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Preface 

Whatever the fate of the particulars, one thing is certain. There is no going back 
to the view that logic is [standard] first-order logic. 
Jon Barwise, Model- Theoretic Logics 

When I went to Columbia University to study with Prof. Charles Parsons, 
I felt I was given a unique opportunity to work on "foundational" issues 
in logic. I was interested not so much in the controversies involving 
logicism, intuitionism, and formalism as in the ideas behind "core" logic: 
first-order Fregean, Russellian, Tarskian logic. I wanted to understand the 
philosophical force of logic, and f wanted to approach logic critically. 

Philosophical investigations of logic are difficult in that a fruitful point 
of view is hard to find. My own explorations started off when Prof. 
Parsons pointed out to me that some mathematicians and linguists had 
generalized the standard quantifiers. Generalization of quantifiers was 
something I was looking for since coming upon Quine's principle of 
ontological commitment. If we understood the universal and existential 
quantifiers as particular instances of a more general fonn, perhaps we 
would be able to judge whether quantification carries ontological commit
ment. So the idea of generalized quantifiers had an immediate appeal, and 
I sat down to study the literature. 

The generalization of quantifiers gives rise to the question; What is logic? 
in a new, sharp form. In fact, it raises two questions, mutually stimulat
ing. mutually dependent. More narrowly, these questions concern quanti
fiers, but a broader outlook shifts the emphasis: What is it for a tp.rm to be 
logical'! What are all the terms of logic? Sometimes in the course of 
applying a principle, we acquire our deepest understanding of it, and in 
the attempt to extend a theory, we discover what drives it. In this vein I 



Preface x 

thought that to determine the full scope of logical terms, we have to 
understand the idea of logicality, But the actual expansion of quanti
fiers gives us hands-on experience that is, in turn, valuable in tackling 
"logicality,H Prof. Parsons encouraged me to select this as the topic of my 
dissertation, and The Bounds of Logic, a revised version of my thesis, 
follows the course of my inquiries. 

The idea of logic with "generalized" quantifiers has, in the last decades, 
commanded the attention of mathematicians, philosophers, linguists, and 
cognitive scientists. My own perspective is less abstract than that of most 
mathematicians and less empirical than the viewpoint of linguists and 
cognitive scientists. I.QIf!~igecJ not to address the logical structure of natura I 
language directly. Instead, I would follow my philosophical line of reason
ing unmitigatedly and then see how the theory fared in the face of empirical 
data. If the reasoning was solid, the theory would have a fair chance of 
converging with a sound linguistic theory, but as a philosophical outlook, 
it should stand on its own. 

The book grew out of three papers I wrote between 1984 and 1987: 
"First-Order Quantifiers and Natural Language" (1984), "Branching 
Quantifiers, First-Order Logic, and Natural Language" (1985), and 
"Logical Terms: A Semantic Point of View" (1987). These provide the 
backbone ofchapters 2,5, and 3. Chapter I is based on my thesis proposal, 
and the ideas for chapter 4 were formulated soon after the proposal 
defense. "Logical Terms" was rewritten as "A Conception of Tarskian 
Logic" and supplied with a new concluding section. This section, with 
slight variations, constitutes chapter 6. An abridged version of"A Concep
tion ofTarski an Logic" appeared in Pacific Philosophical Quarterly (1989a). 
I would like to thank the publishers for their permission to reproduce 
extensive sections of the paper. "Branching Quantifiers" gave way to 
"Ways of Branching Quantifiers" and was published in Linguistics and 
Philosophy (1990b). I am thankful to the publishers of this journal for 
allowing me to include the paper (with minor revisions) here. 

At the same time that I was working on my thesis, other philosophers 
and semanticists were tackling tangential problems. In general, my guide
line was to follow only those leads that were directly relevant. A few related 
essays appeared too late to affect my inquiry. In the final revision I added 
some new references, but for the most part I did not change the text. I felt 
that the original conception of the book had the advantage of naturally 
leading the reader from the questions and gropings of the early chapters 
to the answers in the middle and from there to the fonnal developments 
and the philosophical ending. 

xiPreface 

There is, however, one essay that I would like to mention here because 
it is so close to mine in its spirit and its view on the scope of logic. This is 
Dag Westerstahl's unpublished dissertation, "Some Philosophical Aspects 
of Abstract Model Theory" (1976), which I learned of a short time before 
the final revision of this book was completed. Had I come upon it in the 
early stages of my study, I am sure it would have been a source of 
inspiration and an influence upon my work. As it turned out, Westerstahl 
relied on a series of "intuitions about logic," while I set out to investigate 
the bounds of logic as a function of its goal, drawing upon Tarski's early 
writings on the foundations of semantics. 

Chapter by chapter, I proceed as follows: In chapter I, I set down the 
issues the book attempts to resolve and I give an outline ofmy philosophical 
approach to logic. Chapter 2 analyzes Mostowski's original generalization 
of quantifiers, tracing its roots to Frege's conception of statements of 
number. The question then arises of how to extend Mostowski's work. I 
discuss a proposal by Barwise and Cooper (1981) to create a system 
of nonlogical quantifiers for use in linguistic representation. Pointing to 
weaknesses in Barwise and Cooper's approach, I advocate in its place 
a straightforward extension of the logical quantifiers, as in Lindstrom 
(1966a), and show how this can be naturally applied in natural-language 
semantics. It is not clear, however, what the philosophical principle behind 
Moslowski's work is. To determine the scope of logical quantifiers in 
complete generality, we need to analyze the notion of "logicality," This 

leads to chapter 3. 
For a long time I thought I would not be able to answer the questions 

posed in this work. I would present the issues in a sharp and, I hoped, 
stimulating form, but as for the answers, I had no idea what the guiding 
principle should be. How would I know whether a given term, say "being 
a well-ordering relation," is a logical term or not? What criterion could be 
used as an objective arbiter? The turning point for me was John Etche
mendy's provocative essay on Tarski. Etchemendy's charge that Tarski 
committed a simple fallacy sent me back to the old papers, and words that 
were too famiJiar to convey a new meaning suddenly came to life. My 
answer to the question of logicality has three sides: First, it is an analysis 
of the ideas that led Tarski to the construction of the syntactic-semantic 
system that has been a paradigm of logic ever since. Second, it is an 
argument for the view that the original ideas were not fuJly realized by the 
standard system; it takes a far broader logical network to bring the Tars
kian project to true completion. Finally, the very principJes that underlie 
modern semantics point the way to a simple, straightforward criterion of 
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logicality. I spell out this criterion and I discuss the conception of logic 
that ensues. As a side note I should say that although chapter 3 was not 
written as a defense of the historical Tarski, it contains, I believe, all that 
is needed to prove the consistency of Tarski's approach. 

Chapter 4 presents a formal semantics for the "unrestricted" first-order 
logic whose boundaries were delineated in chapter 3. The semantic system 
is essentially coextensional with Lindstrom's, but the method ofdefinition 
is constructive-a semantics "from the ground up." What I try to show, 
first informally and later formally, is how we can build the logical terms 
over a given universe by starting with individuals and constructing the 
relations and predicates that will form the extensions of logical terms over 
that universe. Chapter 4 also investigates the enrichment of logical vocab
ulary as a tool in linguistic semantics, pointing to numerous applications 
and showing how increasingly "stronger" quantifiers are required for 
certain complex constructions. 

Chapter 5 was the most difficult chapter to write. Whereas the book in 
general investigates the scope and limits of logical "particles," this chapter 
inquires into new possibilities ofcombining particles together. My original 
intent was to study the new, "branching" structure of quantifiers to deter
mine whether it belongs to the new conception of logic. But upon reading 
the literature I found that in the context of "generalized" logic it has never 
been determined what the branching structure really is. Jon Barwise's 
pioneer work pointed to several partial answers, but a general semantics 
for branching quantifiers had yet to be worked out. My search for the 
branching principle led to a new, broader account than was given in earlier 
writings. I introduce a simple first-order notion of branching, "indepen
dence"; I universalize the existent definitions due to Barwise; and I point 
to a "family" of branching structures that include, in addition to "in
dependent," Henkin, and Barwise quantifiers, also a whole new array of 
logico-Iinguistic quantifier constructions. 

In chapter 6, I draw several philosophical consequences of the view of 
logic developed earlier in the book. I discuss the role of mathematics in 
logic and the metaphysical underpinning of semantics, I investigate the 
impact of the new conception of logic on the logicist thesis and on Quine's 
ontological-commitment thesis, and I end with a proof-theoretical out
look. This chapter is both a summation and, I hope, an opening for further 
philosophical inquiries. 

The bounds of logic, on my view, are the bounds of mathematical 
reasoning. Any higher-order mathematical predicate or relation can func
tion as a logical term, provided it is introduced in the right way into the 
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syntactic-semantic apparatus of first-order logic. Logic provides a special 
framework for formalizing theories, a framework that draws out their 
necessary and formal consequences. Every formal and necessary con
sequence is identified by some logic, and only necessary and formal con
sequences pass the test of logicality. This view is accepted in practice by 
many logicians working in "abstract" first-order logic. My view also 
stands in basic agreement with that of natural-language logicians. Ex
tended logic has made a notable contribution to linguistic analysis. Yet 
logical form in linguistics is often constrained by conditions that have no 
bearing on philosophy. To my mind, this situation is natural and has no 
limiting effect on the scope of logic. 

On the other side of the mat stand two approaches to logic: First and 
obviously, there is the traditional approach, according to which standard 
logic is the whole of logic. No more need be said about this view. But 
from another direction some philosophers see in the collapse of traditional 
logic a collapse of logic itself as a distinctive discipline. With this view I 
adamantly disagree. Logic is broader than traditionally thought, but that 
does not mean anything goes. The boundaries of logic are based on a 
sharp, natural distinction. This distinction serves an important methodo
logical function: it enables us to recognize a special type of consequence. 
To relinquish this distinction is to give up an important tool for the 
construction and criticism of theories. 

The writing of this work was a happy experience, and I am very thankful 
to teachers, colleagues, friends, and family who helped me along the way. 

I was very fortunate to work with Charles Parsons throughout my years 
at Columbia University. His teaching, his criticism, the opportunity he 
always gave me to defend my views, his expectation that I tackle problems 
I was not sure I could solve-all were invaluable not only for this book 
but for the development of my philosophical thought. I am most grateful 
to him. 

My first dissertation committee was especially supportive and enthu
siastic, and I would like to thank Robert May and Wilfried Sieg for this 
and for their continuing interest in my work after they left Columbia. 
Robert May was actively involved with my book until its completion, and 
I am very thankful to him for his constructive remarks and for urging me 
to explore the linguistic aspect of logic. Isaac Levi and Shaugan Lavine 
joined my dissertation committee at later stages. Levi taught me at Colum
bia, and his ideas had an impact on my thought. I thank him for this and 
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for his conversation and support. Shaughan Lavine contributed numerous 
useful comments on my thesis, and I am very thankful to him. 

John Etchemendy sent me his works on Tarski. These were most impor
tant in developing my own views, and I am grateful to him. 

During the academic year 1987/1988 I was a visiting scholar at MIT, 
and I would like to thank the Department of Linguistics and Philosophy 
for its hospitality. I had interesting and stimulating conversations with 
George Boolos, Jim Higginbotham, Richard Larson, and Noam Chomsky, 
and I am particularly thankful to Richard Cartwright for his contribution 
to my understanding of Tarski. 

While writing the dissertation I was teaching first at Queens College and 
later at Barnard College. I would like to thank the members of the two 
philosophy departments for the supportive environment. To Alex Oren
stein, Sue Larson, Hide Ishiguro, Robert Tragesser, and Palle Yourgrau I 
am thankful for their conversation and friendliness. 

The thesis developed into a book while I was at my present position at 
the University of California, San Diego. I am very grateful to my new 
friends and colleagues at UCSD for the stimulating and friendly atmo
sphere. I am especially indebted to Philip Kitcher for his conversation and 
advice. I am also very thankful to Oron Shagrir for preparation of the 
indexes. 

Betty Stanton of Bradford Books, The MIT Press, encouraged me to 
orient the book to a wider audience than I envisaged earlier. I am very 
thankful for her suggestions. 

As editor of Linguistics and Philosophy Johan van Benthem commented 
on my "Ways of Branching Quantifiers," and his comments, as well as 
those of two anonymous referees, led to improvements that were carried 
over to the book. I appreciate these comments. I am also thankful for 
comments by referees of The MIT Press. 

Hackett Publishing. Company allowed me to cite from Tarski's works. 
I am thankful for their pennission. 

I gave several talks on branching quantifiers, and I would like to thank 
the audiences at the Linguistic Institute (1986), MIT (1987), and the 
University of Texas at Austin (1990). 

My interest in the philosophy of logic arose when I was studying philo
sophy at the Hebrew University ofJerusalem. I am grateful to my teachers 
there, especially Eddy Zemach and Dale Gottlieb, whose stimulating dis
cussions induced my active involvement with issues that eventually led to 
my present work. 
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I could not have written this book without the abounding support given 
to me by my family. My sons, Itai and Shlomi, were very young when I 
started by studies at Columbia University, and they grew up with my 
work. I thank you, Itai and Shlomi, for your patience with a busy mother, 
for your liveliness and philosophical thoughts, for rooting for me, and for 
much much more. My mother took over many of my duties during the last 
months of preparing the book. I am most grateful to her for this and for 

her support throughout my studies. 
It is too late to thank my father, Shlomo Yoffe. He was a staunch 

rationalist who believed in straight, honest reasoning. He taught me to 
think and enjoy thinking. He respected intellectuals but not academic 
titles. His influence, more than anyone else's, led to my career in 

philosophy. 
I am dedicating this book to my husband, Peter Sher, with love and 

gratitude. He followed my work closely from its beginning, and his sugges
tions regarding style and presentation of ideas left their marks on every 
page of this book. With great generosity he encouraged me to resume my 
studies in philosophy some time ago, and with great generosity he has 

supported me in my work since then. 
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.. Logic," Russell said, "consists of two parts. The first part investigates 
what propositions are and what fonns they may have .... The second part 
consists of certain supremely general propositions which assert the truth 
of all propositions of certain fonns.... The first part ... is the more 
difficult, and philosophically the more important; and it is the recent 
progress in this part, more than anything else, that has rendered a truly 
scicntific discussion of many philosophical problems possible."l 

The question underlying this work is, Are generalized quantifiers a case 
in qucstion'? Do they give rise to new, philosophically significant logical 
forms of propositions "enlarging our abstract imagination, and providing 
... [new] possible hypotheses to be applied in the analysis of any complex 
fact"?2 Does the advent of generalized quantifiers mark a genuine break
through in modern logic? Has logic, in Russell's turn of expression. given 
thought new wings once again? 

Generalized quantifiers were first introduced as a "natural generaliza
tion of the logical quantifiers" by A. Mostowski in his 1957 paper "On 
a Generalization of Quantifiers,,3. Mostowski conceived his generalized 
quantifiers semantically as functions from sets of objects in the universe of 
a model for first-order logic to the set of truth values. {truth, falsity}. 
and syntactically as first-order formula-building operators that, like the 
existential and universal quantifiers. bind well-formed formulas with in
dividual variables to form other, more complex well-formed formulas. .Mostowski's quantifiers acquired the name "cardinality quantifiers," and 

"llsome typical examples of these are "there are finitely many x such that 
... ," "most things x are such that ... ," etc. 

Mostowski's paper opened up the discussion of generalized quantifiers 
in two contexts. The first and more general context is that of the scope and 
subject matter of logic. Although Mostowski declared that at least some 
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generalized quantifiers belong in any systematic presentation of symholic 
logic, this aspect~ with the foundational issues it raises, was not thorollghly 
investigated either by him or by other muthematicians who took lip the 
subject. The second, more specific context has to do with the properties 
of formal first-order systems with generalized quantifiers, particularly in 
comparison to "classical" first-order logic and its characteristic properties: 
completeness, compactness, the Lowenheim-Skolem property, etc. This 
was the main concern of Mostowski's research, and it became the foctls of 
the ensuing surge of mathematical interest in the subject. 4 

In contrast to the extensive and prolific treatment that generalized 
quantifiers have received in mathematics, the philosophical yield has heell 
rather sparse. The philosophical significance of generalized quantifiers was 
examined in a small number of contemporary papers by sllch authors as 
L. H. Tharp (1975), C. Peacocke (1976), I Hacking (1979), T. McCarthy 
(1981) and G. 80010s (1984b) as part of an attempt to provide a general 
characterization of logic and logical constants. The mathematical descrip
tions of generalized quantifiers and the numerous constructions by llIathe
maticians of first-order systems with new quantifiers prompted the ques
tion of whether such quantifiers are genuinely logical. Although the dis
cussions mentioned above are illuminating, they reach no definite or COlll

pelling conclusions, and, to the best of my knowledge and judgemcnt, 
the question is still open. 

