp boundary between the two groups of terms. It seems to be possible to
include among logical terms some which are usually regarded by logicians as
extra-logical without running into consequences which stand in sharp contrast to
ordinary usage. [Ibid.: 418-9]

These qualifications led Tarski to conclude his paper on a sceptical note:

Further research will doubtless greatly clarify the problem which interests us.
Perhaps it will be possible to find important objective arguments which will
enable us to justify the traditional boundary between logical and extra-logical
expressions. But I also consider it to be quite possible that investigations will
bring no positive results in this direction, so that we shall be compelled to regard
such concept as ‘logical consequence’ and ... ‘tautology’ as relative concepts
which must, on each occasion, be related to a definite, although in greater or less
degree arbitrary, division of terms into logical and extra-logical. [Ibid.: 420]

The Invariance-under-Isomorphism criterion offers a positive solution to Tarski’s
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problem. It offers a demarcation of logical operators under which Tarski’s definition of logical

consequence can be shown to satisfy the intuitive constraints. To see how, consider the

following:

1. Tarski set two intuitive constraints on an adequate definition of logical consequence: 

(C1) Necessity: When X follows logically from K, X follows necessarily from K.
(C2) Formality: When X follows logically from K, X follows formally from K. 

2. Regardless of what Tarski himself understood by necessity, if we show that his definition
satisfies a robust standard of necessity, we will have shown that it satisfies whatever
weaker standard he might have had in mind.

3. Formality can be interpreted both syntactically and semantically. Philosophers often
think of formality syntactically, but the key to vindicating Tarski’s definition is to think
of it semantically. 

4. Tarski himself offers the key to a semantic interpretation of formality:

[As a formal relation, logical consequence] cannot be influenced in any
way by ... knowledge of the objects to which the sentence X or the
sentences of the class K refer. The consequence relation cannot be affected
by replacing the designations of the objects referred to in these sentences
by the designations of any other objects. [Ibid.: 414-5, cited above]

5. This paragraph suggests that the formal is characterized by its inability to distinguish the
identity of objects in a given universe of discourse. This is an invariance characterization:
formal relations are invariant under replacements of objects. Now, if we interpret
“replacement” as “1-1 and onto transformation or mapping”, and “replacement of
objects” as “replacement of objects of all types induced by replacement of the individuals
in a given universe of discourse”, then we get the Invariance-under-Isomorphism
criterion of logicality.

6. Under this criterion all logical operators are derivable from mathematical operators by
raising them to a higher order (as we have seen in Section II), and in this sense they are
essentially mathematical.

7. But the laws governing mathematical operators are intuitively formal and necessary
(where this necessity is an especially strong kind of necessity, stronger than biological,
physical, and even metaphysical necessity). Therefore, if logical consequence is due to
the formal (or mathematical) laws governing the logical operators, logical consequences
are formal and (strongly) necessary.
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15 In defending the adequacy of Tarski’s definition it may seem that we have to confront
Etchemendy’s 1990 challenge to it, but in fact we don’t. Etchemendy considers two conceptions
of logic: the so-called representational and interpretational conceptions. But the formalist
conception of logic offered here (and in Sher 1991) falls under neither category. Since
Etchemendy’s criticisms center on features of those conceptions that are not shared by the
present conception, his criticisms do not concern us here. This includes his claim that the
problem of logical constants is a “red herring”. Etchemendy regards the problem of logical
constants as a red herring not because he thinks logical constants do not pose a genuine problem
to Tarski’s definition, but because he thinks that Tarski’s definition is plagued by other problems
as well and merely solving the logical constants problem will not by itself establish its adequacy.
However, the additional problems Etchemendy alludes to are specific to the interpretational
construal of logic and do not arise on the formalist construal. Therefore, on that construal the
problem of logical constants, far from being a “red herring”, is the main obstacle to the adequacy
of Tarski’s definition. For a fuller critique of Etchemendy’s (1990) see Sher (1996a). 

8. Now, on a formalist reading Tarski’s definition does satisfy the antecedent of this
conditional. The totality of models represents the totality of formal possibilities; logical
consequences preserve truth across all models; they do so due to the logical structure of
the sentences involved; this logical structure reflects the formal skeleton of the situations
described by those sentences; therefore the preservation of truth is due to connections
that hold between the formal skeletons of the situations involved in all formal
possibilities; and formal connections persisting through the totality of formal possibilities
are laws of formal structure. It follows that consequences satisfying Tarski’s definition
are formal and necessary, as required by the intuitive constraints (however strong the
necessity constraint is taken to be).15 

D. Explanation of the distinctive characteristics of logic. Logic is often characterized by

its basicness, generality, topic-neutrality, necessity, formality, strong normative force, certainty,

a-priority, and/or analyticity. While, as foundational holists, we reject the purported analyticity

of logic and qualify its a-priority, we can explain its other characteristics (including quasi-

apriority) based on the Invariance-under-Isomorphism criterion, i.e., explain why the laws of

logic and its consequences are as basic, general, topic-neutral, formal, strongly normative, and

highly certain as they appear to us to be, and to what degree they are a-priori. 

We have already seen how the Invariance-under-Isomorphism criterion, either alone or

together with other elements of the formalist account, explains the formality, generality, topic-

neutrality, and necessity of logic. Let us, then, turn to the other characteristics.  
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Basicness and strong normative force. Logic is intuitively more basic than other

disciplines. The grounding of geography, biology, and chemistry involves establishing their

logical consistency, i.e., establishing that their laws obey the laws of logic, but the grounding of

logic does not involve establishing that its laws obey the laws of geography, biology, and

chemistry. This gap is related to a gap in the normative force of logic and other disciplines.

Chemistry, biology and geography have to attend to the strictures of logic, but logic need not

attend to their strictures. Logic has normative authority over these disciplines, but not vice versa.

The invariance-under-Isomorphism criterion explains why this is so: Since chemical properties

are not preserved under isomorphisms, logic has a stronger invariance property than chemistry.

As a result, logic does not distinguish chemical differences between objects and is not subject to

the laws governing chemical properties. But chemistry does distinguish formal differences

between objects; for example, it distinguishes between one atom and two atoms. So chemistry is

subject to the laws of formal structure. For example, chemistry is bound by the law 

(›!2x)Φe-(›!3x)Φ, 

as in 

(›!2x) x is a Hydrogen atom in water molecule w e-(›!3x) x is a Hydrogen atom in w. 

And the same holds for most other disciplines. (The case of mathematics will be discussed

separately below.) 

Certainty and quasi-apriority. Logic has a relatively high degree of certainty, not in the

sense that we are less likely to make errors in applying the logical laws than other laws, but in

the sense that the logical laws themselves are unlikely to be refuted by our empirical discoveries.

The Invariance-under-Isomorphism criterion explains why logic is immune to refutation in this

sense. Since most of our empirical discoveries do not concern the formal regularities in the

behavior of objects - i.e., regularities governing features of objects that are invariant under

isomorphism - logic is not affected by most of these discoveries, and in this sense it is resistant

to refutation and, furthermore, a-priori-like. Now, if formal laws were completely immune to
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discoveries having any empirical element, then logic would be strictly a-priori. But holism

allows a certain degree of interconnection between all disciplines, hence on the holistic approach

logic is only quasi-a-priori. What kind of empirical discoveries could affect logic? Empirical

discoveries affect logic only in very rare cases, and therefore we have no ready examples, but

one challenge to classical logic did come from physics (Birkhoff and von-Neumann 1936), and

by extrapolating from it we could arrive at a possible scenario in which empirical discoveries

would affect logic. Suppose we discover that in some region of reality (e.g., the quantum region)

objects or states behave in a way that is radically different from what we have observed

elsewhere, and we have good reasons to believe that it concerns the basic formal behavior of

objects (states, properties). For example, suppose we have good reasons to believe that their

behavior is deeply non-Boolean. Then this discovery would pose serious questions to classical

logic.