To inquire whether "generalized" quantifiers are logical in complete 
generality, we have to ascend to a conceptual linguistic scheme that is 
independent of, or prior to, the determination of logical constants and, 
in particular, logical quantifiers. We will then be able to ask, What 
expressions in that Ti'figuistic scheme are logical quantifiers? What are all 
its logical quantifiers? The scheme has to be comprehensive enough, of 
course, to suit the general nature of the query. 

A conceptual scheme like Frege's hierarchy of levels naturally suggests 
itself. In such a scheme the level of a linguistic expression can be deter
mined prior to, and independently of, the determination of its status 
as a logical or nonlogical expression. 5 And the principles underlying the 
hierarchy-namely the characterization of expressions as complete or 
incomplete and the classification of the latter according to the number and 
type of expressions that can complete them-are universally applicable. 
From the point of view of Frege's hierarchy of levels, the system of stan
dard first-order logic consists of a lirst-Ievellanguage plus certain second
level unary predicates (Le., the universal and/or existential quantifiers) and 

New Bounds'! 

a "complete" set of truth-functional connectives. Our question can now 
be formulatcd with respect to Frege's linguistic scheme as follows: Which 
sccoml-Ievcl predicates and relations can combine with first-level predi
cates, relations, functional expressions, proper names and.S.~I1tential con
nectives to make up a first-order logic? What makes a second-level pre
dicate or relation into a first-order logical quantifier? (analogously for 

higher-order quantifiers.) 
To ask these questions is to investigate various criteria for logical 

"quantifierhood" with respect to their philosophical significance, formal 
rcsults, and linguistic plausibility. At the two end points of the spectrum 
of possible criteria we find those that allow any second-level predicate and 
relation as a logical quantifier (this is possible within Frege's scheme 
because of the syntactic structure of second-level expressions) and those 
that allow only the universal and existential quantifiers as logical quanti
fiers. While the former amount to a trivialization of logic, the latter 
preclude extension altogether. For that reason, the area in-between is the 

most interesting for a critical investigator. 
The formal scheme whose extension is considered in this book is Fregean

HlIsscllian mathematical logic with Tarskian semantics. More specifically, 
the investigation concerns Tarski's model-theoretic semantics for first
order logic. With respect to Tarski's semantics one may wonder whether 
it makes sense at all to consider its extension to a logic with new quanti
fiers. To begin with, we can see that the structure of a first-order Tarskian 
model does allow for a definition of truth (via satisfaction) for a language 
richer than that of standard first-order logic. One line of reasoning point
ing to the natumlness of extension is the following: If Tarskian model
thcoretic semantics is philosophically correct, then a first-order model 
oilers a faithful and precise mathematical representation of truth (satis
faction) conditions for a first-order extensional language. The formal 
correctness of this semantics ensures that no two distinct (Le., logically 
Ilolleqllivalent) scts of sentences have mathematically indistinct classes of 
models. But ideally, a semantic theory would also be nonredundant, in the 
scnse that no two distinct semantic structures would represent the same 
(i.e., logically equivalent) sets of sentences. Standard first-order logic does 
not measure up to this ideal, because it is unable to distinguish between 
llonisolllOrphic structures in general. That is, "elementary equivalence," 
cquivalence a~ far as first-order theories go, does not coincide with equiv
alence up to isomorphism, a relation that distinguishes any two non
isomorphic structures. 6 This inadequacy can be "blamed" either on the 
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excesses of the model~theoretic semantics or on the scantiness (expressive 
"poverty") of the standard first-order language. Accordingly, we can 
either make the semantic apparatus less distinctive or strengthen the 
expressive power of the standard language so that the model-theoretic 
semantics is put to full use. In any case, it is clear that Tarskian semantics 
can serve a richer language. 

The study of extensions of logic has philosophical, mathematical, and 
linguistic aspects. Philosophically, my goal has been to find out what 

distinguishes logical from nonlogical terms, and, on this basis, determine 
the scope of (core) logic. Once the philosophical question has been decided, 
the next task is to delineate a complete system of first-order logic, in a 
sense analogous to that of the expressive completeness of various systems 
of truth-functional logic. In the early days of modern logic, truth

functionality was identified as the characteristic property of the "logical" 
sentential connectives, and this led to the semantics of truth tables and to 
the correlation of truth-functional connectives with Boolean functions 
from finite sequences of truth values to a truth value. That in turn enabled 
logicians to answer the question, What are all the truth~functional 
sentential connectives? and to determine the completeness (or 
incompleteness) of various sets of connectives. We cannot achieve the 
same level of effectiveness in the description of quantifiers. But we can try 
to characterize the logical quantifiers in a way that will reHect their 
structure (meaning), show how to "calculate" their value for any set 
of predicates (relations) in their domain, and describe the totality of 

quantifiers as the totality of functions of a certain kind. This task takes the 
form of construction, description, or redefinition, depending on whether 
the notion of a logical term that emerges out of the philosophical in vest i
gations has been realized by an existing formal system. 

A further goal is a solid conceptual basis for the generalizations. I n his 
Introduction to Mathematical Philosophy (1919) Russell says, "It is a prin
ciple, in all formal reasoning, to generalize to the utmost, since we therehy 
secure that a given process of deduction shall have more widely applicable 
results.'" One of the lessons I have learned in the course of studying 
extensions of logic is that it is not always clear what the unifying idea 
behind a given generalization is or which generalization captures a gi ven 
idea. In the case of generalized quantifiers, for example, it is not immedi
ately clear what generalization expresses the idea of a logical quantifier. 
Indeed, the need to choose among alternative generalizations has been one 
of the driving forces behind my work. 

New Bounds? 

Another angle from which I examine new forms ofquantification is that 

of the ordering of quantifier prefixes: Why should quantifier prefixes be 
linearly ordered? Are partially~ordered quantifiers compatible with the 
principles of logical form? In his 1959 paper "Some Remarks on Infinitely 
Long Formulas," L. Henkin first introduced a new, nonlinear quantifier 
prefix (with standard quantifiers). Henkin interpreted his new quantifiers, 
branching or partially-ordered quantifiers, by means of Skolem functions. 8 

An example of a branching quantification is 

(Vx)(3y) 

(I) 	 )<I>(X,y, z, w), 

(Vz)(3w) 

which is interpreted, using Skolem functions, as 

(2) (~ll )(3g 1 )(Vx)(Vz)<J>[X,/l (x), z, gl (z)]. 

However, attempts to extend Henkin's definition to generalized quanti
fiers came upon great difficulties. Only partial extensions were worked out, 
and it became clear that the concept of branching requires clarification. 
This is another case of a generalization in need ofelucidation, and concep
tual analysis of the branching structure is attempted in chapter 5. 

The philosophical outlook underlying this work can be described as 
follows. Traditionally, logic was thought of as something to be discovered 
once and for all. Our thought, language, and reasoning may be improved 

in certain respects, but their logical kernel is fixed. Once the logical kernel 
is known, it is known for all times: we cannot change-improve or enrich 
-the logic of our language, reasoning, thought. On this view, questions 
about the logical structure of human language have definite answers, the 
same for every language. As the logical structure of human thinking is 

unraveled, it is encoded in a formal system, and the logical forms of this 
system are all the logical forms there are, the only logical forms. End of 
slory. 

This approach is in essence characteristic of many traditional philo
sophers, e.g., Kant in Critique of Pure Reason (1781/1787) and Logic 
(1800). The enterprise of logic, according to the Critique;consists in mak
ing an "inventory" of the "formal rules of all thought." These rules are 
simple, unequivocal, and clearly manifested. There is no questioning their 
content or their necessity for human thought. Because of the limited 
nature of its task, logic, according to Kant, "has not been able to advance 
a single step [since Aristotle], and is thus to all appearances a closed and 
completed body of doctrine."9 That this view of logic is not accidental to 
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Kant's thought is, I think, evident from the use he makes of it in establish
ing the Table of Categories. The Table ofCategories is based on the Table 
of the Logical Functions of the Understanding in Judgments, and the 
absolute certainty regarding the latter provides, according to Kant, an 
"unshakeable" basis for the former. 

I" for one, do not share this view of logic. Even if there are "eternal" 
logical truths, I cannot see why there should be eternal conceptual (or 
linguistic) carriers of these truths, why the logical structure of human 
thought (language) should be "fixed once and for aiL" I believe that new 
logical structures can be constructed. Some of the innovations of modern 
logic appear to me more of the nature of invention than of discovery. 
Consider, for instance, Frege's construal of number statements. Was this 
a discovery of the form that, unbeknownst to us, we had always used to 
express number statements, or was it rather a proposal for a new form that 
allowed us to express number statements more fruitfully? 

The inteHectual challenge posed by man-made natural language is, to 
my mind, not only that of systematic description. As with mathematics or 
literature, the enterprise of language is first of all tha t ofcreating language, 
and this creative project is (in all three areas) unending. Even in contem
porary philosophy of logic, most writers seem to disregard this aspect of 
language, approaching natural language as a "sacred" traditional institu
tion. But does not the persistent, intensive engagement of these same 
philosophers with~.Y.~f new alternative logics point beyond a search for 
new explanations to a search for new forms? 

The view that there is no unique language of logic can also be based on 
a more conservative approach to human discourse. Defining the field of 
our investigation to be language as we currently use it, we can invoke the 
principle of multiformity of language, which is the linguistic counterpart 
of what H. T. Hodes called Frege's principle of the "polymorphous com
position of thought."lO Consider the following sentences: 11 

(3) There are exactly four moons of Jupiter. 

(4) The number of moons of Jupiter = 4. 

It is crucial for Frege, as Hodes emphasizes, that (3) and (4) express the 
same thought. The two sentences "differ in the way they display the 
composition of that thought, but according to Frege, one thought is not 
composed out of a unique set of atomic senses in a unique way." 12 
Linguistically, this means that the sentence 

(5) Jupiter has 4 moons,13 
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which can be paraphrased both by (3) and by (4), has both the logical 
form 

(6) (!4x)Ax 

and the logical form 

(lx)Bx = 4. 

I think this principle is correct. Once we accept the multiformity of lan
guage, change in the "official" classification of logical terms is in principle 
licensed. 

The logical positivists, unlike the traditional philosophers, made change 
in logic possible. Indeed, they made it too easy. Logic, on their view, is 
nothing more than a linguistic convention, and convention is something 
to be kept or replaced, at best on pragmatic grounds ofefficiency (but also 
just on whim). I sympathize with Carnap when he says, "This [conven

view leads to an unprejudiced investigation of the various forms of 
new logical systems which differ more or less from the customary form ... , 
and it encourages the construction of further new forms. The task is not 
to decide which of the different systems is 'the right logic' but to examine 
their formal properties and the possibilities for their interpretation and 
application in science." 14 Furthermore, I agree that ac<;epting a new logic 
is adopting a new linguistic framework and that such "acceptance cannot 
be judged as being either true or false because it is not an assertion. It can 
only be judged as being more or less expedient, fruitful, conducive to the 
aim for which the language is intended." 15 What I cannot agree with is the 
insistence on the exclusively practical nature of the enterprise: "the intro
duction of the new ways of speaking does not need any theoretical justifi
cation ... to be sure, we have to face at this point an important question; 
but it is a practical, not a theoretical question."16 

In my view, revision in logic, as in any field of knowledge, should face 
the "trial of reason" on both fronts, practice and theory. The investiga
tions carried out in this essay concern the theoretical grounds for certain 
extensions of logic. 

Generalized quantifiers have attracted the attention of linguists, and 
some of the most interesting and stimulating works on the subject come 
from that Held. Quantifiers appear to be the closest formal counterparts of 
such natural-language determiners as "most," "few," "half," "as many 
as," etc. This linguistic perspective received its first elaborate and systema
tic treatment in Barwise and Cooper's 1981 paper "Generalized Quanti
fiers and Natural Language." Much current work is devoted to continuing 
Barwise and Cooper's enterprise. 17 The discovery of branching quantifiers 
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in English is credited to J. Hintikka in "Quantifiers vs. Quantification 
Theory" (1973). Hintikka's paper aroused a heated discussion and steps 
towards a systematic linguistic analysis of branching quantifiers were 
taken by Barwise in "On Branching Quantifiers in English" (1979). 

The work on generalized and branching quantifiers in linguistics, though 
answering high standards of formal rigor, has a strong empirical orienta
tion. As a result, study of the "data" is given precedence over "pure" 
conceptual analysis. The task of formulating a cohesive empirical theory 
is particularly difficult in the case of branching quantifiers because evi
dence is so scarce. In fact, while the branching form appears to be gram
matical, it is arguable whether it has, in actual languages, a clear semantic 
content. To me, this grammatical form appears to be "in search of a 
content." In any case, my own work emphasizes the conceptual aspect of 
the branching form. The direction of analysis is from philosophy to logic 
to natural language. This has the advantage, if the attempt is successful, 
that the theory is not piecemeal and the applications follow from a general 
conception. On the other hand, since empirical evidence is not given 
precedence, the proposals for linguistic applications are presented merely 
as theoretical hypotheses, and their empirical value is left for the linguist 
to judge. 

My search for new logical forms is prompted by interests on several 
levels. For one thing, it is a way of asking the general philosophical 
questions: What is logic? Why should logic take the form of standard 
mathematical logic? For another, it is an attempt to understand more 
deeply the fundamental principles of modern logic. Mathematical logic, in 
particular first-order logic, has acquired a distinguished, paradigmatic 
place in contemporary analytic philosophy. This situation has naturally 
led to attempts to extend the range of its applicability, especially to various 
intensional contexts. It has also led to attacks on the basic principles of 
the standard system and to the consequent construction of alternative 
logics. Thus the philosophical scene abounds in modal, inductive, epi
stemic, deontic, and other extensions of "classical" first-order logic, as 
well as in intuitionistic, substitutional, free, and other rival logics. How
ever, few in philosophy have suggested that the very principles underlying 
the "core" first-order logic might not be exhausted by the "standard" 
version. The present work ventures such a philosophical view, inspired 
by recent mathematical and linguistic developments. These have not 
yet received the attention they warrant in philosophical circles, and the 
opportunity they provide for a reexamination of fundamental principles 
underlying modern logic has largely passed unnoticed. The realization of 
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this opportunity motivates my work. Logic, I believe, is a vehicle of 
thought. This work is done with the hope of contributing to the under

standing of its scope. 
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Chapter 2 

The Initial Generalization 


Mostowski and Frege 

In the 1957 paper "On a Generalization of Quantifiers," A. Mostowski 
introduced linguistic operators of a new kind that, he said, "represent a 
natural generalization of the logical quantifiers. ,,1 Syntactically, Mostow
ski's quantifiers are formula building, variable binding operators similar 
to the existential and universal quantifiers of standard first-order logic. 
That is, if cb is a fonnula, the operation of quantification by a Mostow
skian quantifier Q and an individual variable x yields a more complex 
formula, (Qx)cb, in which x is bound by Q. Semantically, Mostowski's 
operators are functions that assign a truth value to any set of elements in 
the universe of a given model in such a way that the value assigned 
depends on the cardinalities of the set in question and its complement in 
the universe and on nothing else. Since the standard existential and uni
versal quantifiers can also be defined in that manner, the new operators 
constitute a generalization of quantifiers in the semantic sense too. There 
thus exist, according to Mostowski, a great many operators on formulas 
with syntactic and semantic features similar to those of the standard 
quantifiers. These constitute a genuine extension of the logical quantifiers. 