E. Explanation of the relation between logic and mathematics. Ever since Frege, logic

and mathematics have been treated as closely related disciplines whose relation requires an

explanation. And one of the least noted, but methodologically most important achievements, of

Frege’s logicism was the enormous economy it brought to the philosophical tasks of explaining

the nature of logic and mathematics and providing them with a foundation. By reducing

mathematics to logic, logicism reduced two mysteries to one. Instead of having to explain both

the nature of logic and the nature of mathematics we now had to explain only the nature of logic;

and instead of the monumental task of constructing both a foundation for logic and a foundation

for mathematics, we had the more manageable task of constructing a foundation only for logic.

However, the search for a foundation for logic (independently of mathematics) led to nowhere.

The most influential attempt to construct an account of logic that would complement logicism -

Carnap’s conventionalism - has by and large been discarded, and this, together with the almost

unanimous rejection of logicism itself, has left us, once again, with the extremely difficult task of

providing an explanatory account and a foundation both for logic and for mathematics. 
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The formalist account of logic, with its Invariance-under-Isomorphism criterion of

logicality, offers an explanation of the relation between logic and mathematics that has the same

methodological advantage as Frege’s explanation without having its shortcomings. Like Frege’s

account, it reduces the two fields to one, hence the two foundational tasks to one. But this time it

is logic that is reduced to mathematics rather than mathematics to logic. Or, alternatively, both

logic and mathematics are reduced to the formal. Mathematics, in this account, builds a theory of

formal structure, and logic provides a method of inference based on this theory. I will call the

new approach “mathematicism”. If logicism is the view that mathematics has a logical

foundation, mathematicism is the view that logic has a mathematical foundation. But there is a

considerable methodological advantage to mathematicism over logicism. While today we have

no promising foundational account of logic not centered on mathematics, we do have a number

of promising foundational accounts of mathematics not centered on logic; for example, the

Platonist account, the naturalist account, and the structuralist account. It is true that these

accounts assume logic in the background, but since mathematicism seeks to give a holistic

foundation for logic, this does not pose a special difficulty. Logic does not stand at the center of

any of these accounts, therefore the circularity involved is (at least prima facie) not vicious.

But the current situation is even more felicitous. Not only are several accounts of

mathematics compatible with logical formalism, one of these accounts, the structuralist account,

is very close to it in spirit. This is reflected in the fact that mathematical structuralism and logical

formalism share the same identity criterion: invariance under isomorphism. Invariance under

isomorphism is the identity criterion of logical operators according to logical formalism, and it is

also the identity criterion, or at least an identity-criterion of choice, of mathematical structures

according to mathematical structuralism. Thus, Shapiro says:

No matter how it is to be articulated, structuralism depends on a notion of two
systems that exemplify the “same” structure. That is its point. ... [W]e ... need to
articulate a relation among systems that amounts to “have the same structure”.

There are several relations that will do for this. ... The first is isomorphism, a
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16 My misgivings about “structuralism” is that there are many kinds of structure, not all
mathematical or logical (for example, physical or biological structures which are not preserved
under isomorphisms). To distinguish mathematical and logical structures from other structures I
call them “formal”. But “formalism” has unwanted connotations of its own, namely, Hilbertian 
formalism. Once we make clear, however, that our use of “formal” is semantic, this association
should dissolve. In Sher (2001) I used “formal-structural” for the formalist account of logic so as
to signal both its affinity to the structuralist account of mathematics and its difference from
Hilbert’s formalism. 

common (and respectable) mathematical notion. ... Informally, it is sometimes
said that isomorphism “preserves structure”. [Shapiro 1997: 90-1, my underline]

A purported implicit definition characterizes at most one structure if it is
categorical - if any two models of it are isomorphic to each other. [Ibid.: 13, my
underline]

Because isomorphism ... [is an] equivalence relation... one can informally take a
structure to be an isomorphism type. [Ibid.: 92, my underline]

Indeed, it would be just as appropriate to call our account of logic “logical structuralism” as to

call it “logical formalism” (and to call the structuralist account of mathematics “mathematical

formalism” as to call it “mathematical structuralism”).16 

Furthermore, we can achieve the same methodological goal without reducing either

discipline to the other, namely, by tracing both mathematics and logic to the same root, i.e., the

formal (structural). Analytically, logic and mathematics develop in tandem from a basic

engagement with the formal (the structural). We can represent their joint development along

something like the following lines: In stage 1, we develop a rudimentary logic-mathematics

which studies some very basic formal operators, say complementation, union, intersection, and

inclusion. Based on this knowledge we develop, in stage 2, a logical framework for theories in

general, and using it we develop a more sophisticated mathematical theory of formal structure

(say, naive set theory). Based on this theory we develop, in stage 3, a more sophisticated logical

framework, say the logical framework of standard 1st-order logic with its standard logical

operators (›, œ, =, and the truth-functional connectives). And using this framework we develop,

in stage 4, a more advanced mathematical theory of formal structure (say, axiomatic set theory).
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In stage 5 we use this advanced theory to develop a criterion of logicality (for example, the

Invariance-under-Isomorphism criterion) and a semantic definition of logical consequence (for

example, Tarski’s model-theoretic definition), and based on these, an expanded logical

framework - say, so-called generalized 1st-order logic (or standard 2nd-order logic). And this

process may continue: using this enriched logic we may arrive at a still more powerful

mathematics and, based on it, perhaps a stronger logic. And so on. 

To deal with the formal in logic and in mathematics we operate on different levels. In

mathematics we construe the formal as (for the most part) lower-order, in logic we construe it as

(for the most part) higher-order. Take, for example, the notion of number or the notions of union,

intersection, and complementation. In axiomatic arithmetic numbers are individuals, but the

numerical quantifiers are operators on properties; in axiomatic set-theory union, intersection, and

complementation are operations on individuals, but in logic they are operators on properties (or

propositions). As studied in mathematics, these notions do not satisfy the Invariance-under-

Isomorphism criterion, but as studied in logic they do. And the same holds for other formal

notions: for example, the membership relation of axiomatic set theory is not logical, but the

membership relation of higher-order logic is. (A more nuanced version of this account would say

that the mathematician treats some mathematical concepts as non-logical and others as logical.

The number theorist, for example, treats numbers as non-logical entities, but the background

mathematical concepts he uses to talk, and formulate questions, about numbers - e.g., the concept

of set-membership - as logical.) 

Tarski’s take on the philosophical ramifications of the new logicality criterion for the

relation between logic and mathematics is different from mine:

The question is often asked whether mathematics is a part of logic. Here we are
interested in only one aspect of this problem, whether mathematical notions are
logical notions, and not, for example, in whether mathematical truths are logical
truths, which is outside our domain of discussion. Since it is now well known that
the whole of mathematics can be constructed within set theory, or the theory of
classes, the problem reduces to the following one: Are set-theoretical notions
logical notions or not? Again, since it is known that all usual set-theoretical
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notions can be defined in terms of one, the notion of belonging, or the
membership relation, the final form of our question is whether the membership
relation is a logical one in the sense of my suggestion. The answer will seem
disappointing. For we can develop set theory, the theory of the membership
relation, in such a way that the answer to this question is affirmative, or we can
proceed in such a say that the answer is negative. So the answer is: ‘As you
wish!’. [Tarski 1966: 151-2] 

In my view, the new logicality criterion leads to a more intricate and interesting answer

to this question. It suggests that there is a division of labor between logic and mathematics, one

that leads to different practices in the two disciplines. Logic and mathematics approach the

formal from two different, though complementary, perspectives, and therein lie both their

similarities and their differences. Mathematics seeks to discover formal laws, logic seeks to

implement them; mathematics is interested in the formal as it concerns objects, logic is interested

in the formal as it concerns thought or language. And our cognitive capacities are such that

discovery is best systematized in terms of individual and their properties, implementation - in

terms of properties and relations and especially in terms of properties and relations of properties

and relations. The formal is differently represented in logic and in mathematics, but at bottom it

is the same in both. (For additional points and a slightly different perspective, see Sher 1991,

Chs 3 and 6.) 

F. Tools for justifying logic’s claims and detecting its errors. By using mathematical

truth as a basis for logical truth, we are licensed to use mathematics, and indirectly, the tools

used to justify it and detect its errors, as a tool for justifying and detecting errors in logic. For

example, to the extent mathematical or rational intuition is a tool for justifying mathematical

assertions, it is also a tool for justifying the supervening logical assertions. Or to the extent that

sometimes (if rarely) physical discoveries have formal ramifications, they can be used to

corroborate or throw doubt on logical assertions. Or to the extent that a new claim, or an old

conjecture, is proved in mathematics, we can use it to justify a logical rule of proof or a logical

inference. For example, the newly discovered proof of Fermat’s Last Theorem justifies all the

hitherto unjustified logical rules of inference of the form:  
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17 This epithet is due to Barwise (1985) who made similar points to those I am about to
make.

(›!knx)Φ, (›!lnx)Ψ, (œx)(Φ/-Ψ); therefore -(›!mnx)(ΦwΨ),

where n>2 and k,l,m>0. Or if we find compelling reasons for including the Continuum

Hypothesis or its negation in our theory of formal structure, we can use them to justify either the

logical inference

Φ(1xא!‹) Φ; therefore(0xא2!‹)

or the logical inference 

.Φ(1xא!‹)- Φ; therefore(0xא2!‹)

And so on.

These are some of the foundational advantages of the Invariance-under-Isomorphism

criterion and the formalist theory of logic within which it is offered.  

It should be noted that the Invariance-under-Isomorphism criterion also contributes to a

critical approach to the philosophy of logic. The prevalent philosophy of logic today adheres to

the so-called “first-order thesis”17 which says that standard first-order logic is the whole of

logic. Very few systematic or theoretical grounds have been adduced in support of this thesis,

and for the most part it has been accepted without serious argument. The Invariance-under-

Isomorphism criterion challenges this thesis on several grounds. For one thing, it challenges one

of the few theoretical arguments used to support it, namely, the argument from completeness

(Quine 1970). Investigations connected with this criterion (e.g., Keisler 1970) have proved that

standard 1st-order logic is definitely not the strongest (extensional) logic which has the virtue of

being complete; stronger 1st-order logics - for example, 1st-order logic with the added logical

quantifier “there are uncountably many” - are also complete. More importantly, the Invariance-

under-Isomorphism criterion demonstrates that a systematic, theoretical, philosophically

anchored, highly explanatory, mathematically rich, and linguistically fruitful criterion of

logicality is possible. In so doing it sets a new, higher standard of justification for theses
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18 And we also need two related alethic predicates, “satisfaction” and “truth” - the former
applying to open formulas whose operators, if any, are all objectual, and whose definition
accordingly refers to objectual structures; the latter applying to closed formulas (sentences)
whose new operators (i.e., those added to the operators of their open sub-formulas), if any, are
all propositional, and whose definition accordingly refers to propositional structures. 

concerning the scope of logic, a standard that, as far as I can judge, has not been met by any of

the known justifications of the first-order thesis.   

Our final task before turning to Feferman’s criticisms is to show how the Invariance-

under-Isomorphism criterion for objectual logical operators relates to the Boolean, truth-

functional criterion for propositional logical operators (logical connectives). 

Invariance-under-Isomorphism and Truth-Functionality. In making statements we

usually work with two types of structures - objectual structures and propositional structures, and

we use two types of operators - objectual operators and propositional operators. Thus, in making

a statement of the form 

-(›x)(Bx & -Cx)

we first consider an objectual structure with two properties, B and C; then, working with the

objectual operator - (the objectual correlate of the propositional operator -, namely,

complementation), we focus our attention on B and the complement of C; next, working with the

objectual operator & (1) we shift our attention to the intersection of B and the complement of C;

then, working with the objectual operator ›, we consider the possibility that this intersection is

not empty; and finally, thinking in propositional terms and using the propositional operator -, we

say that this possibility is not realized: nothing is both a B and a non-C.    

Now, if we commonly use operators of two types, objectual and propositional, each

defined in terms of the corresponding structure, then we need two (albeit coordinated) criteria of

logicality, each formulated in terms of the relevant structure.18 Invariance-under-Isomorphism is

a criterion of logicality for objectual operators, and Truth-Functionality is a criterion of

logicality for propositional operators. How are they connected? The formalist answer is that the
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same idea - formality - lies at the bottom of both criteria, and the same technical device -

invariance under “isomorphism” - is used in both, but with respect to different structures:

(I) An objectual operator is logical iff it is invariant under all isomorphisms of its argument-
structures, which are objectual.

(II) A propositional operator is logical iff  it is invariant under all isomorphisms* of its
argument-structures, which are propositional.

What is an isomorphism* of propositional structures? When are two propositional

structures formally the same? Well, formality in the domain of propositions is, on the classical

approach (tentatively adopted here) preservation of Boolean structure. And the Boolean features

of propositional structures are a generalization of the Boolean features of objectual structures.

The basic parameter in this generalization is binary structure or complementarity, which is

common to both objectual and propositional structures, and we can arrive from the objectual

form of this parameter to its propositional form in three steps that, in the simplest case, can be

described as follows: 

(i) Objectual step: 

Given an object a in a universe A and a set of objects or a property B in A, there are 
exactly two possibilities with respect to a, exactly one of which is realized: a is a B, a is
a⎯B (complement of B in A), the latter being equivalent to: a is not a B (in A).

 
(ii) Situational step:

Given the situation s in which a is a B (in A), there are exactly two possibilities with
respect to s, exactly one of which is realized: s is the case, s is not the case (not-being-
the-case being the complement of being-the-case).

(iii) Propositional step:  

Given a proposition p corresponding to s, there are exactly two possibilities with respect
to p, exactly one of which is realized: p is true, p is false (false being the complement of
true).

These steps connect objectual structures to propositional structures and form a bond

between the logicality criterion of objectual operators and the logicality criterion of propositional
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19 There are of course more familiar ways to construe isomorphism*; for example, using
structures whose distinguished elements are truth-values. But I was looking for a construal that
would be philosophically transparent, regardless of its familiarity or elegance.

operators: an operator, objectual or propositional, is logical iff it does not distinguishes the non-

formal features of its argument-structures. Since the generalization from objectual to

propositional structures is such that the only formal feature of a proposition is its binary value

(truth or falsity), a propositional operator is logical iff it is invariance under 1-1 mappings of

propositions which transfer each proposition into a proposition with the same binary value (i.e.,

its truth value).  