To understand Mostowski's generalization more deeply, I will begin 
with a short regression to Frege. Frege construed the existential and 
universal quantifiers as second-level quantitative properties that hold (or 
do not hold) of a first-level property in their range due to the size of its 
extension. This characterization of quantifiers is brought out most clearly 
in Frege's analysis of existence as a quantifier property in The Foundations 
ofArithmetic (1884): "Existence is a property of concepts."2 UAflIrmation 
of existence is in fact nothing but denial of the number nought."3 "The 

proposition that there exists no rectangular equilateral rectilinear triangle 
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... state[s] a property of the concept 'rectangular equilateral rectilinear 
triangle'; it assigns to it the number nought."4 

Within Frege's hierarchy of levels a (first-order) quantifier is a I-place 
second-level predicate the argument place of which is to be filled by a 
I-place I1rst-Ievel predicate (the argument place of which is in turn to be 
filled by a singular term). A sentence of the form (3x)cbx is true if and only 
if (henceforth, "iff") the extension of the I-place predicate (or proposi
tional function) <I>~ is of cardinality larger than O. And a sentence of the 
form (Vx)<I>x is true iff the extension of cb~ is the whole universe, or its 
counterextension has cardinality O. S 

This Fregean conception of the standard quantifiers underlies Mostow
ski's generalization. In Mostowski's model-theoretic terminology, the 
standard quantifiers are interpreted as functions on sets (universes of 
models) as follows: 

(J) 	The universal quantifier is a function V such that given a set A, V(A) 
is itself a functionf: P(A) -+ {T, F}, where P(A) is the power set of 
A and for any subset B of At 

. {T Bl =0iflA
1(8) = . 
. F otherWise. 

(2) 	The existential quantifier is a function 3 such that given a set A, 
3(A) is a function g : P(A) -+ {T, F}, where for any subset B of A, 

T 	 iflBI > 0
g(B) .{ F 	 otherWise. 

On the basis of this definition we can associate with each quantifier Q 
or 3) a function IQ that tells us, given the size of a universe A, under 

what numerical conditions Q gives a subset B of A the value "true." Thus, 
the function IQ may be defined as a function on cardinal numbers (sizes of 
universes) assigning to each cardinal number ex another function I~ that 
says how many objects are allowed to fall under a set B and its comple
ment in a universe of size ex in order for Q(B) to be "true." Since the 
"cardinality image" of each set in a universe of size ex can be encoded by 
a pair of cardinal numbers (fl, y), where fl represents the size of Band y 
the size of its complement in the given universe, t~ is defined as a function 
from all pairs ofcardinal numbers fl and y, the sum of which is ex, to {T, F}. 
So the universal quantifier function, IV, is defined, for each ex, by t!, which 
assigns to any given pair (fl, y) in its domain a value according to the rule 

V ify 0{T
(3) 	t,,(fl, y) = F h . 

01 	 erWlse. 



3 

13 
Chapter 2 

12 

The rule for the existential quantifier is 

{T ifP> 0
(4) Icz(P, y) = F th . 

o erwlse. 

We can now define the standard quantifiers in terms of their t-functions as 
follows: Given a set A and a subset B of A, 

(5) V (B) = {T if I~I(I ~I, IA BI) = T 
... F otherwIse. 

Similarly, 

(6) 3... (B) = {T if 11~,(I~I, IA - BI) = T 
F otherwIse. 

However, V and 3 are not the only quantifiers that can be defined by 
cardinality functions like those above. Any function I that assigns to each 

cardinal number a a function Icz from pairs of cardinal numbers (P, y) 
such that P+ Y = a to {T, F} defines a quantifier. Given a set A and a 
subset B of A, this quantifier is defined on A exactly as V and 3 are. For 
example, suppose that the cardinality function 16 is defined, for any car
dinal number a and pair <p, y) such that p+ y = a, by 

& ifP ={T b
(7) tcz(P, y) = F th . 

o erwlse. 

Then (6 determines the cardinal quantifier (!bx): "for exactly b elements x 

in the universe." Similar functions define the quantifiers "for at least b 

elements x in the universe" and "for at most b elements x in the universe." 

Cardinality statements in general, "b things have property P," can thus be 

formalized as first-order quantifications 

(8) (!eS x)Px, 

which assert that the extension of P has b elements. In Frege's conceptual 
scheme, (8) would be a second-level statement that assigns a second-level 
numerical property to the extension of the first-level predicate P. But this 
is exactly Frege's own analysis of statements of number: "The content of 
a statement of number is an assertion about a concept. ... If I say 'Venus 

has 0 moons' ... what happens is that a property is assigned to the concept 
'moon of Venus,' namely that of including nothing under it. If I say 'the 
King's carriage is drawn by four horses,' then I assign the number four to 
the concept 'horse that draws the King's carriage.'''6 We see that Mostow
ski's generalization is indeed in the spirit of Frege. 

Yet numerical quantifiers (finite and infinite) do not exhaust Mostow
ski's definition. Consider the function I defined (relative to a cardinal 
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number a and any pair (P, y) such that p+ y = a) as 

T ifP > y
(9) t<l({1, y) = { F th . 

o erwlse. 

This function defines the quantifier (Mx), "most of the objects in the 
universe are such that ... " (where we take "Most things are B" to mean 
"There are more Bs than non-Bs"). Consider also 

T ifPis a finite even number 
(10) (,( {1,y) h'{ F ot erwlse. 

This function defines the quantifier (Ex): "an even number of objects in 
the universe are such that ...." Another quantifier is defined 

T if {1 = a 
(11) t<l(P,y) = F h .{ at erwlse. 

This is the Chang or equicardinal quantifier: "as many objects as there are 
elements in the universe are such that ...."7 And so on. 

Among the totality of cardinality functions 1 are functions that assign 
to dillerent cardinals a different functions 1<1' Such a "vacillating" function 
t might be defined for two distinct cardinal numbers (Xl and (X2 by 

T ifP = m 
(12) t<lI(P,y) = { F th . 

• 0 erWlse, 

T if{1=n 

{
(13) t<ll ({1, y) F th . o erWlse, 

where 111 ::I n. The function 1 expresses cardinality properties of sets rela

tive to the size of the universe: "m out of (Xl' n out of a2' ...." Some 
vacillating functions are reducible to "simple" functions like the ratio 
function "1/2," which is fixed for all universes. (Thus, 1/2 = lout of 2, 2 
out of 4, 3 out of 6, etc., where some conventional rule is given for 
universes with an odd number of elements.) Other vacillating functions 
represent irregular ratios ("2 out of 3, 3 out of 6, 19 out of 19, ... "), and 
these are genuinely "manifold" cardinality functions. 

According to Mostowski, any formula-binding operator defined by 
some cardinality function (simple or vacillating) as described above is a 
generalized quantifier. 

2 A Criterion For Logical Quantifiers 

Are Mostowski's quantifiers logical quantifiers? Are they aI/the logical 
quantifiers? From a Fregean point of view, standard first-order logic is a 
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first-level system with one or two I-place second-level predicates: the 
existential and/or universal quantifiers. Mostowski's logic is, from this 
point of view, a first-level system with an arbitrary number of I-place 
second-level predicates of the same lype as the standard quantifiers (i.e., 
I-place second-level predicates of I-place first-level predicates). However, 
not all second-level predicates of that type are logical quantifiers, accord
ing to MOSlowski's definition. The predic~lte "P is a (first-level) attribute 
of Napoleon" is not. More generally, all noncardinality predicates are 
excluded from this category. The question naturally arises as to why the 
distinction between logical and nonlogical predicates should coincide with 
the distinction between cardinality properties and noncardinality prop
erties. What does cardinality have to do with logicality? 

Mostowski's answer is that there are two natural conditions 01) logical
quantifiers: 

CONDITION LQI "Quantifiers enable us to construct propositions from 
propositional functions."8 

CONDITION LQ2 . A logical quantifier "does not allow us to distinguish 
between different elements of [the universe}."9 

The first requirement is clear. Syntactically, a quantifier is a formula
building expression that operates by binding a free variable in the formula 
to which it is attached and thus in finitely many applications generates a 
sentence, i.e., a closed formula. 

The second, semantic requirement Mostowski interprets as follows: a 
I-place first-level Propositional function cJJx satisfies a quantifier Q in a 


given model '11 only if any I-place first-level Propositional function whose 

extension in '11 can be obtained from that of «I>x by Some permutation of 

the universe satisfies it as well. More succinctly, logical quantifiers are 

invariant under permutations of the universe in a given model for the

language. 

It is interesting to note that (LQ2) is also suggested by Dummelt in 

Frege: Philosophy ofLanguage (1973): 


Let us call a second-level condition any condition which, for some domain of 
objects, is defined, as being satisfied or otherWise, by every predicate which is in 
turn defined over that domain of objects. Among such second-level conditions, we 
may call a quantifier condition any which is invariant under each permutation of 
the domain of objects: i.e. for any predicate 'F(,), and any permutation ((), il 
satisfies 'F(O' just in case it satisfies that predicate which applies to just those 
objects cp(a), where 'F(,), is true of a. Then we allow as also being a logical 
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constant any expression which ... allows us to express a quantifier condition which 

could not be expressed by means of ... (the universal and existential] quantifiers 

and the sentential operators alone. 1o 


Now it is a metatheoretical fact about first-order models that given a 
model'll with a universe A and a I-place second-level property gp, gp 
satisfics (LQ2) with respect to the elements of A iff gp is a cardinality 
property. And this explains why Mostowski identifies logical quantifiers 
with cardillality quantifiers. (A theorem establishing the one-to-one corre
spondence between quantifiers satisfying (LQ2) and cardinality quantifiers 
was proved by Mostowski. See the appendix.) 

To sum up, syntactically, a quantifier is an operator binding a formula 
by means of an individual variable. Semantically, it is a function that 
assigns to every universe A an A-quantifier (or a quantifier on A), QA' Q A is 
itself a function from subsets of A into {T, F}. We will call the cardinality 
function t associated with a given A-quantifier QA the cardinality counter
part of QA and symbolize it by tJ (or sometimes simply by t). Quantifiers 
satisfying (LQ I) and (LQ2) are Mostowskian quamijiers. More precisely, 
a Mostowskian quantifier is a quantifier Q satisfying (LQ) and such that 
for every set A, QA satisfies (LQ2), and if AI' A2 are sets of the same 
cardinality, then QAI and QAl have the same cardinality counterpart. For 
exact definitions, see the appendix. 

It is worthwhile to note that Mostowski's system of generalized quanti 
fiers exhausts the I-place second-level predicates that satisfy (LQ2) only 
relative to the standard semantics for first-order logic. Disregarding the 
particular features of this semantics, we can say that any second-level 
predicate embodying some measure of sets and insensitive to the identity 
of their members satisfies this condition. Mostowski's quantifiers express 
measures of a particular kind, namely measures that have to do with the 
cardinality of sets, and as we have seen, these are all the second-level 
I-place "measure predicates" satisfying (LQ2) relative to standard model 
theory. Rut these are not the only second-level measures conforming to 
(LQ2). Other quantifier measures of first-level extensions have been devel

'I 
oped involving more elaborate model structures. Barwise and Cooper 
() (81) describe two such cases. The first is a quantifier Q, studied by Sgro 
(1977), where "(Qx)«I>x" says that the extension of «I>x contains a non
empty open set. This quantifier requires that models be enriched by some 
measure of distance (topology). The second has to do with measures of 
infinite sets: "Measures have been developed in which (a) and (b) make 
perfectly good sense. 

'f 
"~l 



Chapter 2 
16 

(a) 	More than half the integers are not prime. 

(b) 	More than half the real numbers between 0 and I, expressed in decimal 
notation, do not begin with 7." 11 

Under the same category fall probability quantifiers, defined over non
standard models in which probability values are assigned to extensions of 
predicates. 12 We will not take up quantifiers for nonstandard models here. 

We will also limit ourselves to finitistic logics. This is because the extension 
to infinitely long formulas is not necessary to investigate the generalized 
notion of a logical term, which is what interests us in this work. 13 

To return to Mostowski, the syntax of a first-order logic with (a finite 
set of) Mostowski's generalized quantifiers is the same as the syntax of 
standard first-order logic with two exceptions: (I) The language includes 

finitely many quantifier symbols, Ql' Q2' "', Qn (among them possibly, 
but not necessarily, V and 3). (2) The rule for building well-formed quanti 

fied formulas is, ffef> is a well-formed formula, then (QI x)<I>, (Q2x)<I>, '" , 
(Qnx)ef> are all well-formed formulas (for any individual variable x). 

We can extend the Tarskian definition of satisfaction to cardinality 
quantifiers by replacing the entry for quantified formulas by the following. 

Let ~ be a (standard) first-order model, and let A be the universe of VI. 

Let g be an assignment of members of A to the variables of the language. 

• ffef> is a formula and Q a quantifier symbol, 2( 1= (Qx)ef>[g] iff for some 

a and Psuch that a + P= /A I and ':l(a, P) = T, there are exactly a 

elements a E A such that 2( 1= ef>[g(x/a)] and exactly {I elements hE A 

such that 21 t= -ef>[g(x/h)], 

where "~ t= ef>[g]" is to be read, Hef> is satisfied in 21 by g" and g(x/lI) is an 

assignment of members of A to the variables of the language that assigns 


a to x and otherwise is the same as g. Informally, the definition now Sl:tys 

that (Qx)ef>x is true in 21 iff the number of elements in A satisfying cl>x and 


the number of elements in A not satisfying ef>x are as tJ allows. Note the 

following: 

• The definition of satisfaction above is a schema that, for any 
quantifier, instantiates differently. In the cases of V and 3 the schema 

instantiates in the standard way. In the case of the quantifier "most" the 

if ef> is a formula, then (Mx)ef>x is true in VI iff the number of 
ef>x's in ~ is larger than the number of non-ef>x's in 21. (Formally, 21 1= 
(Mx)ef>[g] iff for some a, P such that Ct + II = IA I and a > {I, there are 

exactly a elements a in A such that VI 1= ef>[g(x/a)] and exactly II elements 
!J in A such that VI 1= -ef>[g(x/h)J.) 
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• The definition of a model for first-order logic with Mostowskian gener

alized quantifiers is the same as that for standard first-order logic. A model 
for the extended logic does not contain any new "entities" not found in 

models for standard logic. The only difference is in the computation of 

truth values for quantified formulas, given a model and an assignment of 

in the universe to the variables of the language. 

An important difference between Mostowski's system and standard 

first-order logic is that the former is not in general complete. Thus, for 
example, Mostowski proved that if the quantifiers of a generalized first

order logic include the existential or universal quantifier and at least one 

quantiller Q satisfying condition (.) below, then the logic is incom
plete: not all logically true sentences of this system are provable, or, 

the set of sentences true in all models for the logic isnQLr~~ursively 

enulIlerable. 

CONDITION (.) The cardinality function t 
Q associated with Q assigns 

to ~o a function t~o such that both {Il: t~o(n, ~o) F} and 

{m: t2u(m. ~o) = T} are denumerable. 14 

An example of a quantifier satisfying condition (.) is Q, where, given a 

denumerable universe, "(Qx)<I)x" means "The number of <1>x's is even." 
On the other hand some generalized logics are complete. For example, 

H. J. Keisler (1970) proved that the logic obtained from standard first

order logic with identity by adding the quantifier "there are uncountably 

many" and a modest set of axiom schemas is complete. 
Referring to the incompleteness of first-order logic with generalized 

quantifiers in general, Mostowski says, "In spite of this negative result we 

believe that some at least of the generalized quantifiers deserve a closer 

study and some deserve even to be included into systematic expositions of 

logic. This belief is based on the conviction that the construction 
of formal calculi is not the unique and even not the most important goal 

of svmbolic logic." 15 

for which completeness appears to be immaterial is the charac

terization of the structure of natural language. 

3 	 (;cllcralized Quantifiers and Natural Language 

III their seminal paper "Generalized Quantifiers and Natural Language" 
J. Harwise and R. Cooper examined Mostowski's theory from a linguistic 
perspective. Mostowski's logic, Barwise and Cooper observe, is superior 
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to standard first-order logic in its account of natural-language quantifica

tion. "The quantifiers of standard first-order logic are inadequate for 
treating the quantified sentences of natural languages" in part because 
"there are sentences which simply cannot be symbolized in a logic which 
is restricted to ... V and 3."16 Mostowski's method, on the other hand, 
allows us to encode the structure of such sentences as defy the standard 
analysis. Let me give a few examples: 

(14) 	There are only a finite number of stars. 