Technically, we can define:

(a) A propositional structure is as an n+1-tuple <P,p1,...,pn>, where P is the set of all
propositions of a given language and p1,...pn are elements of P.

(b) An argument-structures for a k-place propositional operator is a propositional structure
of length k+1.) 

(c) Two propositional structures <P,p1,...,pn> and <P,p’1,...,p’m> are isomorphic* iff n=m and
there is a truth-bijection from P to P, i.e., a 1-1 truth-preserving function f from P to P
such that for every 1#i#n, p’i is the image of pi under f. 

Truth-functionality is thus (classical) formality on the propositional level.19

We are now ready to consider Feferman’s criticisms.

IV. Feferman’s Criticisms  

The Invariance-under-Isomorphism criterion is a substantive criterion, and as such it

invites substantive criticisms. In “Logic, Logics and Logicism” (1999), Solomon Feferman

offers three substantive criticisms of the claim that this criterion is a necessary and sufficient

criterion of logicality (referred to as “the Tarski-Sher thesis”). Feferman formulates the criterion

(in terms sanctioned by a certain definability result due to McGee 1996) as follows: 

An operation O across domains is a logical operation according to the Tarski-Sher thesis 
if and only if for each cardinal κ…0 there is a formula φκ of ‹4,4 which describes the
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action of O on domains of cardinality κ. [Feferman 1999: 37]

Here, however, I will continue to employ our earlier terminology in discussing his criticisms. 

Feferman criticizes the Tarski-Sher thesis on three counts:  

1. “The thesis assimilates logic to mathematics, more specifically to set theory” (ibid., my
italics).

Elaboration: 

The first [point], I think, speaks for itself, ... but it will evidently depend on one’s
gut feelings about the nature of logic as to whether this is considered reasonable
or not. For Sher, to take one example, this is no problem. Indeed, she avers that
“the bounds of logic, on my view, are the bounds of mathematical reasoning. Any
higher-order mathematical predicate or relation can function as a logical term,
provided it is introduced in the right way into the syntactic-semantic apparatus of
first order logic.” ([Sher 1991], pp. xii-xiii) What that “right way” is for her is
spelled out in a series of syntactic/semantic conditions ... ([ibid.], pp. 54-55) ... .
[Although these conditions restrict us to] logical operation[s] ... of type-level at
most 2 ... [this] is not set-theoretically restrictive. ... In particular, we can express
the Continuum Hypothesis and many other substantial mathematical propositions
as logically determinate statements on the Tarski-Sher thesis. ... But in so far as ...
the thesis requires the existence of set theoretical entities of a special kind, or at
least of their determinate properties, it is evident that we have thereby
transcended logic as the arena of universal notions independent of “what there is”.
[Feferman 1999: 37-8]

2. “The set-theoretical notions involved in explaining the semantics [of the background
language] are not robust” (ibid.: 37, my italics).

Elaboration:

Point 2 is in a way subsidiary to point 1. The notion of “robustness” for set-
theoretical concepts is vague, but the idea is that if logical notions are at all to be
explicated set-theoretically, they should have the same meaning independent of
the exact extent of the set-theoretical universe. For example, they should give
equivalent results in the constructible sets and in forcing-generic extensions.
Gödel’s well-known concept of absoluteness provides a necessary criterion for
such notions and, when applied to [the kind of operators considered by the Tarski-
Sher thesis] considerably restricts those that meet this test. For example, the
quantifier “there exist uncountably many x” would not be logical according to this
restriction, since the property of being countable is not absolute. [Ibid.: 38] 

Feferman, however, qualifies his support of the absoluteness criterion somewhat:
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One should be aware that the notion of absoluteness is itself relative and is
sensitive to a background set theory, hence again to the question of what entities
exist. [Ibid.]

3. “No natural explanation is given by [the Tarski-Sher Thesis] of what constitutes the same
logical operation over arbitrary basic domains” (ibid.: 37, my italics).  

Elaboration:

It seems to me there is a sense in which the usual operations of the first-order
predicate calculus have the same meaning independent of the domain of
individuals over which they are applied. This characteristic is not captured by
invariance under bijections. As McGee puts it “The Tarski-Sher thesis does not
require that there be any connections among the ways a logical operation acts on
domains of different sizes. Thus, it would permit a logical connective which acts
like disjunction when the size of the domain is an even successor cardinal, like
conjunction when the size of the domain is an odd successor cardinal, and like a
biconditional at limits” ([McGee 1996], p. 577). [Feferman 1999: 38]

For Feferman, this point is more compelling than the other two: 

For me, point 3 is perhaps the strongest reason for rejecting the Tarski-Sher
thesis, at least as it stands [Ibid.]

But his objection concerns only the sufficiency part of the Tarski-Sher thesis: 

I agree completely [that] the Tarski-Sher thesis [is] a necessary condition for an
operation to count as logical. [Ibid., inversed sentence structure] 

Still, it is a clear and strong criticism: 

I ... believe that if there is to be an explication of the notion of a logical operation
in semantic terms, it has to be one which shows how the way an operation
behaves when applied over one domain M0 connects naturally with how it
behaves over any other domain M’0. [Ibid.: 38-9]

As “a first step in that direction” Feferman proposes a revision of the Invariance-under-

Isomorphism criterion. The revision consists in replacing “Isomorphism” by “Homomorphism”,

the resulting concept of logical operation being that of a “homomorphism invariant operation”

(ibid.:39). I will examine Feferman’s proposal in Section VI below, but first let me consider his

criticisms.
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20 The ellipses and square-bracket formulations are partly intended to neutralize Tarski’s
tendency to identify the impact of the Invariance-under-Isomorphism/Permutation criterion on

V. Consideration of Feferman’s Criticisms

I will begin by putting Feferman’s criticisms in a proper perspective. There are a few

significant points of similarity between Feferman’s approach to the issues in question and mine

(I prefer not to speculate about Tarski). First, Feferman does not question either the need for a

criterion of logicality or the appropriateness of the semantic method for such a criterion. Second,

Feferman regards the issue of logicality as a foundational issue, and is not averse to the pursuit

of foundational studies. (On the contrary; Feferman has been extensively engaged in important

foundational work, two examples of which are Feferman 1993a and Feferman & Hellman 2000.)

Furthermore, Feferman’s approach is neither logicist nor Platonist, conventionalist, intuitionist,

or indispensabilist, but he is seeking a new approach to the foundations of logic and

mathematics. (See, e.g., Feferman 1984, 1993a, and 1993b.) Finally, Feferman, as noted above,

accepts the Invariance-under-Isomorphism criterion, as it stands, as a necessary condition on

logicality, and his own proposal for a sufficient condition involves only a limited revision of that

criterion. In light of these observations, I think it is reasonable to view Feferman’s criticism as a

restricted, internal criticism, rather than a full-scale external criticism. Nevertheless, this is a

veritable criticism that requires careful consideration.  

1. Assimilation of logic to mathematics. A disagreement between a mathematician and a

philosopher on the relation between logic and mathematics, such as that between Feferman and

myself, was anticipated by Tarski: 

[T]he two possible answers [to the question whether mathematics is separate from
logic] correspond to two different types of mind. A monistic conception of logic,
set theory, and mathematics ... appeals, I think, to a fundamental tendency of
modern philosophers. Mathematicians, on the other hand, would be disappointed
to hear that mathematics, which they consider the highest discipline in the world,
is a part of something so trivial as logic; and they therefore prefer a development
of set theory in which set-theoretical notions are not logical notions. [Tarski 1966:
153]20
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logic and mathematics with logicism. As pointed out in Sections II and III above, the new
criterion leads to the “mathematization” of logic rather than to the “logicization” of mathematics.
Although either way mathematics and logic are one, the direction of reduction is philosophically
significant: logicism attributes to mathematics the properties usually associated with logic, while
mathematicism attributes to logic the properties usually associated with mathematics. 

But I think there is more to Feferman’s position than a certain type of mind or a

reverential attitude toward mathematics. In my view (delineated in Sections II and III above),

mathematicians have a solid reason for regarding mathematics as dealing with non-logical

notions, namely: their task. Their task (or one of their main tasks) is to discover and systematize

the laws governing formal structures rather than apply these laws in discourse and reasoning.

And the natural way for humans to study the laws governing a certain kind of structure is to

construe these structures as structures of basic elements (of some kinds), i.e., in the case of

formal structures, as structures of elements that do not satisfy the Invariance-under-Isomorphism

criterion. But the two construals of formal objects do not conflict. To see this more clearly, let us

draw an analogy to the conception of numbers in mathematical structuralism. 

From the structuralist point of view there is no difference between studying the laws of

arithmetic by studying a certain system of numbers or the corresponding system of sets. But to

study the arithmetical laws the mathematician is best served by choosing some specific entities

to work with, be they numbers or sets. From the point of view of the working number theorist,

then, arithmetic is a theory of a specific kind of objects, but that does not conflict with the

philosophical claim, reached by abstraction and generalization, that numbers are mere places in

a structure, whose occupants’ identity is immaterial.    

In the case of formal operators, the notions mathematicians work with are, for the most

part, lower-order, non-logical notions, while the notions logicians work with are, for the most

part, logical notions, obtained from lower-order, non-logical, mathematical notions by “raising”

them to a higher-order. It is this raising that captures their nature as formal or structural

elements, and the laws governing them as laws of formal structure. Together, these two
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21An analogy with equivalence classes in mathematics might be helpful here. In some
cases a given idea is better expressed by an equivalence class than by any of its constituent
classes. But an equivalence class could not express this idea without its constituent classes,
which are generally not equivalence classes, exemplifying it. In that sense, there is a division of
labor between equivalence- and non-equivalence-classes in expressing that idea. This, indeed, is
a natural way to understand mathematical structuralism as well.

perspectives systematize our idea of formality.21

So we see that Feferman’s justified claim that there are significant differences between

logic and mathematics is in fact satisfied by the Invariance-under-Isomorphism criterion,

especially on the formalist interpretation I have given to it here and in Sher (1991).

Feferman’s criticism, however, raises other issues as well, some directly, others

indirectly. One issue it raises indirectly is the role of common-sense intuition, or “gut feelings”,

in determining the relation between logic and mathematics. On this issue, I am afraid, we are in

disagreement, since in my view the relation between logic and mathematics has very little to do

with gut feelings. It is true that in approaching this issue, and in various stages of pursuing it, we

use everyday intuition. But once we approach it as a theoretical issue, as we do when we

construct a rigorous criterion of logicality and develop a systematic account of logic to go with

it, the role of gut-feelings becomes very limited. In fact, Feferman himself regards foundational

studies as having a largely theoretical role: namely, “conceptual clarification; interpretation

[and] reduction ... of problematic concepts and principles; organizational ... foundations; and

reflective expansion of concepts and principles” (Feferman 1993b: 106). As such they are

entitled to results that conflicts with some of our “gut feelings”.

Since the Invariance-under-Isomorphism criterion, combined with the formalist account

of logic, offers an informative and systematic account of the concept of logical operator, solves

serious conceptual problems (e.g., with the definition of logical consequence), explains the

relation between logic and truth, elucidates the role of logic in our system of logic, critically

establishes many of the intuitive attributes of logic, and offers a substantive and

methodologically economical account of the relation between logic and mathematics, it should
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not be judged based on “gut feeling”. 

Another issue raised by Feferman’s criticism is ontological commitment. Feferman

upholds the traditional view that logic, unlike mathematics, should have no ontological

commitments. By assimilating logic to mathematics, he claims, the Invariance-under-

Isomorphism criterion burdens it with considerable ontic commitments. By this Feferman means

one of two things: (i) the fact that we resort to a set theoretical background language carries with

it ontological commitments to sets; (ii) the enormous expressive power of the logic sanctioned

by that criterion carries commitments to many ontologically-laden set theoretic theses. Clearly

(i) is common to standard 1st-order logic and the logic sanctioned by our criterion. So let us turn

to (ii). Consider the sentence:  

,x=x(x 1א!‹)/ x=x(x 0א2!‹)

This is a well-formed sentence of the logic sanctioned by the Invariance-under-Isomorphism

criterion, but for its truth-value in uncountable models to be determined, logic must be

committed either to the continuum hypothesis (CH) or to its negation (-CH). Does this saddle

logic with the same ontological commitments as those of mathematics?

To get a first inkling of the difference between logical and mathematical commitments,

consider the difference between the way the logical CH and the mathematical CH behave under

negation. (This is a theme known from comparisons of 1st- and 2nd-order CH; see, e.g., Shapiro

1991.) Let us call the mathematical statement expressing CH “CHM” and the logical statement

expressing CH “CHL”. Then, whereas -CH is captured by “-CHM”, it is not captured by

“-CHL”. “-CHM” can be added to set theory as an axiom without rendering set-theory

inconsistent. But “-CHL” cannot be a logical law, since logic - both standard logic and the logic

sanctioned by the Invariance-under-Isomorphism criterion - has countable models, and these

would prevent it from being true in all models. 

The main point is that while mathematics has direct ontological commitments, logic’s

ontological commitments are for the most part indirect. Aside from a few direct technical
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references.

commitments - for example, a commitment to the existence of at least one individual (given the

technical requirement that a model have a non-empty universe) - logic has only indirect

ontological commitments, namely, commitments through its background theory of formal

structure. And even these commitments are not existential in the usual sense; rather, they are

commitments to the formal possibility of existence. Thus, as an axiom within (mathematical) set

theory, Infinity says that an infinite set actually exists, but as a background axiom for logic, it

says that an infinite structure of objects is formally possible.22

2. Non-robust logical notions. Feferman notes that many of the logical operators

sanctioned by the Invariance-under-Isomorphism criterion are not “robust” and argues that only

“robust” operators should be classified as logical. The word “robust” can be interpreted in many

ways, but Feferman has a specific interpretation in mind: for an operator defined in set-

theoretical terms to be robust is to have “the same meaning independently of the exact extent of

the set-theoretical universe” (cited above). And this idea, Feferman suggests, is captured by the

set theoretical concept of “absoluteness”: to be robust is to be “absolute” (in the set-theoretic

sense). The set-theoretic concept of absoluteness was introduced by Gödel in the course of

proving the relative consistency of the Axiom of Choice and the Generalized Continuum

Hypothesis. His proofs involved the claim that in the “constructible universe”, L, V=L (i.e., L

exhausts the whole universe of sets). And to establish this claim Gödel used absoluteness results,

whose basic concept can be defined as follows: 

A formula Φ(x1,...xn) is absolute from a transitive class M to a transitive subclass
N iff œx1...xn [x1,..., xn 0N e(N BM / M BΦ)].