(15) 	No one's heart will beat an infinite number of times. 17 

(16) 	There is an even number of letters in the English alphabet. 

(17) 	The number of rows in a (full) truth table is a power of 2. 

(18) 	There are 2N
o reals between any two nonidentical integers. 

The formal structure of(14) to (18) is analyzed in Mostowski's logic as 
follows: 

(19) (Finite x) star x, 


where for each model'21 with universe A, t~inite(lX, fJ) T iff IX < t{o; 


(20) ",(3x) (3y) [y is a heart of x & (lnf z) z is a beat of y], 

where t~nr (ex, fJ) T iff IX ~ No~ 

(21) (Even x) x is a letter in the English alphabet, 

where t~ven is defined by (10) above; 

(22) (Vy) [y is a (full) truth table -. (Power-of-2 x) x is a row in y], 

where t~ower.or'2(1X, fJ) = T iff IX is a power of 2; 

(23) 	 (Vx)(Vy)[x is an integer & y is an integer & x ¥- y -. (2 NoZ)(Z is a real 
number & z is between x and y)], 

where t~MO(IX, fJ) = T iff IX = 2No, 

What about (24) to (29)? 

(24) 	 More than one third of the population of the world suffers from 
hunger. 

(25) 	94% of all Americans believe in God. 

(26) 	Some recipients of a Nobel prize are known to most people in the 
world. 

(27) 	Most people are not hostile to most people. 

(28) As many Israelis are liberals as are not. 

(29) 	No natural numbers are prime, and the same number are not prime. 
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Do these resist a first-order symbolization? No, say Barwise and Cooper. 
By inserting nonlogical, "domain-fixing" axioms of the form (Vx)cI>x, by 
introducing many-sorted variables, or by limiting consideration to partic
ular models, one can use Mostowski's quantifiers to analyze natural
language sentences like (24) to (29). Thus we might formalize (24) to (29) 

as follows: 

(30) (More-than-1/3 x) x is suffering from hunger, 


where t~lore.(han.1/3(1X, fJ) = T iff IX > 1/3(1X + P), both ex and p are finite, 


and the range of x is the set of all people in the world (at the present, say). 


(31) 	(94% x) x believes in God, 

where t~4 ~·(IX, fJ) = T iff IX 94% (ex + P), IX, fJ are finite, and the range of 

x is the set of all American people (at the present). 

(32) (3x) [x is a recipient of a Nobel prize & (Most y) x is known to y] 

lIere t:OSI is defined by (9) above. The range of x is as in (30). 

(33) 	a. -(Most x)(Most y) x is hostile to y 

b. (Most x) "" (Most y) x is hostile to y 

c. (Most xHMost y) '" (x is hostile to y) 

whether the analysis is (a), (b), or (c) depends on how you read the 

negation in (27). Both t~lOSI and the range of x are as above.18 


(34) (As-many-as-not x) x is a liberal, 


where IAs.many.as.nol(lX, {3) T iff ex ~ p, and the range of x is the set of 


Israelis. 


(35) (t{o/No x) x is prime, 


where d~o/NO(IX, {3) T iff IX = fJ No, and the range of x is the set of 


natural numbers. 

Clearly, the natural-language "most," "almost all," "few," "a few," 

"many," etc. can be construed as Mostowskian quantifiers only to the 
extent that they can be given absolute cardinality values (or ranges of 
values). Under such a construal, we read "most" as "(cardinalitywise) 
more than a half," just as in standard logic we read "some" as "at least 

one. " 
What are the limitations of Mostowski's system from the point of view 

of the logical structure of natural language? Consider the following 

sentences: 

(36) 	 Most of John's arrows hit the target. 19 

(37) 	60% of the female students in my class are A-students. 

:.. 
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(38) 	The majority of children who do not communicate with anyone 


during the first two years of their lives are autistic. 


(39) 	Most of the students in most colleges are not exempt from tuition 
fees. 

Delimiting the range of the bound variables, which enahled us to analyze 
(24) to (29), is inadequate for the formalization of (36) to (39). Restricted 
or sorted domains are useful up to the point where they become utterly 
artificial, as they would if they were used to analyze (36) to (39) with 

Mostowski's quantifiers. Mostowski's system is rich enough to analyze 
sentences of the form 

Such and such a quantity of all the objects that there are, are B, 

but in general is inadequate for the analysis of sentences of the form 

(41) 	Such and such a quantity of all As are Bs. 

This verdict was reached both by Barwise and Cooper and by N. Rescher 
in "Plurality-Quantification" (1962) and elsewhere. 20 Clearly, statements 
of type (41) cannot be ~ymbolized as 

(42) 	(Qx)(Ax -+ Bx), 

as can be seen by the following counterexample: Suppose that OlllY one 
third of the things that satisfy Ax in a given model ~l satisfy Bx in ~1. 
Suppose also that most of the things in the universe of ~l do not satisfy 

Ax. Then (Mx)(Ax - Ox) will come out true in ~{(most things in ~I satisfy 
"Ax - Ox" by falsifying the antecedent), although it is plainly false that 
most of the As in 21 are Os. 

In general, a statement of the form (41) cannot be formalized by a 
formula of the form 

(43) 	(Qx)<I>x. 

(A theorem to the effect that "more than half of the As" cannot be defined 
in terms ofumore than halfofall things that there are" using the apparatus 
of standard first-order logic was proved by Barwise and Cooper for tinite 
universes and by D. Kaplan for the infinite case. 21) Rescher concludes, 

Textbooks often charge that traditional logic is "inadequate" because it cannot 
accommodate patently valid arguments like (I) [All A's are B's r All parts of A's 
are parts of B's). But this holds equally true of modern quantificationallogic itself, 
which cannot accommodate (2) [Most things are A's; Most things are B's r Some 
A's are B's] until supplemented by something like our plurality-quantification 
{Mostowski's "most"). And even such expanded machinery cannot accommodate 
(3) [Most C's are A's; Most C's are B's r Some A's are B's}. Powerful tool though 
it is, quantificational logic is unequal to certain childishly simple valid argu
ments. 22 
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Barwise and Cooper's strategy in the face of the alleged inexpediency of 

quantiJicational logic is to give up logical quantifiers altogether. The idea 
this move seems to be the following: There is no absolute 

meaning to such expressions as "more than half." The quantities involved 
in "more than half the natural numbers between 0 and 10" are different 

from those involved in "more than half the natural numbers between 0 and 
100." Hence "more than half" cannot be interpreted independently of the 

interpretation of the set expression attached to it. Thus in the-schema 

(44) 	More than half the As are Bs, 
"'more than half' is not acting like a quantifier, but like a determiner. It 
combines with a set expression to produce a quantifier.,,23 "Quantifiers 

correspolld to noun-phrases, not to determiners."24 The quantifier in (44) is 

the whole noun phrase "more than half the As," and (44) is rendered 

(45) 	(More-than-half-A x)Bx. 2S 

In this way the indeterminacy inherent in determiners is resolved by the 

set expressions attached to them. and the difficulty indicated above dis
appears: "more than half the natural numbers between 0 and 10" and 
"more than half the natural numbers between 0 and JOO" are two distinct 
quantifiers, each with its own meaning. And in general •. quantifiers are 
pairs, (D, S), of a determiner D and a set expression S. If S, Sf denote 

different sets, DS and DS f are different quantifiers. 
What about "every" and "some"? According to Barwise and Cooper, 

the situation is indeed different in the case of "every." The schema 

(46) 	Every A is B 
call be expressed in terms of the quantifier "every" independently of the 

interpretation of A: 

(47) (Every x)(Ax -+ Bx). 
However, they say, the syntactic dissimilarity of (46) and (47) indicates 

that even in this case the "true" quantifier is "every A ," "Every" is but a 
determiner, although, unlike "more than half," it is a logical determiner. 

Sentence (46), then, is to be symbolized not as (47) but rather as 

(48) 	(Every-A x)Bx. 

4 Nonlogical Quantifiers 

As a theory of quantification, Barwise and Cooper's theory is evidently 

very hloated ...Every man," "every woman," "every child," "every son 

of mine," etc. are all different quantifiers. So are "most men," "most 

http:ments.22
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women," "most children," and so on. Two questions present themselves: 
Is such an excessive theory of quantifiers necessary to account for the 
diverse patterns of quantification in natural-language discourse? Is what 
this theory explains quantification? 


Barwise and Cooper address the following questions: 


• 	What is the role of quantifiers and how are they interpreted in a 
model? According to Barwise and Cooper, we use quantifiers to 
attribute properties to sets. "3xtp(x)" asserts that the set of things 
satisfying tp(x) is not empty. "'v'xtp(x)" says that the set of tps contains 
all the objects in the universe ofdiscourse. "Finite xtp(x)" states that this 
set is finite. And so on. Model-theoretically, a quantifier partitions the 
"family" of all subsets of the universe of a given model into those that 
satisfy it and those that do not. When combined with the former, it 
yields the value T, when combined with the latter, the value F. Thus a 
quantifier can be identified with the family of all sets to which it gives 
the value T. (Note that according to this account all properties of sets 
are quantifier properties.) 

What is the syntactic category of the natural-language expressions 
that function as quantifiers? Barwise and Cooper observe that noun 
phrases in general behave like quantifiers. Given a noun phrase, some 
verb phrases will combine with it to produce true sentences, and others 
to produce false sentences. Semantically, this means that each noun 
phrase divides the family of verb-phrase denotations in a given model 
into two groups: those that satisfy it and those that do not. Therefore, 
Barwise and Cooper conclude, "the noun phrases of a language are all 
and only the quantifiers over the domain of discourse. "26 To make their 
treatment of noun phrases uniform, Barwise and Cooper have to show 
that proper names can also be treated as quantifiers. But this is 
not difficult to show. We can treat a proper name like "Harry" as 
partitioning all the sets in the universe into those that contain Harry and 
those that do not. Thus "Harry" can be semantically identified with the 
family of all sets that include Harry as a member. "In our logic," 
Barwise and Cooper say, "(a) may be translated as (b), or rather, 
something like (b) in structure. 

(a) Harry knew he had a cold. 

(b) Harry x[x knew x had a cold]."27 

In sum, "Proper names and other noun-phrases are natural language 
quantifiers."28 

The linguistic logic developed by Barwise and Cooper and based on the 
above principles differs from standard first-order logic and its Mostowskian 
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extension in several substantive ways. We can outline its main features as 
follows: 

Syntactically, the logic excludes logical quantifiers altogether. Instead, 
it includes logical and nonlogical determiner symbols (the logical deter
miners include "some," "every," "no," "both," "I" (in the sense of "at 
least I"), "2," "3," ... , "! I" ("exactly one"), "!2," ... , "the I," ... ; the 
nonlogical determiners include "most," "many," "few," "a few," ... ). 
Quantifiers are nonlogical complex tenns representing noun phrases in 
general: "John," "Jerusalem," "most people," "five boys," etc. Formally, 
quantifiers are defined terms of the form D('l), where D is a determiner and 
'1 	 is a (first-level) predicate with a marked argument place called a "set 
term." A quantified formula is of the form Q('l), Q being a quantifier and 
'1 a set term. The language also includes the distinguished I-place first-level 
prcdicate (set term) "thing." 

Semantically, a model (f for the logic provides, in addition to the stan
dard universe of objects, interpretations:J for the truth-functional connec
tives, "thing," and the logical as well as nonlogical determiners. "Thing" 
is interpreted as the universe of the model, E; each (logical or nonlogical) 
determiner is interpreted as a function that assigns to every set in the 
model a family of sets in the model. :J(!n) !n : peE) :-t> P(P(E)) such 
that for each A s; E, !n(A) = {X s; E: IA n XI = n}; :J(Most) = most: 
P(E)-+P(P(E» such that for each As; E, most(A) {Xs E: IA nXI > 

A - XI}; etc. The truth-functional connectives are interpreted in the 
usual way (although Barwise and Cooper favor a trivalent logic to allow 
for determiners denoting partial functions). Quantifiers (nonlogical tenns) 
-D('l) for some determiner D and set term 'l-are interpreted in each 
model as the family of sets assigned in this model by the denotation of D 
to the denotation of". For example, :J(!n(man» = {X s E: I{x: x is a 
man} nXI = n} and 3(John) {X s E: John E X}. If ct> and 'P are 1
place predicate symbols (set terms), "(Dct>)['P]" is true in (f iff the denota
tion of "II in (f is a member of the family of sets assigned to D<1> in (t. 

Barwise and Cooper posit a universal semantic constraint on natural
language determiners: "It is a universal semantic feature of detenniners 
that they assign to any set A a quantifier (i.e. family of sets) that lives on 
A,"where Q lives 011 A iff for any set X, X E Q iff A n X E Q.29 The 
following equivalences illustrate this notion: 

Many mcn run +-+ Many men are men who run 

Few women sneeze +-+ Few women are women who sneeze 

John loves Mary +-+John is John and loves Mary 30 
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"The quantifiers represented by the subjects of the sentences," Barwise 
and Cooper explain, "live on the set of men, women and the singleton set 
containing John, respectively."31 And they conclude, "When we turn to 
non-logical determiners, [the living on constraint] is the only condition we 
impose as part of the /ogiC."32 This condition on determiners is ipso facto 
a condition on quantifiers. 

Is what Barwise and Cooper's theory explains quanl(/icalioll? To resolve 
this issue, let us consider several intermediate questions: In what sense is 
Barwise and Cooper's logic a first-order system, given that quantiflers are 
nonlogical second-level predicates? Quantifiers. in Barwise and Cooper's 
system, are I-place predicates. Is being I-placed an essential property of 
quantifiers? If so, why? How does Barwise and Cooper's criterion for 
"quantifierhood" compare with Mostowski's? Does their theory account 
for all natural-language quantifiers intuitively satisfying Mostowski's 
principles? Does it account only for such quantifiers? 

Obviously, Barwise and Cooper's requirements on quantifiers are al
together different from. those of Mostowski (and Dummett). In particular, 
Barwise and Cooper's quantifiers do not satisfy the semantic condition 
(LQ2). These quantifiers do in general distinguish elements in the universe 
ofa model for their system. Consider the following two pairs of sentences: 

(49) 	a. Einstein x[x is among the ten greatest physicists of all time] 

b. Einstein x[x is among the ten greatest novelists of all time] 

(50) 	a. Most (natural numbers between I and 10) x [x < 7J 

b. Most (natural numbers between I and 10) x [9 < x < 17J. 

Although the extension of "x is among the ten greatest physicists of all 
time" can be obtained from that of "x is among the ten greatest novelists 
of all time" by a permutation of the universe of discourse, the quantifier 
"Einstein" assigns the two sets different truth values. Similarly, "Most 
natural numbers between I and 10" assigns different truth values to the 
extensions of "x < 7" and "9 < x < IT' in spite of the fact that the one 
extension can be obtained from the other by some permutation of the 
(intended) universe. 

Moreover, not all quantity properties, properties that satisfy Mostowski's 
criterion, are quantifiers (or constituents of quantifiers, i.e., determiners) 
on Barwise and Cooper's view. Thus the requirement that quantifiers "live 
on" the sets in their domain excludes some linguistic constructions that we 
would expect to be analyzed by means of cardinality quantifiers: 

(51) 	Mostly women have been elected to Congress. 
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(52) Only human beings have brains. 

(53) Not only men are allowed in the club. 

Sentence (51) cannot be formalized as 

1(54) Mostly (women).i [x has been elected to Congress], 
I 

since (54), unlike (51), comes out true in the intended model: the require	 I 
j 

ment of "living on" implies that for any set X, "Mostly (women)" is true 
of X ifit is true of {x: x is a woman} 11 X. But clearly, "Mostly women are 'I 
women elected to Congress" is true. Similar problems occur if we want to I 
formalize (52) as I(55) Only (human beings) x [x has a brain], 

or (53) as 

(56) Not only (men) x [x is allowed in the club]. 