Gödel was especially interested in formulas which are absolute from V to L, and in particular, in

the fact that the operation of forming all the “constructible” (definable) subsets of a given set is

absolute from V to L. (See Gödel 1940 and discussion in Solovay 1990.) But the concept of
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23 See, e.g., Burgess (1977), Väänänen (1985), and Tourlakis (2003). 

absoluteness has been generalized in various ways, leading to many new applications.23

From the point of view of Feferman’s criticism of the Invariance-under-Isomorphism

criterion, the most relevant feature of the absoluteness requirement is that it does not allow

operators to change their meaning by expansion or contraction of a given universe. This

requirement renders “finite” an absolute operator but “uncountable” not. A subset of the universe

that satisfies “is finite” in a smaller model of set theory also satisfies it in a larger model (and

vice versa, assuming it is included in the smaller model), but a subset of the universe that

satisfies “is uncountable” in a small model (for example, a Löwenheim-Skolem model) does not

satisfy it in a standard model. Accordingly, the quantifier “finitely many” is absolute, but

“uncountably many” is not. But both quantifiers are logical according to the Invariance-under-

Isomorphism criterion. Therefore, this criterion must be rejected, or so Feferman says.

In responding to Feferman’s second criticism, I will first show that this criticism is

weaker than it may seem to be, and then I will question the relevance of absoluteness to

logicality. 

(A) First, it should be pointed out that Feferman’s criticism is directed at an artifact of a
particular background theory we use to formulate the Invariance-under-Isomorphism
criterion, but the idea underlying this criterion is not wedded to this, or any other
background theory. In particular, the conception of logicality as formality, and even the
conception of formality as invariance under 1-1 replacements of individuals, is not
inherently connected to a particular set-theoretical language for which the question of
“absoluteness” arises.

But even assuming this background language, Feferman’s criticism is weaker than it may
seem to be. Whereas in one sense the operator “uncountably many” changes it meaning
from universe to universe, in another, more relevant sense, it does not. Let me explain.
Clearly, as defined in a 1st-order set-theory - call it “T” - the predicate “x is uncountable”
is satisfied by some countable set (i.e., an individual b to which countably many
individuals a stand in the relation “x is a member of y”) in some model of T. But the
quantifier “there are uncountably many” is not satisfied by any countable set (a collection
of countably many individuals) in any model of a 1st-order logical system in which it



41

24I.e., countable from the point of view of T2.

serves as a logical quantifier. To see this, the reader has to know how such a logical
system is constructed, and this is something I have not discussed here. (A relevant
discussion appears Chapter 3 of Sher 1991.) But let me try to explain the general
principle underlying this claim briefly.

Consider the following: 

In a 1st-order set-theory, T1, we cannot see that the predicate “x is uncountable” (of T1) is
satisfied by a countable set in some model of T1. To see that it is, we have to go to
another theory, T2, which is at least as strong (in the relevant sense) as T1 and in which
we can truly say that the formula “x is uncountable” of T1 is satisfied by some countable24

set in some model of T1. Intuitively, from the point of view of T2 the T1-predicate “x is
uncountable” is not robust, but from the point of view of T1 it is.

Now, it is an essential feature of a logic L that the following are all done on the same
level of discourse, or within the same background theory - call it “T1”: (i) the definitions
of the logical constants of L, (ii) the definitions of the operators corresponding to them,
(iii) the definition of the models of L, (iv) the definition of “true in a model”, (v) the
definition of “countable” and “uncountable”, (vi) the definition of robustness, etc. From
the above considerations it follows that from the point of view of T1 the logical
quantifier “there are uncountably many” of L has a fixed meaning and as such is robust.
This is expressed by the fact that (from the point of view of T1) the Löwenheim-Skolem
theorem does not hold of L: “(For uncountably many x) x=x” has no countable models.
(Of course, from the point of view of yet another theory, T2, T1 itself may be subject to
the Löwenheim-Skolem theorem. But from the point of view of T2, “robustness” may
have a non-standard meaning as well, as Feferman noted.)   

(B) Absoluteness is an interesting and in certain respects a desirable property, but should we
restrict our concept of logicality to operators satisfying this property? To put things in
perspective, there are many interesting and desirable properties we don’t restrict our
concepts to. Take, for example, decidability. Decidability is an interesting and desirable
property of logics, yet we do not restrict ourselves to decidable logics. The price of
setting decidability as an upper boundary on our concept of logic is simply too high.
Clearly, sentential logic or even monadic standard 1st-order logic is too narrow to
exhaust our concept of logic or even to serve as a working logic for mathematics. Or
consider completeness. Completeness is a desirable property of theories. But we would
have to remove most of mathematics from the realm of axiomatized 1st-order theories if
we were to require that only complete axiomatizations be permitted in that realm. Saying
that generally only complete theories are genuine theories would be even more absurd.

The question arises whether the same does not hold for absoluteness. It clearly does in
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some cases. For example, we cannot restrict set theory to absolute concepts, since this
would involve omitting many of its most basic concepts, e.g., the concept of cardinality.
But does it hold in the case of logic?

Let us first see how the formalist conception of logic answers this question. From the
point of view of this conception, logic requires a background theory of formal structure,
and it is an open question what the best theory of formal structure is. In principle we are
looking for the most economical theory that is sufficiently strong to account for formal
structures in a comprehensive manner. Three increasingly economical candidates are
ZFC, ZFC+(V=L), and Feferman’s predicative system, but there are other candidates as
well, and the jury is still out on what the best available theory is. However, absoluteness
per se is not a reasonable constraint on a theory of formal structure, since a property is
absolute iff it is insensitive to a certain formal difference between universes (namely, the
difference between larger universes and smaller universes included in them). This means
that a theory that admits only absolute notions neglects some formal differences between
objects, and as such is not an acceptable theory of formal structure.

These considerations show that: (i) the fact that absoluteness is desirable for some
purposes does not mean that it is an appropriate for the purpose of constructing a
criterion of logicality; and (ii) to accept absoluteness as a constraint on logicality we need
to renounce the formalist conception of logic and the associated justification of our
criterion of logicality. I would be very interested to examine a philosophical conception
of logic that fits in with the absoluteness requirement and offers a foundational
justification of a concept of logicality satisfying it. As far as I know, none is available
yet. 

3. Operators with “non-uniform meaning”, “split identity”, or “unnatural behavior”.

Feferman’s main objection to the Invariance-under-Isomorphism criterion is that it sanctions

logical operators lacking a unified identity, or a natural connection between the way they behave

in different universes, or (when we consider the terms denoting them) the same meaning in

different universes. Such operators can behave one way over universes of cardinality κ and

another way over universes of cardinality λ(…κ). I.e., their meaning, or identity, depends on the

size of the universe, and there is no natural connection between the way they behave in universes

of size κ and universes of size λ. 

Before considering Feferman’s criticism, it would be instructive to note that his particular

example of such an operator is in fact not countenanced by my version of the “Tarski-Sher”

thesis. Feferman’s example is that of a propositional connective, O, “which acts like disjunction
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25 1. See Section III above.

   2. I should indicate that I had the opportunity to correct Feferman’s error when I
received a pre-publication copy of McGee (1966) from which this example is taken, but I failed
to do so, since in the context of McGee’s paper it seemed an insignificant point. In the present
context, however, it is more significant.  

26 This is not the only kind of operator that exhibits this phenomenon. In connection with
my claim that propositional connectives are not sensitive to the size of objectual universes, I
would like to clarify that some logical operators defined in terms of objectual functions
corresponding to the logical connectives (i.e., union, intersection, etc.) are sensitive to the size of
universes of individuals, but these operators themselves do not correspond to any propositional
connective. Thus, the functional operator F, defined, for an objectual universe A and subsets B
and C of A, by:

when the size of the domain is an even successor cardinal, like conjunction when the size of the

domain is an odd successor cardinal, and like a biconditional at limits” (cited above). I agree

with Feferman’s claim that O is not a proper logical operator, but not with his reason for

claiming so. Propositional connectives should not depend on the size of the universe (of

individuals) because this has nothing to do with truth-functionality. The problem with O, as I see

it, is that as a propositional operator it should not take into account universes of individuals at

all. And in my version of the logicality criterion propositional operators do not. Propositional

operators (connectives) are defined in terms of propositional rather than objectual structures, and

propositional structures have a universe of propositions rather than a universe of individuals.

Indeed, they take into account only one universe - the universe of all propositions. The operator

mentioned in Feferman’s example is therefore not logical according to my (version of the)

“Tarski-Sher” logicality criterion.25      

 But the phenomenon Feferman talks about is true of other operators satisfying this

criterion. Take the objectual operator Q defined by: Given a universe A and a subset B of A,
   

QA(B) = T iff either A is countable and B=A or A is uncountable and B is not empty.

Then Q behaves like œ in countable universes and like › in uncountable universes.26 Is the fact
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(i) FA(B,C) = B1C if A is countable;
(ii) FA(B,C) = BcC if A is uncountable

is a logical operator according to the Invariance-under-Isomorphism criterion, but it is not the
objectual equivalent of any propositional connective.  

that Q has this “split” identity a good reason for refusing to count it as a logical operator? In

answering this question I will make a few points: 

(A) To the extend that we refuse to count Q as a logical operator because it is an “unnatural”
operator, it should be noted that numerous unnatural objects (properties, relations,
functions) are widely accepted in other fields. Feferman himself (2000) brings numerous
examples of what he calls “monstrous” or “pathological” objects that are generally
accepted by mathematicians (he included).  

Indeed, even in standard logic there are many “unnatural” operators, including logical
operators of “split” identity or meaning, operators which do not seem “to have the same
meaning” or “be the same operators” in different settings. Two examples would suffice:

(a) A 132-place propositional connective, C, such that: 

(i) C behaves like a 132-place Conjunction in rows with 0-23 T’s,
(ii) C behaves like a 132-place Disjunction in rows with 24-79 T’s, and
(iii) C behaves like the Majority Connective in all other rows.

(b) A quantifier Q*, definable in standard 1st-order logic, such that:

(i) Q* behaves like “All” (œ) in universes of cardinality <101, 

(ii) Q* behaves like “Some” (›) in universes of cardinality 101-745, and 
(iii) Q* behaves like “None” (-›) in universes of all other cardinalities.

Intuitively, the identity (or meaning) of these operators is no less “split” than that of Q,
yet they are accepted as legitimate logical operators by most logicians and philosophers
(including Feferman, I am sure). Why, then, should we discriminate against Q? In what
way is Q less natural, or its identity or meaning more “split”, than those of C and Q*,
which we all accept as legitimate logical operators?

(B) My point is not that there is no value or interest in a specific concept of “natural
operator” (or “natural connection between an operator’s behavior in different universes”),
but such a concept has nothing much to do with our idea of logicality.  
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We may wish to distinguish “natural” logical operators from “unnatural” logical
operators or “natural” operators in general from “unnatural” operators in general, in the
same way that we may wish to distinguish “natural” functions from “unnatural” function
or “natural” relations in general from “unnatural” relations in general. But just as the
latter would not undermine, or force us to change, our criterion of a functionality (of a
relation being functional), so the former would not undermine, or force us to change, our
criterion of a logicality (of an operator being logical). 

We could impose on ourselves a “naturalness” constraint in choosing a logical system to
work with, but this would be a separate constraint from the “logicality” constraint we
would impose on such a system.

(C) Finally, there is a strong unity (or uniformity) to the concept of logical operator
delineated by the Invariance-under-Isomorphism criterion and a clear concept of same
logical operator associated with it. Both are generated by our interpretation of this
criterion as a criterion of formality: All and only formal operators are logical, and each
logical operator describes one way in which an operator takes into account some formal
features of a given situation. Thus all logical operators are unified in being formal, and a
logical operator is the same in different universes iff there is some formal pattern of
objects-having-properties-and-standing-in-relations-within-situations that its trajectory
through the different of universes represents. Since the size of the universe is a basic
formal feature of objectual situations, it is - and should be - a central parameter of some
objectual formal operators. 

VI. Feferman’s Criterion of Logicality. 

Feferman’s criterion of logicality is proposed “as a first step” in the “direction” of 

showing “how the way an operation behaves when applied over one domain M0 connects

naturally with how it behaves over any other domain M’0” (Feferman 1999: 38-9). It is obtained

from the Invariance-under-Isomorphism criterion by replacing “isomorphism” by

“homomorphism” (or what is sometimes called “strong homomorphism”), i.e., by replacing the

requirement that logical operators be invariant under any 1-1 and onto transformations of

structures by the requirement that they be invariant under any onto transformations of structures.

We can formulate Feferman’s criterion as follows:

Invariance under Homomorphism: An operator O is logical iff it is invariant
under all homomorphisms of its argument-structures,

where:
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(i) A structure, <A,β1,...,βn>, is homomorphic to a structure  <A’,β’1,...,β’k> iff n=k and there
is a surjection f from A to A’ such that for every 1#i#n, β’i is the image of βi under f,

  
(ii) An n-place operator O is invariant under all homomorphisms of its argument-

structures iff for any of its argument-structures, <A, β1,...,βn> and <A’,β’1,...,β’n>:
if <A,β1,...,βn> is homomorphic to  <A’,β’1,...,β’n>, then OA(β1,...,βn)=OA’(β’1,...,β’n).

The effects on the generality and formality of our concept of logicality are: (a) Since

every bijection is a surjection but not vice versa, there are more surjections than bijections, and 

Invariance-under-homomorphisms (surjections) is invariance under more transformations of

structures. As a result, the concept of logicality associated with the new criterion is more general

than that associated with the old criterion. All logical operators under the former are logical

under the latter, but not vice versa. The new criterion, however, does not render logic maximally

general (it does not require logical operators to be invariant under all transformations

whatsoever); therefore the concept of logicality associated with it cannot be fully explained or

justified in terms of generality. (b) Since surjections overlook the certain gaps in size between

their domain-universe and their range-universe (mapping larger universes into smaller ones),

invariance under surjections does not respect an important formal difference between structures,

namely, difference in size or cardinality. As a result, the new criterion leads to a concept of

logicality that parts ways with that of formality, making the explanation and justification of the

old criterion inaccessible to it.   

The new criterion, however, may be thought to satisfy Feferman’s requirement that

logical operators “behave in the same way in all universes”. Intuitively, a homomorphism is a

mapping h such that the distinguished elements of the smaller structure are obtained from those

of the larger one by “‘shrinking along’ h” (ibid.: 39), and this “shrinking” explains the sense in

which an operator preserves its identity when moving from larger universes to a smaller ones. 