The requirement of "living on" determines that (55) is true and (56) is 
false. while (52) is clearly false, and (53) is sometimes true. Barwise and 
Cooper can get over the difficulty by rephrasing (51) to (53) with deter
miners other than "mostly," "only," and "not only," respectively, but 
only at the expense of giving up the desideratum of transparent analysis 

of linguistic structures. 
The requirement that only norlll phrases be construed as quantifiers also 

blocks "natural" candidates for natural-language quantifiers. Consider 
the following sentences involving quantitative comparison of extensions, 
which, by Dummett's and Mostowski's criterion, have a good claim to 

being analyzed as statements of quantification: 

(57) There are fewer men than women. 

(58) More people die of heart disease than die of cancer. 

(59) They arc outnumbered by us. 

(60) 	The same percentage of boys and girls who took the test received a 


perfect score. 


Clearly, the operation of quantification in (57) to (60) is not carried out by 

noun phrases. 

To sum up, Barwise and Cooper's theory is clearly not based on 


Mostowski's ideas of the nature of quantifiers. In particular, Mostowski's 

semantic condition, (LQ2), is violated by Barwise and Cooper. Their 

theory also docs not olfer an alternative principle to (LQ2) of the same 

gencral import as Mostowski's. In my opinion, Barwise and Cooper's 

analysis explains some linguistic regularities, but what it explains is not the 
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structure of quantifiers. Their account is at once too particular to explain 
the notion of quantification in all its generality-witness (51) to (53) and 
(57) to (60)-and too general to focus on the unique features ofquantifiers 
-see (49) and (50).33 

Logical Quantifiers 

Can we increase the expressive power of Mostowski's logical system so 
that it is no longer subject to Barwise and Cooper's criticism, without 
betraying its underlying principles? 

I think the "inadequacy" of Mostowski's system can be analyzed along 
lines different from those taken by Barwise and Cooper. The problem is 
neither with the "logicality" of Mostowski's quantifiers nor with his crite
rion for second-level predicates expressing quantifier properties (a crite
rion shared, as we have seen, by Dummett). The problem is that Mostowski 
explicitly considered only i-place second-level predicates as candidates for 
quantifiers. Progress ~n logic was made after the indispensability of rela
tions was acknowledged. Frege's revolution was in part in recognizing 
relations for what they are: irreducibly many-place predicates. Mostowski's 
requirements on quantifiers-that they turn propositional functions into 
propositions and that they do not distinguish elements in a model for the 
language-contain nothing to exclude many-place second-level predicates 
from being first-order quantifiers. On the contrary, the failure of Mostow
ski's theory to display the quantificational structure of sentences such as 
(36) to (39) is testimony only to the "incompleteness" of that theory. 
Mostowski's theory of cardinality quantifiers includes all the "predica
tive" quantifiers that express cardinality measures, but none of the "rela
tional" quantifiers that express such measures. And there is no reason to 
believe that Mostowski would have rejected many-place quantifiers. 

With this observation the solution to Barwise and Cooper's problem 
becomes very simple: Both "most" in "most things are A" and Hmost" in 
"most As are Bs" are quantifiers, although, as was proved by Barwise and 
Cooper, the second is not reducible to the first. The first is a I-place 
quantifier, M I, i.e., a property of first-level properties (or a I-place func
tion from first-level properties to truth values). It appears in formulas of 
the form 

(M 1x)~x. 

and for any given model \ll with universe A it is defined by the funtion t!I' 
as in (9) above. That is, for all pairs of cardinals a, p whose sum is IA I, 
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II) = T iff a > p. 
The second "most" is a 2-place quantifier, M 2, i.e., a 2-place relation 
between first-level properties.(or a 2-place function from pairs of first-level 
properties to truth values). It appears in formulas of the form 

(M 2X)(<I>x, \fix), 

and for any given model \l( with universe A it is definable by a function t:1 2 

, 

which I will presently characterize. 
What kind of relation is M2? It is a relation that in any given universe 

A holds between two subsets B, 0' of A (in that order) iff IB n HI > 
IB - B'I. M~ is defined by the function t from quadruples of cardinals a, 
/1, y, <5 such that a + p + y + (j = IAI to {T. F} as follows: 

(~2(a, p, )', <5) = T iff a > p, 

where, intuitively, (X = IB n B'I, P IB - 0'1, Y = 10' BI, and (j = IA 
(B u B' )1. Using a Venn diagram, we can form a visual image of the 
relation between the cardinal numbers a, p, y, <5 and parts of the universe 

A as in figure 2.1. 
I t is easy to see that whereas M 2 is not definable in terms of M 1 , M 1 is 

definable in terms of M2. Thus, 
~ ~ . 
"(M1x)<I>x iff (M 2x)(x = X, <l>x). 
';·t

Our analysis provides a rationale for extending Mostowski's original 
system in a way that was first proposed by Per Lindstrom in "First order ,:l 
Predicate Logic with Generalized Quantifiers" (1966). This extension has .:" 

been widely adopted by logicians and mathematicians, including Barwise 
in his purely logical writings. (Barwise later also expressed misgivings about 
treating proper names as quantifiers in natural-language analysis.34

) Lind-
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strom did not discuss the reasons underlying his extension of MOSlowski's 
system, but as we have just seen, philosophico-Iinguistic considerations 
support his approach. In accordance with Lindstrom's proposal we add to 
Mostowski's original quantifiers all second-level 2-ptace relations of first
level I-place predicates satisfying (LQ2). The one-to-one correlation be
tween Mostowski's quantifiers and cardinality functions is preserved under 
the new extension. (See the appendix.) 

The syntax and the semantics of first-order logic with I and 2-place 
generalized quantifiers is a natural extension of the syntax and the seman
tics of section 2 above. Again, a model for a language of this logic is the 
same as a model for a language of standard first-order logic: the Henrich
ment" is expressed by the rules for computing the truth values of formulas 
in a model (relative to an assignment of elements in the universe to the 
individual variables of the language). 

I will now present a formal description of the extended logic. 

First-Order Logic wit~ 1- and 2-Place Generalized Quantifiers 

Syntax 

Logical symbols In addition to the logical symbols of standard flrst

order logic (but with the possible omission of V and/or 3) the language 

includes 1- and 2-pJace quantifier symbols: Q:, ... , Q~ and Qi, ... , Q; 

for some positive integers m and n. (If V and/or 3 belong in the language, 

they fall under the category of I-place quantifiers, and we add to them 

the superscript "I.") 

Punctuation The usual punctuation symbols for first-order logic plus 

the symbol",". 


Nonlogical symbols The same as in standard first-order logic. 
Terms The same as in standard first-order logic. 


Formulas The same definition as for standard first-order logic, but the 

definition of quantified formulas is replaced by the following: 


(I) 	If <I> is a formula and Q1 is a I-place quantifier symbol, then (QIX)<J) 
is a formula. 

(II) 	If <1>, 'f' are formulas and Q2 is a 2-placc quantifier symbol, then 
(Q2x)(<I>, 'f') is a formula. 

Semantics 

The semantics is the same as that for standard first-order logic, but the 
definition of satisfaction of quantified formulas in a model'll with a 
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universe A relative to an assignment g for the variables of the language is 

changed to the following: 

(A) 	If<l> is a formula and Q1 is a I-place quantifier symbol, 
'11 t= (QI x)(NgJ iff for some cardinal numbers ex and psuch that 
ex + If = IAI and 1:{(Ct., {J) = T, there are exactly Ct. elements a E A 
such that'll t= <1>[g(x/a)] and exactly pelements b E A such that 

'11 t= "'(Ng(x/b)]. 

(B) 	 If <1>, 'f' are formulas and Q2 is a 2-place quantifier symbol, 
'11 t= (Q2x)(<I>, 'f')[g] iff for some cardinal numbers Ct., p, y, b such 

that ex + {J + y + 0 = IAI and IJ\ex, p, y, b) = T, 
• there are exactly ex elements a E A such that ~ t= (<I> & 'f')[g(x/a)], 

• there are exactly {Jelementsb E A such that ~ t= (<1>& -'f')[g(x/b)], 


there are exactly y elements c E A such that ~( t= (-<I> & 'f')[g(x/c)], 


• there are exactly 0 elements dE A such that 

'll t= (",<1> & "" 'f')[g(x/d)]. 


Applications 
Within the system defined above we can easily analyze the logical structure 
of sentences that eluded Moslowski's original devices, like (36) to (39) 
above. We choose a language that includes, in addition fo 31 and MI, the ill 
2-place quanlifier "60%," defined by I(ex, p, y, b) = T iff Ct. + p < No and 
ex = 60%(a + {J). We then symbolize (36) to (39) as given below: 

(61) 	(M 2x)(x is an arrow of John's, x hits the target) if 
111

(62) (60%2x)(x is a female student in my class, x is an A student) I! 
(63) 	(M 2x)[x is a child & - (3 1y)(x communicates with y during the first 

two years of x's life), x is autistic] 

(64) (M 2x)[x is a college, (M2y)(y is a student at x, -(y is exempt from 

tuition fees at x)] 

By adding to the language the 2-place quantifiers 

S2, defined hy 1(Ct., fl, y, t5) = T iff a > y, 

()2, defined by l(a, /1, )', 0) = T iff y = 0, 

N 2 , detilled hy t(ex, /1, y, 0) Tiff y i= 0, 

,-;2. defined hy t(ex, fl, y, 0) T iff {J < y, and 

R 2, defined hy I(a, /1, )1,0) T iff {J > y, 


we can encode the logical structure of sentences (51) to (53) and (57) to 


(59), which were prohlematic for Barwise and Cooper: 


(65) (S2 X)(X is a woman, x has been elected to Congress) 

tl 
') 

, r 
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(66) 	(02X )(X is a human being, x has a brain) 

(67) 	a. _(02X ){X is a man, x is allowed in the club) 

b. (N2x)(x is a man, x is allowed in the club) 

(68) 	(F 2x)(x is a man, x is a woman) 

(69) 	(R
2
x)(x is a person & x dies of heart disease, x is a person & x dies 

of cancer) 

(70) 	(F2x)(x is one of them, x is one of us) 

Within the new system we can also represent the logical structure of (50.a) 
and (50.b) without violating (LQ2): 

(71) 	(M 2x)(I < x < 10, x < 7), 

(72) 	(M 2x)(1 < x < 10,9 < x < 

We have seen an example of nested 2-place generalized quantifiers 
in (64). A more concise example is 

(73) 	Most men love most women, 

sym boJized as 

(74) 	(M 2x)[x is a man, (M2y)(y is a woman, x loves y)J. 

To formalize (60), we need to include 3-place quantifiers in the system. 
The reason is that (60) involves comparison between (subsets of) three 
sets: the set of all boys who took the test, the set of all girls who took the 
test, and the set of all those who received a perfect score in the test. We 
have not defined 3-place quantifiers for our formal system, but it is easy 
to see how this would· be done. 

A 3-place quantifier is a function that assigns to each universe A a 
3-place quantifier on A, Q]. Q] is defined by a cardinality function IA that 
takes into account all the "atoms" of Boolean combinations (intersec
tions, unions, and complements) of triples, (B, D), of subsets of A. 
Since there are eight such atoms: B n C n D, (B n C) - D, (C n D) B. 
(Dfl B) - C, B (Cu D), C - (Bu D), D - (Bu C), and A - (Bu Cu 
D), I~t is a function from 8-tuples, (a, {I, y, <5, c, (, '1, U), of cardinal num
bers whose sum is IAI to {T, F}. We need to decide on the order in which 
a, {I, y, <5, e, " '1, 0 represent (sizewise) the atoms generated by B, C, and 
Din A. I use a Venn diagram to fix a correlation (figure 2.2). 

We can now formalize (60) as 

(75) 	(S3 X )(X is a boy who took the test, x is a girl who took the test, 
x received a perfect score in the lest), 

where S3 is defined by a function I such that when IA I is finite, 
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I(a, fl. )'. J. c, " '1, 0) = T iff _.... a_+_~ _____ = - ........----- 
a+/1+<5+f: a+ 

The present theory enables us to explain the syntactic differences be
tween logical and linguistic quantifications. e.g., the linguistic 

Every A is B 
t,! 

and the logical ~! 
1"-' 

(Every x)(A x Bx), 	 I' ~ 

by conjecturing that natural language frequently employs quantifiers that, t: 

from a purely logical perspective, are redundant. Thus. whereas "12 (de I"' 

fined by: I(a, /1, y, J) = T iff /1 = 0) is logically superfluous, it may very 

well be the quantifier used in natural language in sentences of the fonn ti
', ."I(46). The logical form of (46) is, on this conjecture, 	

~ I 

t', I, 

(76) (Every 2 x)(Ax, Bx). 	 I:, 

r.' 
Likewise, we obtain a structure similar to that of 	 I=,: 

~r n, 

(77) Fewer men than women live to be 80 ~J: 
by employing a 3-place quantifier, F3, rather than the 2-place quantifier :: 

fl" 

F2. Sentence (77) is then rendered 

(78) (F 3x)(x is a man, x is a woman, x lives to be 80) 

instead of the logically simpler 

(79) (F 2 x)(x is a man & x lives to be 80, x is a woman & x lives to be 80). 

F3 is defined, I(a, fl, y, <5, t, (, 'I, 0) = T iff <5 < y. Logic with redundant 
many-place quantifiers can be seen as a bridge between the logical and the 

grammatical analysis of language. 
The linguistic merits of the logical, as opposed to nonlogical. quantifier 

approach have been noted by linguists working in Logical Form (LF) 
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research. An anonymous referee for this book indicates that the category 
of logical quantifiers (without the "living on" constraint) is significant not 
only semanticalJy but also syntactically. Extensive research on LF has 
shown that "there are systematic syntactic differences between NPs de
pending upon whether they are logical or non-logical terms." Thus trans
parency between syntax and semantics favors logical, as opposed to non
logical, quantifiers. Among linguists whose work exemplifies the logical
quantifier approach are Higginbotham and May (1981) and May (1989, 
1990). In addition, May (1991) cites reasons pertaining to language learn
ability for identifying quantifiers with cardinality operators and cate
gorizing all quantifiers as logical terms. May writes, 

In distinguishing the logical elements in the way that we have, we are making 
cleavage between logical items whose meanings are formally, and presumably 
exhaustively, determined by UG (Universal GrammarJ---the logical terms and 
those whose meanings are underdetermined by UG-the non-logical, or content, 
words. This makes sense, for to specify the meaning of quantifiers, all thal is 
needed, formally, is pure arithmetic calculation on cardinalities, and there is no 
reason to think that such mathematical properties are not universal. For other 
expressions, learning their lexical meanings is determined causally, and will be 
effected by experience, perception, knowledge, common-sense, etc. Rut none of 
these factors is relevant to the meaning of quantifiers. The child has to learn the 
content of the lexical entries for the non-logical terms, but this is not necessary for 
the entries for the logical terms, for they are given innately. JS 

The considerations adduced by May open a way to empirically ground not 
only the notion of quantifier developed so far but also the philosophical 
demarcation of logic in general as presented in this book. 

A few words about the limitations of Mostowskian quantifiers. Some 
predicates of natural language are such that a proper representation of 
their extension is not possible in standard first-order model theory. 
tifier expressions do attach to such predicates, however. Here are two 
examples: 

(80) Most of the water in the lake has evaporated. 

(81) M ore arms than we have are needed to win this war. 

"Water in the lake" and "arms needed to win this war" do not sort the 
objects in a universe into those that fall, and those that do not fall under 
them. Hence the present theory, which does not change the standard 
structure of first-order models, cannot account for their logical form. 

In addition to predicates that defy first-order symbolization, we also 
find in natural language a use of quantifiers that exceeds the resources of 
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Mostowski's logic. This is the collective, as opposed to the usual, distribu

tive use of quantifiers. Thus the sentence 

(82) Five children ate the whole cake 

cannot be formalized 

(83) (!5x)(x is a child, x ate the whole cake), 

which says that t:lere are exactly five children each of which ate the whole 
cake. Collective and nonsortal quantifications will not be dwelt on in this 

book. 

6 From Predicative to Relational Quantifiers 

The generalized logic with I· and 2-place quantifiers defined in the last 
section can easily be extended to a logic with n-place quantifiers for any 
positive integer II (Lindstrom, 1966). With each n-place quantifier Q" we 
associate a family of cardinality functions I 

Q
", which, given a cardinal (x, 

assigns a truth value to each 2"-tuple of cardinals whose sum is (x. Then, 
given a model ~( with a universe A and a sequence of n subsets of A, 

(BI' ... , BII ), the value ofQ~(BI' ... , Bn) depends on whether the atomic 
Boolean algebra generated by B1 , ••• , Bn in A is such that 

I.?"({fl' ... , fJ2") = T, 

where fJI' ... , 1l2" are the cardinalities of all the atoms of this Boolean 
algebra ordered in some canonical manner. I will call the n-place quanti
fiers described above predicalive quantifiers because such quantifiers con
stitute II-place relations among first-level (I -place) predicates. 

The next step is to consider quantifiers on relations, or relational quanti-
Syntactically, a I-place relational quantifier is an operator that binds 

a formula by a sequence ofn bound variables, (Xl'·.·. XII)' for some finite 
Il > I. If we change the symbolization of 1- and 2-place predicative quanti
fiers to QI and QI.I respectively, we will naturally symbolize I-place 

relational quantifiers in n variables by Q". Thus if 

<Nx, y) 

is a formula with x and y free, then 

(Q 2x, y)<1>(x, y) 

is also a formula, generated from <»(x, y) by binding the free variables X 

and)' with Q2. (The superscript "2" indicates that Q is a I-place quantifier 
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over 2-place first-level relations. For 2-place relational quantifiers over 
n- and m-place relations, in that order, we will use the superscript "n, m.") 

Semantically, however, the characterization of logical relational quanti
fiers is an involved matter. The question is how to interpret the semantic 
condition (LQ2) with respect to these quantifiers. Recall that (LQ2) stipu
lates that quantifiers should not distinguish the identity of particular 
individuals in the universe of a given model. Mostowski construed this 
condition as requiring that quantifiers be invariant under permutations of 
the universe. But Mostowski dealt with predicative quantifiers, which 
semantically are functions on subsets of the universe, and the quantifiers 
we are dealing with now are relational quantifiers, i.e., functions on subsets 
of Cartesian products of the universe. If, following Mostowski, we again 
interpret (LQ2) as invariance under permutations, the question arises, 
invariance under permutations of what? Should relational quantifiers over 
a universe A, say I-place quantifiers over binary relations on A, be in
variant under permutations of A? Permutations of A x A? Permutations 
of Ax A induced in some specified manner by permutations of A? Or 
should we not interpret (LQ2) in terms of permutations of the universe at 
all when it comes to relational quantifiers? This question was raised by 
Higginbotham and May in "Questions, Quantifiers, and Crossing" (1981). 
From another angle Higginbotham and May ask what is implied by the 
requirement that quantifiers should not distinguish the identity of elements 
in the universe of discourse. 

Yet another question is the relationship between logicality and cardinal
ity. When I earlier discussed Mostowski's generalization, I said that this 
question could be avoided because on a very natural interpretation of 
(LQ2), the requirement that logical quantifiers not distinguish the identity 
of elements in the universe coincides with the requirement that logical 
quantifiers be definable by cardinality functions. Since (LQ2) is a natural 
condition on logical quantifiers, the identification of logical-predicative 
quantifiers with cardinality quantifiers appeared to be justified. However, 
now that the interpretation of (LQ2) is no longer straightforward, the 
question of cardinality and logicality has to be tackled directly. 

But the question we have to confront first concerns (LQ2) itself. Why 
should (LQ2) be the semantic condition on logical quantifiers'? Neither 
Mostowski nor Dummett (nor, as I have already indicated, Lindstrom) 
have justified their "choice" of invariance under permutations as the 
characteristic trait of logical quantifiers. So far I too have uncritically 
accepted their criterion. But in view of the questions we are now facing 
and in light of the general inquiry we have undertaken in this work, it is 
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now time to rethink the issue of logicality. Without a clear answer to the 
question of what makes a term logical, I doubt that we will be able to 
resolve the uncertainty regarding the correct definition of relational quan
tifiers. Moreover, a critical analysis of logicality will enable us to evaluate 
Mostowski's claim-most central to our query-that symbolic logic is not 
exhausted by standard mathematical first-order logic. 
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Chapter 3 
To Be a Logical Ternl 

Since the discovery ofgeneralized quantifiers by A. Mostowski (1957), the 
question "What is a logical term?" has taken on a significance it did not 
have before. Are Mostowski's quantifiers Hlogical" quantifiers'! Do they 
differ in any significant way from the standard existential and universal 
quantifiers? What logical operators, if any, has he left out? What. ill 
all, are the first- and second-level predicates and rcla tions that can be 
construed as logical? 

One way in which I do not want to ask the question is, "What, ill Ihe 
nature of things, makes a property or a relation logical'!" On this road lie 
the controversies regarding necessity and apriority, and these, I bclieve, 
should be left aside. Although some understanding of the modalities is 
essential for our enterprise, only their most general features come into 
play. A detailed study ofcomplex and intricate modal and epistemic issues 
would just divert our attention and is of little use here. But if "the nature 
of things" is not our measure, what is? What should our starting point be? 

What strategy shall we decide upon? 


A promising approach is suggested by L. Tharp in "Which Logic Is the 
Right Logic'!" (1975). Tharp poses the question, What properties should a 
system oflogic have? In particular, is standard first-order logic the "right" 
logic? To answer questions of this kind, he observes, it is crucial to have a 
dear idea about "the role logic is expected to play." 1 Tharp's point is 
worth taking, and it provides the clue we are searching for. If we identify 
a central role of logic and, relative to that role, ask what expressions can 
function as logical terms, we will have found a perspective that makes our 
question answerable, and significantly answerable at that. 

The most suggestive discussion of the logical enterprise that I know of 
appears in A. Tarski's early papers on the foundations of semantics. 
Tarski's papers reveal the forces at work during the inception of modern 
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logic; at the same time, the principles developed by Tarski in the 1930s are 
still the principles underlying logic in the early 1990s. My interest in Tarski 
is, Ileedless to say, not historical. I am interested in the modern conception 
of logic as it evolved out of Tarski's early work in semantics. 

The Task of Logic and the Origins of Semantics 

In "The Concept of Truth in Formalized Languages" (1933). "On the 
Concept of Logical Consequence" (1936a), and "The Establishment of 
Scientific Semantics" (1936b), Tarski describes the semantic project as 
comprising two tasks: 

I. 	Definition of the gelleral concept of truth for formalized languages 
2. 	 Dclinition of the logical concepts of truth, consequence, consistency. 

etc. , 
The main purpose of (I) is to secure meta logic against semantic para

I
doxes. Tarski worried lest the ullcritical usc of semantic concepts prior to I 
his work concealed an inconsistency: a hidden fallacy would undermine 
the cntire venturc. Be therefore sought precise, materially, as well as 
formally, correct definitions of "truth" and related notions to serve as a I 
hedge against paradox. This aspect of Tarski's work is well known. In 

I 
t 

"Model Theory before 1945" R. Vaught (1974) puts Tarski's enterprise in 
a slightly different light: 

[During the late I 920s] Tarski had become dissatisfied with the notion of truth as 
it was heing lIsed. Since the notion "0 is true in '11" is highly intuitive (and perfectly 
clear for allY definite 0), it had heen possible to go even as far as the completeness 
theorem hy treating truth (consciously or unconsciously) essentially as an unde
lined notion ---one with many ohvious properties .... But no one had made an 
analysis of truth, not even of exactly what is involved in treating it in the way just 
mcntioncd. At it time when it was quite well understood that 'all of mathematics' 
could he done, say, in ZF, with only the primitive notion E, this meant that the 
theory of models (and hence much of metalogic) was indeed not part of mathe
matics. It sccms clear that this whole state of affairs was bound to cause a lack of 
sure-rootedness in metalogic.... [Tarski's] major contribution was to show that 
the notion "a is trlle in \11" can simply be defined inside of ordinary mathematics, 
for example, in ZF. 2 

On both accounts the motivation for (I) has to do with the adequacy of 
thc system designed to carry out the logical project, not with the logical 
project itself. The goal of logic is notlhe mathematical definition of "true 
scntcnce," and (I) is therefore a secondary, albeit crucially important, task 
of Tarski an logic. (2), on the other hand, does reflect Tarski's vision of the 
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role of logic. In paper after paper throughout the early 1930s Tarski 

described the logical project as follows: 3 The goal is to develop and study 

deductive systems. Given a formal system 2) with languagc L and a 

definition of "meaningful," i.e., "well-formed," sentcm:e for I"~ a (dosed) 
deductive system in !t:' is the set of all logical consequences of somc set X 
of meaningful sentences of L "Logical consequcnce" was defined proof

theoretically in terms of logical axioms and rules of inferencc: if.w and .elf 

are the sets of logical axioms and rules of inference of !.t', respectively, the 

set of logical cOllsequences of X ill !.t' is the smallcst set of well-formcd 

sentences of L that includes X and .w and is closed undcr the rules in 
91. In contemporary terminology, a deductive system is a jtJr/llul th('ory 
within a logical framework !i:'. (Note that the logical framework itself can 

be viewed as a deductive system, namely by taking X to be the set of logical 

axioms.) The task of logic, in this picture, is performcd in two steps: (a) 

the construction of a logical framework for formal (formalized) theories; 

(b) the investigation of the logical properties consistency, complctcncss, 

axiomatizability, etc.-~of formal theories relative to the logkal framc

work constructed in step (a). The concept of logical CO/l.\'('qll('llCl' (togcther 

with that of a well-formed formula) is the key concept of Tarskil.111 logic. 

Once the definition of "logical consequence" is given, we can easily 

obtain not only the notion of a deductive systcm but also those of a 

logically true sentence; logically equivalent sets of sentences; an axiom 

system of a set of sentences; and axiomatizability, completeness, and con

sistency of a set of sentences. The study of the conditions under which 

various formal theories possess these properties forms the subject matter 

of meta logic. 

Whence semantics? Prior to Tarski's "On the Concept of Logical Con

sequence" the definitions of the logical concepts were proof-theoretical. 

The need for semantic definitions of the same concepts arose when Tarski 

realized that there was a serious gap between the proof-theoretic defini

tions and the intuitive concepts they were intended to capture: many 

intuitive consequences of deductive systems could not be detected by the 

standard system of proof. Thus the sentence "For every natural number 

n, Pn" seems to follow, in some important sense, from the set of sentences 

"Pn," where Il is a natural number, but there is no way to express this f~\ct 

by the proof method for standard first-order logic. This situation, Tarski 

said, shows that proof theory by itself cannot fully accomplish the task of 

logic. One might contemplate ex.tending the system by adding new rulcs of 

inference, but to no avail. Godel's discovery of the incompleteness of the 

deductive system of Peano arithmetic showed, 
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In every deductive theory (apart from certain theories of a particularly elementary 
nature), however much we supplement the ordinary rules of inference by new 
purely structural rules, it is possible to construct sentences which follow, in the 
uSlIal sense, fwm the theorems of this theory, but which nevertheless cannot be 

4 
proved in this thcory on the basis of the accepted rules of inference. 

Tarski's conclusion was that proof theory provides only a partial ac


count of the logical concepts. A new method is called for that will permit 


a more comprehensive systematization of the intuitive content of these 


concepts. 

The intuitions underlying our informal notion of logical consequence 


(and derivative concepts) are anchored, according to Tarski, in certain 


relationships between linguistic items and objects in (configurations of) 


the world. The discipline that studies relationships of this kind is called 


semantics: 
We ... understand by semantics the totality of considerations concerning those 
concepts which, roughly speaking, ex.press certain connex.ions between the ex.pres
sions of a language and the objects and states of affairs referred to by these 

exprcssions. ~ 

The precise formulation of the intuitive content of the logical concepts is 

thcrcfore a job for semantics. (Although the relation between the set of 

scntences "/'11" and the universal quantification "('tx)Px," where x ranges 

over the natural numbers and "n" stands for a name of a natural num

ber, is not logical consequence, we will be able to characterize it ac

curately within the framework of Tarskian semantics, e.g., in terms of (JJ 

com plctellcss.) 

2 The Semantic Definition of "Logical Consequence" and the Emergence 

of Models 

Tarski describes the intuitive content of the concept "logical consequence" 

as follows: 
Certain considerations of an intuitive nature will form our starting-point. Consider 
any class K of sentences and a sentence X which follows from the sentences of this 
class. From an intuitive standpoint it can never happen that both the class K 
consists only of true sentences and the sentence X is false. Moreover, ... we are 
(.:oncerned here with thc concept of logical, Le.formal, consequence, and thus with 
a relation which is to be uniqucly dctermined by the form of the sentences between 
which it holds.... The two circumstances just indicated ... seem to be very charac

6 
teristic and essential for the proper concept of consequence. 

We can express the two conditions set by Tarski on a correct definition 

of "logical consequence" by (CI) and (C2) below: 
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CONDITION CJ If X is a logical consequence of K, then X is a I/('c('.\'.\wy 

consequence of K in the following intuitive sense: it is impossihle that all 
the sentences of K are true and X is false. 

CONDITION C2 Not all necessary consequences fall under the concept of 
logical consequence; only those in which the consequence relation between 

a set of sentences K and a sentence X is based on jCJnnal relationships 
between the sentences of K and X do. 

To provide a formal definition of "logical consequence" based on «( 'I) 
and (C2), Tarski introduces the notion of model. In current terminology, 
given a formal system !£) with a language L, an !:f'-model, or a "lOdell;lI' 

!t', is a pair, \)( = (A, D), where A is a set and lJ is a fUllction that assigns 
to the nonlogical primitive const<'lflts of L, II' 1 , '" elements (or COIl

2 

structs of elements) in A: if I; is an individual constant, D(1d is a member 

of A; if Ii is an fl-place first-level predicate, D(1;) is an Il-place relation 
included in A"; etc. We will say that the function J) assigns to 11' 1 , ... 

2
denotations in A. Any pair of it set A and a denotation fUllction J) 

determines a model for !:f'. Given a theory T in a formal system ,:;) with a 

language L, we say that a model VI for !/) is a model (~f'.'Y itT every sentence 
of.O/" is true in 9[' (Similarly, \}I is a model of a sentence X of L ifr X is true 
in VL) The definition of "the sentence X of L is true in a model VI for ,:;". 
is given in terms of satisfaction: X is Irue ill V( iff every assignment of 

elements in A to the variables of L satisfies X in Vl. The notion of satis


faction is based on Tarski 1933. I assume that the reader is familiar with 

this notion. 


The formal definition of "logical consequence" in terms of models 

proposed by Tarski is: 


DEFINITION LC The sentence X/oI/OII'.5 /ogica/(I' from the sentences of the 

class K itT every model of the class K is also ,1 model of the sentence X.7 


The definition of "logical truth" immediately follows: 

DEFINITION LTR The sentence X is /ogiC{1/(l' lrue iff every model IS a 
model of X. 

To be more precise, (LC) and (LTR) should he relativized to a logical 
system !l'. "Sentence" would then be replaced by "!£)-sentcll<.:e" and 
"model" hy ".P-model." 

(A historical remark is in place here. Some philosophers elaim that 
Tarski's 1936 definition of a model is essentially different from the one 

currently used because in 1936 Tarski did not require that models vary 
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with respect to their universes. This issue does not really concern us here, 

since we arc interested in the legacy of Tarski, not this or that historical 

stage in the development of his thought. For the intuitive ideas we go to 
the early writings, where they arc most explicit, while the formal construc

tions arc those that appear in his mature work. 

Notwithstanding the above, it seems to me highly unlikely that in 1936 
Tarski intended all models to share the same universe. This is because such 

a notion of model is incompatible with the most important model-theoretic 

results obtained by logicians, including Turski himself, before that time. 
Thus, the U;wenheim-Skolem-Tarski theorem (1915-1928) says that if a 

first-order theory has a model with an infinite universe A, it has a model 
with a IIniverse of cardinality IX for every inllnite IX. Ohviously, this theorem 
does not hold if ol1e universe is common to all models. Similarly, Godel's 

19.10 completeness theorem f~lils: if all models share the same universe, 
then for every positive integer II, one of the two first-order statements 
"There me l1Iore than " things" and "There are at most /I things" is true 
in all models, and hence, according to (LTR), it is logically true. But no 
sllch statelllent is provable from the logical axioms of standard first-order 

/! Be that as it may, the Tarskian concept of model discussed here 
docs include the requirement that any nonempty set is the·universe of some 
model for the given language.) 