Is invariance under homomorphism a reasonable criterion of logicality? To help us

answer this question let us point at a few significant examples of operators that do and do not

satisfy it.
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(a) Isomorphism-invariant operators that are also homomorphism-invariant: 

(i)   The operators corresponding to the logical connectives.
(ii)  The existential and universal quantifiers.
(iii) The quantifier “is well-founded” (whose arguments, in any given universe,
       are the binary relations on that universe).

(b) Isomorphism-invariant operators that are not homomorphism-invariant:

(i)   The (standard) Identity relation.
(ii)  Cardinality quantifiers (including finite-cardinality quantifiers like “There are
       exactly 5” and infinite-cardinality quantifiers like “There are uncountably many”.      

 
(iii) The monadic quantifier “Most” (as in “Most things are B” ).
(iv) Quantifiers that behave like one familiar quantifier in universes of certain
       cardinalities and like a different familiar quantifier in universes of other cardinalities
       (for example, Q of the last section).

These examples suggest that the Invariance-under-Homomorphism criterion gives rise to

a “hybrid” logic. This logic coincides neither with standard 1st-order logic nor with our “formal”

logic, yet it is not intermediate between the two either, since in certain ways it is weaker than

standard 1st-order logic. In particular, neither the identity relation (=) nor the finite-cardinality

quantifiers (“There are at-least/exactly/at-most n things such that”) of standard 1st-order logic

satisfy it. At the same time it is stronger than standard 1st-order logic since it is satisfied by such

non-standard quantifiers as the well-foundedness quantifier. 

Feferman does not fully embrace the Invariance-under-Homomorphism criterion as a

criterion of logicality. Rather, having “been moving more and more to the position that the

classical first-order predicate logic has a privileged role in our thought” (ibid.: 32), he is looking

for ways to adjust it so it classifies all and only the standard logical operators as logical. His

investigations first lead to an adjustment that, assuming Invariance-under-Homomorphism is so

formulated as to apply to objectual operators only, could be expressed by:

Adjusted Invariance-under-Homomorphism Criterion (I): 

A 1st-order operator is logical iff it is:
either (i) a monadic quantifier satisfying the Invariance-under-Homomorphism criterion,
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or (ii) a truth-functional connective,
or (iii) an operator definable from logical operators within the λ-calculus.

By formulating the Invariance-under-Homomorphisms criterion in such a way that it

applies to propositional connectives as well, however, Feferman obtains a more unified version

of this adjusted criterion: 

Adjusted Invariance-under-Homomorphism Criterion (II): 

A 1st-order operator is logical iff it is:
either (i) a monadic quantifier satisfying the Invariance-under-Homomorphism criterion,
or (ii) a propositional operator (monadic or not monadic) satisfying this criterion,
or (iii) an operator definable from logical operators within the λ-calculus.

The adjusted criterion differs from the original Invariance-under-Homomorphism

criterion in setting a type restriction on logical quantifiers: only monadic 1st-order quantifiers -

quantifiers of the type O(B), where B is a subset of a given universe - and not 1st-order

quantifiers of any other type - i.e., relational or polyadic quantifiers - are logical. That is, only

monadic quantifiers are subject to the invariance-under-homomorphism test. (Linguistically, this

restricts us to quantifiers of the form “(Qx)Px”, ruling out in advance, i.e., prior to applying the

Invariance-under-Homomorphism criterion, all relational quantifiers (e.g., “Most2”, as in “Most

B’s are C’s”) and polyadic quantifiers (e.g., “Is a well-ordering”).) 

This restriction yields almost the desired result: all and only the logical operators of

standard 1st-order logic without identity are logical. 

What about Identity? In considering this question Feferman says:

It is undeniable that the relation of identity has a “universal”, accepted, and stable
logic (at least in the presence of totally defined predicates and functions, as is
usual in PC with =), and that argues for giving it a distinguished rule in logic even
if it should not turn out to be logical on its own under some cross-domain
invariance criterion, such as under homomorphisms. [Ibid.: 44]

To include identity as a logical operator we can simply postulate that it is,

closing logical operators under definability as before. We thus get the third

version of the adjusted criterion:
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27 Feferman’s tries to justify this restriction linguistically, by appealing to a linguistic
conjecture which says that most non-monadic quantifiers used in natural language are “lifted” in
one way or another from monadic quantifiers (Keenan & Westerståhl, 1997). But this conjecture
is restricted to natural-language applications, is not strictly universal, is (at least as of now)
unsubstantiated, and assumes the logicality of monadic quantifiers that Feferman rejects. More
importantly, it is not clear that linguistic support of a logical-philosophical restriction is of much
relevance.  

Adjusted Invariance-under-Homomorphism Criterion (III): 

A 1st-order operator is logical iff it is:
either (i) a monadic quantifier satisfying the Invariance-under-Homomorphism criterion,
or (ii) a propositional connective satisfying this criterion,
or (iii) the identity relation,
or (iv) an operator definable from logical operators within the λ-calculus.

This criterion classifies identity and the finite-cardinality quantifiers as logical, thus

providing a characterization of the standard 1st-order logical operators as logical. 

Is either the Invariance-under-Homomorphism criterion or the Adjusted Invariance-

under-Homomorphism criterion (in any of its versions) an adequate criterion of logicality? 

Van Benthem (2002) and Bonnay (2006) point out that the Invariance-under-

Homomorphism criterion is subject to Feferman’s first two criticisms - assimilation of logic to

mathematics and non-robust logical operators - and as such is inadequate from his own

perspective. I would add that by affirming the logicality of the finite-cardinality quantifiers -

including “split identity/meaning” finite-cardinality quantifiers (those whose behavior in

universes of different sizes is “unnaturally connected”) - Feferman’s third adjusted criterion also

violates the third criticism. Finally, Bonnay (2006) criticizes the ad hoc nature of Feferman’s

restriction of logical quantifiers to monadic ones in the adjusted versions of his criterion.27  

Most of these criticisms, however, do not speak against Feferman’s criteria from my

point of view, since the “weaknesses” they talk about are no weaknesses at all from my

perspective. The one exception is the ad hocness criticism, which points to what, in my view, is

the main challenge to any criterion of logicality, namely, a solid philosophical justification,
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28 I started writing this paper while visiting the philosophy department at the University
of Santiago de Compostela in Spain. I would like to thank Concha Martinez, José Miguel
Sagüillo, and Luis Villegas-Forero for stimulating conversations on issues related to this paper. I
am also thankful to members of the LOGOS group in Barcelona and to the participants in the
conference “Foundational Issues in Logic: Logical Consequence and Logical Constants
Revisited” for their feedback. Thanks to Denis Bonnay for his discussion, and to Peter Sher for
comments on the penultimate version of the paper.  

which is missing from Feferman’s discussion, and indeed not even attempted by him. That such

a justification needs pursuing is also Feferman’s view of the matter:

Whether that [i.e., the notion of a logical operation as “definable from
homomorphism-invariant monadic operations”] (or any other invariance notion)
can be justified on fundamental conceptual grounds is ... in need of pursuit.
[Feferman 1999: 32]

This is a good note on which to end. I must add, however, that there exist other serious

proposals for revision of the Invariance-under-Isomorphism criterion. These include Peacocke

(1976), McCarthy (1981), MacFarlane (1991), Bonnay’s (2006), and Casanova’s (2006), and

they each require a careful consideration.28
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