Does (LC) satisfy the intuitive requirements on a correct definition of 
"logical consequence" given hy (C I) and (C2) above? According to Tarski 

it docs: 

It secms to me that everyone who understands the content of the above definition 
must admit that it agrees quite well with common usage .... It can be proved, on 
the hasis of this dellnition, that every consequence of true sentences must be true, 
and also that the consequence relation which holds between given sentences is 
completely independent of the sense of the extra-logical constants which occur in 
thcse sentem.:cs. 9 

In what way does (Le) satisfy (C I)? Tarski mentions the existence of a 

proof hut docs not provide a reference. There is a very simple argument 
that, I helieve, is in the spirit of Tarski: I 0 

p,.O(~r Assume X is a logical consequence of K, i.e., X is true in all models 
in which all the members of K are true. Suppose that X is not a necessary 
consequence or K. Then it is possible that all the members of K are true 

and X is false. But in that case there is a model in which all the members 

of K come out true and X comes out raise. Contradiction. 

The argulllent is simple. However, it is hased on a crucial assumption: 
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ASSUMPTION AS If K is a set of sentences and X is a sentence (of a formal 
language L of !l') such that it is intuitively possible that all the members of 
K are true while X is false, then there is a model (for !I) in which all the 
members of K come out true and X comes out false. 

Assumption (AS) is equivalent to the requirement that, given a logic !I? 
with a formal language L, every possible state of affairs relative to the 
expressive power of L be represented by some model for .!E. (Note that 
(AS) does not entail that every state of affairs represcnted by a model for 
!f' is possible. This accords with Tarski's view that the notion of logical 
possibility is weaker than, and hence ditTerent from, the general notion 
of possibility [see (C2)].) Is (AS) fulfilled by Tarski's model-theoretic 
semantics? 

We can show that (AS) holds at least for standard first-order logic. Let 
!f' be a standard first-order system, L the language of i£, K a set of 
sentences of L, and X a sentence ofL. Suppose it is intuitively possible that 
all the members of K are true and X is false. Then, if we presume that 
the rules of infere~ce of standard first-order logic are nccessarily truth
preserving, K u {""' X} is intuitively consistent in the proof-theoretic sense: 
for no first-order sentence Yare both Y and""' Y provable from K u { ""' X}. 
It follows from the completeness theorem for first-order logic that there is 
a model for !f' in which all the sentences of K arc true and X is false. 


As for (C2), Tarski characterizes the formality requirement as follows: 


Since we are concerned here with the concept of logical, i.e.,/ormal cOllsequence, 

and thus with a relation which is to be uniquely del ermined by the form of Ihe 

sentences between which it holds, this relation cannot be influenced in any way by 

empirical knowledge, and in particular by knowledge of the objects to which the 

sentence X or the sentences of the class K refer. The consequence relation cannot 

be affected by replacing the designations of the objccts referred to in these sen

tences by the designations of any other "'h;~~'~ J I 

The condition of formality, (C2), has several aspects. First, 
consequences, according to Tarski, are based on the logical form of the 
sentences involved. The logical form of sentences is in turn determined by 
their logical terms (see Tarski's notion of a well-formed formula in "The 
Concept of Truth in Formalized Languages"). Therefore, logical COIl

sequences are based on the logical terms of the language. Second, 
consequences are not empirical. This means that logical terms, which 
determine logical consequences, are not empirical either. Finally, logical 
consequences "cannot be affected by replacing the designations of the 
objects ... by other objects." In "The Concept of Logical Consequence" 
Tarski first attempted a substitutional interpretation of the last rp'lIIjr~~ 
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ment. This led to a substitutional definition of "logical consequence." 
According to this definition, consequences preserved under all (uniform, 
type preserving) substitutions of the nonlogical terms of the language are 
logical. However, Tarski soon realized that the substitutional. definition 
did 110t capture the notion of logical consequence in all its generality.12 
The substitutional test depends on the expressive power of the language in 

In particular, languages with a meager vocabulary of singular 
terms let intuitively nonlogical consequences pass for genuinely logical 
ones. Tarski's reaction to the shortcomings of the substitutional test was 
to drop the idea of substitutivity altogether. Instead, Tarski turned to 
semalllics, a new discipline devoted to studying the relation between lan
guage and the world, whose basic notions are "satisfaction" and "model." 
On the basis of these concepts Tarski proposed the model-theoretic defini
tion of logical consequence, (LC). Although Tarski did not explain what 
"indifference of the consequence relation to replacement of objects" meant 
semantically, I think we can otTer the following analysis inspired by Mos
towski. There are terms that take the identity of objects into account and 
terms that do 1I0t. Terms underlying logical consequences must be of the 
second kind. That is to say, logical terms should not distinguish the 
identity of objects in the universe of any model. (By "identity of an object" 
I here mean the features that make an object what it is, the properties that 
single it out.) 

Now clearly Tarskian consequences of standard first-order logic satisfy 
the formality condition. First, only entirely trivial consequences (X follows 
logically from K just in case X E K) obtain without logical terms. There
fore, logical consequences are due to logical terms of the language. 
Second, the truth-functional connectives, identity, and the universal and 
existential quantifiers are nonempirical functions that do not distinguish 
the objects in any given model. The substitution test, which is still neces
sary (though not sufficient), is also passed by standard logic. 

We see that (e2), the condition of formality, sets a limit on (CI), the 
condition of necessity: necessity does not suflke for logicality. While all 

consequences are necessary, only necessary consequences that are 
also formal count as genuinely logical. An example of a necessary con
sequence that fails to satisfy the condition of formality is, 

( I) h is red all over; therefore b is not blue all over. 


This consequence is not logical according to Tarski's criterion, because 

it hangs on particular features of color properties that depend on the 
identi ty of objects in the universe ofdiscourse. (Try to replace "blue" with 
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"smooth," a replacement tha t has flO bearing on the formal rela tions 
between premise and conclusion, and see what happens.) Later we will also 
see that (C I) sets a restriction on the application of «'2). 

I think conditions (C I) and (C2) on the key concept of logical con
sequence delineate the scope as well as the limit of Tarski's ellterprise: the 
development of a conceptual system in which the concept of logical con
sequence ranges over all formally necessary consequences and nothing 
else. Since our intuitions leave some consequences undetermined with 
respect to formal necessity, the boundary of the enterprise is somewhat 
vague. But the extent of vagueness is limited. Formal necessity is a rela
tively unproblematic notion, and the persistent controversies involving the 
modalities are not centered around the fi.)fJnal. 

We have seen that at least in one application, namely, in standard 
first-order logic, Tarski's definition of logical consequence stands the test 
of (C I) and (e2): all the standard consequences that fall under Tarski's 
definition are indeed formal and necessary. We now ask, Docs standard 
first-order logic yield all the formally necessary consequences with a lirst
level (extensional) vocabulary? Could not the standard system he extended 
so that Tarski's definition encompasses new consequences satisfying the 
intuitive conditions but undetected within the standard system? T,II'ski 
himself all but asked the same question. He ended "Oil the ('ollcept of 
Logical Consequence" with the following note: 

Underlying our whole construction is the division of all terms of the language 

discussed into logical and extra-logical. This division is certainly not quite ar

bitrary. If, for example, we were 10 include among the extra-logical signs the 

implication sign, or the universal quantifier, then our definition of the cOllcept of 

consequence would lead to results which obviously contradict ordinary usage. On 

the other hand no objective grounds are known to me which permit us to draw a 

sharp boundary between the two groups oftcrms. It seems to be possible to include 

among logical terms some which arc usually regarded by logicians as extra-logical 

without running into consequences which stand in sharp contrast to ordinary

usagc. 1J 

The question, "What is the full scope of logic?" f will ask ill the forlll: 
What is the widest notion of a logical term for which the Tarskian defJni
lion of "logical consequence" gives results compatible with (C I) and (e2)? 

Logical and Extralogical Terms: An Unfounded Distinction'! 

What is the widest definition of "logical term" compatible with Tarski's 
theory? In 1936 Tarski did not know how to handle the problem of flew 
logical terms. Tarski's interest was not in extending the scope of "logical 
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consequence" bllt in defining this concept successfully for standard logic. 
From this point of view, the relativization of "logical consequence" to 
l'oJlections of logical terms was disquieting. While Tarski's definition pro
duced the right results when applied to standard first-order logic, there 
was no guarantee that it would continue to do so in the context of wider 
"logics." A standard for logical terms could solve the problem, but Tarski 
had no assurance that such a standard was to be found. The view that 
Tarski's notion oflogical consequence is inevitably tied up with arbitrary 
choices of logical terms was advanced by J. Etchemendy (1983, 1990). 
Etchemendy was quick to point out that this arbitrary relativity under
lIlines Tarski's theory. I will not discuss Etchemendy's interpretation of 
Tarski here, but I would like to examine the issue in the context of my own 
analysis. Is the distinction between logical and extralogical terms founded? 
If it is. what is it founded on? Which term falls under which category? 

Tarski did not see where to draw the line. In 1936 he went as far as 
saying that "ill the extreme case we could regard all terms of the language 
as logical. The concept ofjtJ1"lllal consequence would then coincide with 
that of malerial consequence." 14 Unlike "logical consequence," the con
cept of material consequence is defined without reference to models: 

J>FHNIIION M(' The sentence X is a material cOllsequence of the sentences 
of the class K iff at least one sentence of K is false or X is true. I ~ 

Tarski's statelllent first seemed to me clear and obvious. However, on 
second thought I found it somewhat pUzzling. How could all material 
consequences of a hypothetical first-order logic Y become logical con
sequences? Suppose !:P is a logic in which Hall terms are regarded as 
logical." Then evidently the standard logical constants are also regarded 
as logical in !f'. Consider the . .:t'-scntence: 

(2) There is exactly one thing, 

or, formally, 

0) (3x)(Vy)x y. 

This sentence is false in the real world, hence 

(4) There are exactly two things 

follows JIlaterially from it (in .!I'). But Tarski's semantics demands that for 
each cardinality (1, there be a model for !:f? with a universe of cardinality 
(1, (This IIlllch comes from his requirement that any arbitrary set ofobjects 
constitute the universe of some model for Y). Thus in particular !£ has a 
model with exactly olle individual. It is therefore not true that in every 

3 
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model in which (2) is true, (4) is true too. Hence, according to Tarski's 
definition, (4) is not a logical consequence of (2). 

So Tarski conceded too much: no addition of new logical terms would 
trivialize his definition altogether. Tarski underestimated the viability of 
his system. His model-theoretic semantics has a built-in barrier that pre
vents a total collapse of logical into material consequence. To turn all 
material consequences of a given formal system 51' into logical conse
quences requires limiting the totality of sets in which !f' is to he inter
preted. But the requirement that no sllch limit be set is intrinsic to Tarski's 
notion of a model. 

It appears, then, that what Tarski had to worry about was not total but 
partial collapse of logical into material consequence. However, it is still 
not clear what "regarding all the terms of the language as logical" meant. 
Surely Tarski did not intend to say that if all the constant terms of a logic 
51' are logical, the distinction between formal and material consequence 
for 51' collapses. The language of pure identity is a conspicuous counter
example. All the constant terms of that language are logical, yet the defi
nition of "logical consequence" yields a set of consequences dillerent 
the right way) from the set of material consequences. 

We should also remember that Tarski's definition of "logical conse
quence" and the definition of "satisfaction" on which it is based are 
applicable only to formalized languages whose vocabulary is essentially 
restricted. Therefore, Tarski could not have said that if we regard all terms 
of natural language as logical, the definition of "logical consequence" will 
coincide with that of "material consequence". A circumstance concerning 
natural language in its totality could not have any effect on the Tarskian 
concept of logical consequence. 

Even with respect to single constants it is not altogether clear what 
treating them as logical might mean. Take, for instance, the term "red." 
How do you construe "red" as a logical constant? To answer this question 
we have to find out what makes a term logical (extralogical) in Tarski's 
system. Only then will we be able to determine whether any term what· 
soever can be regarded as logical in Tarski's logic. 

4 The Roles of Logical and Extralogical Terms 

What makes a term logical or extralogical in Tarski's system? Considering 
the question from the "functional" point of view I have opted for, I ask: 
How does the dual system of a formal language and its model-theoretic 
semantics accomplish the task of logic? In particular, what is the role 
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of logicat and extralogical constants in determining logical truths and 	 I: 
Ii 

conseq L1CHces? 	 .I 
j: 
I'.: 


Extralogical constants 
" 


Consider the statement 


(5) Some horses are while, 

formalizcd in standard first-order logic by 

(6) (3x)(llx & JVx). 


How does Tarski succeed in giving this statement truth conditions that, 

in accordance with OLlr clear pretheoretical intuitions, render it logically 

indeterminate (i.e., neither logically true nor logically false)? The crucial 

point is that the common noun "horse" and the adjective "white" are 

interpreted within models in stich a way that their intersection is empty in 

some models and not empty in others. Similarly, for any natural number 


11, the sentence 

(7) There arc 11 white horses 


is logically indeterminate because in some but not all models "horse" and 

"white" arc so interpreted as to make their intersection of cardinality n. 

Were "linitely many" expressible in the logic, a similar configuration 


would make 


Finitely many horses are white 


logically indeterminate as well. 

In short, what is special to extralogical terms like "horse" and "white" 


in Tarskian logic is their strong semantic l'ariahility. Extralogical terms 

have 110 independent meaning: they are interpreted only within models. 

Their meaning in a given model is nothing more than the value that the 

denotation fUJlction f) assigns to them in that model. We cannot speak 

about the meaning of an extra logical term: being extralogical implies that 

nothing is ruled out with respect to such a term. Every denotation of the 

extralogical terms that accords with their syntactic category appears in 

some model. Hence the totality of interpretations of any given extralogical 

term in the class of all models for the formal system is exactly the same as 

that of any other extralogical term of the same syntactic category. Since 

every sct of objects is the universe of some model, any possible state of 

allairs any possible configuration of individuals, properties, relations, 


and functions via-<l-vis the extralogical terms of a given formalized 

language (possible, that is, with respect to their meaning prior to formali

zation) is represented by some modeL 
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Formally, we can define Tarskian extralogical terms as follows: 

DEFINITION ET {e t , e 2 , •.• } is the set of primitive extralogiclllterl11s of a 
Tarskian logic if iff for every set A and every function D that assigns to 
et , e2 , • " denotations in A (in accordance with their syntactic categories), 
there is a model ~l for if such that 'Ill = (A, D). 

It follows from (ET) that primitive extralogical terms arc semantically 
unrelated to one another. As a result, complex extralogical terms, pro
duced by intersections, unions, etc. of primitive extralogical terms (e.g., 
"horse and white") are strongly variable as well. 

Note that it is essential to take into account the strong variability of 
extralogical terms in order to understand the meaning of various claims of 
logicality. Consider, for instance, the statement 

(9) (3x)x = Jean-Paul Sartre, 

which is logically true in a Tarskian logic with "Jean-Paul Sartre" as an 
extralogical individual constant. Does the claim that (9) is logically truc 
mean that the existence (unspecified with respect to time) of the dcceascd 
French philosopher is a matter of logic? Obviously not. The logical truth 
of (9) reflects the principle that if a term is used in a language to flame 
objects, then in every model for the language some object is named by that 
term. But since "Jean-Paul Sartre" is a strongly variable term, what (9) 
says is "There is a Jean-Paul Sartre," not "The (French philosopher) 

Jean-Paul Sartre exists." 


Logical constants 

It has been said that to be a logical constant in a Tarskian logic is to have 
the same interpretation in all models. Thus for "red" to be a logical 
constant in logic if, it has to have a constant interpretation in all the 
models for !1'. I think this characterization is faulty because it is vague. 
How do you interpret "red" in the same way in all models? "In the same 
way" in what sense? Do you require that in every model there be the same 
number of objects falling under "red"? But for every number larger than 
I there is a model that cannot satisfy this requirement simply because it 
does not have enough elements. So at least in one way, cardinalitywise, the 
interpretation of "red" must vary from model to model. 

The same thing holds for the standard logical constants of Tarskian 
logic. Take the universal quantifier. In every model for a first-order logic 
the universal quantifier is interpreted as a singleton set (i.e., the set of the 
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ullivcrse).16 But in a model with 10 elements it is a set of a set with 10 

c1cments, whereas in a model with 9 elements it is a set of a set with 9 ele
ments. Are these interpretations the same?l? 

I think that what distinguishes logical constants in Tarski's semantics is 
not the f~lct that their interpretation does not vary from model to model 
(it does!) but the f~lct that they are interpreted outside the system of 
models. 18 The meaning of a logical constant is not given by the definitions 
or particular models but is part of the same metatheoretical machinery 
lIsed to define the entire network of models. The meaning of logical 
constants is given by rules external to the system, and it is due to the 
existence of such rules that Tarski could give his recursive definition of 
truth (satisfaction) for well-formed formulas of any given language of the 
logic. Syntactically, the logical constants are "fixed parameters" in the 
inductive definition of the set of well-formed formulas; semantically, the 
rules for the logical constants are the functions on which the definition of 
satisfaction by recursion (on the inductive structure of the set of well
formcd formulas) is based. 

How would different choices of logical terms affect the extension of 
"logical consequence"? Well, if we contract the standard set of logical 
terms, some intuitively formal and necessary consequences (i.e., certain 
logical consequences of standard first-order logic) will turn nonlogical. If, 
on the other hand, we take any term whatsoever as logical, we will end up 
with new "logical" consequences that are intuitively not formally neces
sary. The first case does not require much elaboration: if "and" were 
interpreted as "or," X would not be a logical consequence of "X and Y:' 
As for the second case, let us take an extreme example. CQns,ider the 
natural-language terms "Jean-Paul Sartre" and "accepted the Nobel Prize 
in literature," and suppose we use them as logical terms in a Tarskian logic 
by keeping their usual denotation "fixed." That is, the semantic counter
part of "Jean-Paul Sartre" will be the existentialist French philosopher 
Jean-Paul Sartre, and the semantic counterpart of "accepted the Nobel 
Prize in literature" will be the set of all actual persons up to the present 
who (were awarded and) accepted the Nobel Prize in literature. Then 

(10) Jean-Paul Sartre accepted the Nobel Prize in literature 

will come out false, according to Tarski's rules of truth (satisfaction), no 
matter what model we are considering. This is because, when determining 
the truth of (10) in any given model \)( for the logic, we do not have to look 
in \}I at all. Instead, we examine two fixed entities outside the apparatus of 
models and determine whether the one is a member of the other. This 
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renders (10) logically false, and according to Tarski's definition, any sen

tence of the language we are considering follows logically from it, in 
contradiction with the pretheoretical conditions (C I) and (C2). 

The above example violates two principles or Tarskiall semantics: (I) 
"Jean-Paul Sartre" and "accepted the Nobel Prize in literature" do not 
satisfy the requirement of formality. (2) The truth conditions for ( 

bypass the very device that serves in Tarskian semantics to distinguish 
material from logical consequence, namely the apparatus of models. No 
wonder the definition of "logical consequence" fails! 

rt is easy to see that each violation by itself sutlices to undermine 
Tarski's definition. In the case of (I), "Jean-Paul Sartre" and "i.lcceptcd 

the Nobel Prize in literature" are empirical terms that do distinguish 
between different objects in the universe of discourse. As for (2), suppose 
we define logical terms in accordance with (e2) bllt without referencc to 
the totality of models. Say we interpret the universal quantilier for a single 
universe, that of the natural numbers. In that case "for every" becollJcs 
"for every natural number," and the statement 

(II) Every object is different from at least three other objects 

turns out logically true, in violation of the intuition embedded in (C I). 

By requiring that "every" be defined over all models, we circumvcnt the 
undesirable result. 

We can now see how Tarski's method allows us to identify a sentence 
like 

(12) Everything is identical with itself 

as the logical truth that it intuitively is. The crucial point is that the 

intuitive meanings of "is identical with" and "everything" are captured by 


rules definable over all models. These rules single out pairs and sets of 

objects that share certain formal features which do not vary from one 

possible state of affairs to another. Thus in al/ models (representations of 

possible states of affairs), the set of self-identical objects is universal (i.e., 

coincides with the universe), and in each model the universal set is "every

thing" for that particular model. 


The Distinction between Logical and Extralogical Terms: 
A Foundation 

The discllssion of logical and extralogical terms enables us to answer the 
questions posed in section 3. We understand what it means to regard all 
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terms of the language as logical. Within the scheme of Tarski's logic it 
means to allow any rule whatsoever to be the semantic definition of a 
logical cOl1stant. In particular, the intuitive interpretation of any term 
becomes its semantic rule qua a logical term. Our investigation clearly 
demonstrated that not every interpretation of logical terms is compatible 1, 
with Tarski's vision of the task of logic. i 

We can now turn to the main question of section 3. Is the distinction I; 
between logical and extralogical terms founded? Of course it is! The dis 1 

j;
tinction between logical and extralogical terms is founded on our pre

11 
theoretical intuition that logical consequences are distinguished from I! 

material consequences in being necessary and formal. To reject this in II
I' 

tuition is 10 drop Ihe foundation of Tarski's logic. To accept it is to pro

vide a ground for the division of terms into logical and extraJogical. I: 


I 

But what is the boundary between logical and extralogicaJ terms? " 

Should we simply say that a constant is logical if adding it to the standard 
system would not conllict with (CI) and (C2)? This criterion is correct but J 
not very informative. It appears that consequences like IJ! 

~ J 

(13) Exactly one French philosopher refused the Nobel Prize in 11 
literature; therefore, finitely many French philosophers did :jJ 

t~ 
are formal and necessary in Tarski's sense. Therefore "finitely many" is a 
reasonable candidate for logical constanthood. But can we be sure that 
"finitely many" will never lead to a conflict with (CI) and (C2)? And will 

our intuitions guide us in each particular case? By themselves, (CI) and 
(C2) do 110t provide a usable criterion. Let us see if their analysis in the 

context of Tarski's system will not lead us to the desired criterion. 
The view that logic is an instrument for identifying formal and necessary 

conscqucnces leads to two initial requirements (based on (CI) and (C2»: 
(I) that every possible state of affairs vis-a-vis a given language be 

represented by some model for the language, and (2) that logical terms 
represellt fo rill a I reatllres of possible states of affairs, i.e., formal prop
erties of (relations among) constituents of states of alrairs. To satisfy these 
requirements the Tarskian logician constructs a dual system, each part of 
which is itself a complex, syntactic-semantic structure. One constituent 
includes the extralogical vocabulary (syntax) and the apparatus of models 
(semantics). I will call it the hase of the logic. (Note that only extralogi
cal terms, not logical terms, playa role in constructing models.) Jn a 
lirst-order logic the base is strictly lirst-Ievel: syntactically, the extralog
ical vocabulary includes only singular terms and terms whose argu

5 
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ments are singular; semantically. in any given model the extralogical 
terms are assigned only individuals or sets, relatiolls, and functiolls of 
individuals. 

The second part consists of the logical terms and their semantic defini
tions. Its task is to introduce formal structure into the system. Syntac
tically. logical terms are formula-building operators; semantically, they 
are assigned pre-fixed functions on models that express formal properties 
of, relations among, and functions of "elements of models" (objects in the 
universe and constructs of these). Since logical terms are meant to repre
sent formal properties of elements of models corresponding to the extra
logical vocabulary, their level is generally higher than that of nonlogical 

terms. Thus in standard first-order logic, identity is the only lirst-Icvcllog_ 
ical term. The universal and existential quantifiers are sccond level, seman
tically as well as syntactically, and the logical cOllnectives too arc of higher 
level. As for singular terms, these can never be construed as logical. This 
is because singular terms represent atomic componcnts of models, and 
atomic components, being atomic, have no structllre (formal or int(>rJllal). 
J will say that the system of logical terms constitutes a .wperS{l'llclUre
for the logic. 

The whole system is brought together by superimposing the logical 
apparatus on the nonlogical base. Syntactically, this is done by rules for 
forming well-formed formulas by means of the logical operators, and 
semantically, by rules for determining truth (satisfaction) in a model based 
on the formal denotations of the logical vocabulary. (Note that since the 

systems we are considering are extensional, "interpretation" has the same 

import as "denotation.") 


Now, to satisfy the conditions (C I) and (C2), it is essential that no 
logical term represent a property or a relation that is intuitively vari
able from one state of affairs to another. Furthermore, it is important 
that logical terms be formal entities. Finally, the denotations of logical 
terms need to be defined over models, all models, so that every possible 
state of affairs is taken into account in determining logical truths and 
consequences. 

It appears that if we can specify a series of conditions that arc exclu
sively and exhaustively satisfied by terms fulfilling the requircments above, 
we will have succeeded in defining "logical term" in accordance with 
Tarski's basic principles. In particular, the Tarskian definition or "logical 

consequence" (and the other metalogical concepts) will give correct results, 
all the correct results, in agreement with (C I) and (C2). 
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6 A Criterion for Logical Terms 

My central idea is this. Logical terms are formal in a sense that was 
specified in section 2. There we already interpreted the requirement of 
formality in the spirit of Mostowski as "not distinguishing the identity of 
objects in a given universe." Why don't we take another step in the same 

direction and follow Mostowski's construal of "not distinguishing the 
idcntity of ohjects" as invariance under permutations (see chapter 2). 

Generalizing Mostowski, we arrive at the notion of a logical term as 
formal in the following sense: being formal is, semantically, being in
variant under all nonstructural variations of models. That is to say, being 
formal is bcing invariant under isomorphic structures. In short, logical 
terms are ./imllal in the sense of being essentially mathematical. Since, 
intuitivcly, the mathematical parameters of reality do not vary from one 
possible state of affairs to another, the claim that logical consequences are 
intllitively nccessary is in principle satisfied by logics that allow mathe
matical tefillS as logical terms. My thesis, therefore, is this: all and only 
formal terms, terms invariant under isomorphic structures, can serve as 
logical terms in a logic based on Tarski's ideas. I must, however, add 
the proviso that new terms be incorporated in the logical system "in the 
right way." 

I will now proceed to set down in detail the criterion for logical terms. 
But first let me make a few preliminary remarks. My analysis of Tarski's 
syntactic-semantic system did not depend on the particulars of the meta
theoretic language in which the syntax and the semantics are embedded. 
In standard mathematical logic the metalanguage consists of a fragment 
of natural language augmented by first-order set theory or higher-order 
logic. In particular, models are set-theoretic constructs, and the definition 
of "satisfaction in a model" is accordingly set-theoretical. This feature of 
contemporary meta logic is, however, not inherent in the nature of the 
logical enterprise, and one could contemplate a background language 
diflCrent from the one currently used. Without committing myself to any 
particular mctatheoretical mathematics, I will nevertheless use the ter
minology of standard first-order set theory in the formal entries of the 
criterion for logical terms, as this will contribute to precision and clarity. 

For transparency I will not include sentential connectives in the cri 
terion. While it is technically easy to construe the connectives as quan
tifiers (see Lindstrom 1966), the syntactic-semantic apparatus of Tarskian 
logic is supcrOuous for analyzing their scope. The standard framework 
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of sentential logic is perfectly adequate, and relative to this framework, 

the problem of identifying all the logical connectives that there arc has 
already been solved. The solution clearly satisfies Tarski's requirements: 
the standard logic of sentential connectives has a base that consists syn
tactically of extralogicaJ sentential letters and semantically of a Jist of all 
possible assignments of truth values to these letters. Any possible state of 
affairs vis-a.-vis the sentential language is represented by some assignlHent. 
The logical superstructure includes the truth-functional connectives and 
their semantic definitions. The connectives arc both syntactically and 
semantically of a higher level than the sentential letters. Their semantic 
definitions are pre-fixed: logical connectives are semantically identified 
with truth-functional operators. and the latter are defined by formal 
(Boolean) functions whose values and arguments, i.e., truth values and 
sequences of truth values, represent possible states of affairs. This ensures 
that truths and consequences that hold in all "models" are formally 
necessary in Tarski's sense. 

As for modal operators. they too are outside the scope of this investiga
tion, though for dilferent reasons. First, my criterion for logical terms is 
based on analysis of the Tarskian framework, which is insuflicicnt for 
modals. Second, we cannot take it for granted that the task of Illodallogic 
is the same as that of symbolic logic proper. To determine the scope of 
modal logic and characterize its operators, we would have to set upon an 
independent inquiry into its underlying goals and principles. 

Conditions on logical constants in first-order logics 
The criterion for logical terms based on the Tarskian conception of j(Jrmal 
first-order logic. ~m be formulated in a series of individually nccessary 
and collectively sufficient conditions. These conditions will specify what 
simple and/or complex terms from an initial pool of constants can serve 
as logical constants in a first-order logic. In stating these conditions. I 
place a higher value on clarity of ideas than on economy. As a result the 
conditions are not mutually independent. 

A. 	 A logical constant C is syntactically an II-place predicate or functor 
(functional expression) of level I or 2, II being a positive integer. 

B. 	 A logical constant C is defined by a single extensional function and is 
identified with its extension. 

C. 	 A logical constant C is defined over models. In each model \!I over 
which it is defined, C is assigned a construct of elements of \!( corre
sponding to its syntactic category. Specifically, I require that C be 
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a fllllctionJ~ such that given a model 21 (with universe A)defined 

in its domain: 

a. 	 If C is a first-level II-place predicate, then/c(21) is a subset of An. 

b. 	 If C is a IIrst-leveln-place functor, then.fc('ll) is a function from r 
An into A. 	 I 

c. 	 If C is a second-level n-place predicate. then/c(2l) is a subset of 
Ii

lJ. 	 x .. , x 8n , where for 1 sis n, il 
A if i(C) is an individual l: 

I, 
Hi = { p(Am) if i(C) is an m-place predicate l~ 

) being the ith argument of C). 

I 
\:: 

d. 	 1 f C is a second-level II-place functor, then J;(21) is a function 

from [JI x ... x En into 8n +1> where for lsi s II + I, Bj is 


defined as ill (c). 
D. 	A logical constant C is defined over all models (for the logic). 1 
E. 	 A logical constant C is defined by a function.f~ which is invariant 

I 

LInder isomorphic structures. That is, the following conditions hold: 
i1. If (' is a lirst-levelll-place predicate, '11 and '11' are models with 

universes A and A' respectively. (h1' ... , h,.> E An, (h~, ... , h~) E 
A''', and the structures (A,(h., ... , hn » and (A', (hi,···, h~» are 
isomorphic, then (h, . ... , hn >E./:('11) ifr (b'I' ... , h~> E!cNI')· 

b. 	 If C is a second-levelll-place predicate, \!( and 2(' are models with 

universes A and A' respectively, (Dl' ... , DII >E BI x .. · X BII 
• 


, ... , 0:') E B; x .. , x B~ (where for lsi S II, Bj and B; 

are as in (C.c», and the structures (A, (/)1' ... , 1)11»' 


(:1', (1);, ... , D;'» are isomorphic, then (DI ,···, DII ) E/c(21) iff 


,.... J)~> EjA'1l'}· 
c. 	 Analogollsly for functors. 

Some explanations are in order. Condition (A) reflects the perception of 

logical terms as structural components of the language. In particular, it 

rules out individual constants as logical terms. Note, however, that al

llwug,h all individual by itself cannot be represented by a logical term 

(since it lacks "inner" structure), it can combine with functions, sets, or 

relations to form a structure representable by a logical term. Thus, below 

I define a logical constant that represents the structure of the natural 

numhers with their ordering relation and zero (taken as an individual). 

The upper limit on the level of logical terms is 2, since the logic we are 

considering is a logic for first-level languages, and a first-level language 


can only provide its logical terms with arguments of level 0 or I. 




,I 
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Condition (B) ensures that logical terms arc rigid. Each logical term has 

a pre-fixed meaning in the metalanguage. This mCcll1ing is ullchangeable 

and is completely exhausted by its semantic delinition. That is to say, from 

the point of view of Tarskian logic, there are no "possible worlds" of log
ical terms. Thus, qua logical terms, the expressions "the numher of plallels" 
and "9" are indistinguishable. If you want to express the intuition that 

the number of planets changes from one possihle "world" to another, YOll 

have to construe it as an extralogical term. If, on the other hand, you 
choose to use it as a logical term (or in the definition of a logical term), 

only its extension counts, and this is the same (IS the extension of "9." 
Condition (C) provides the tie between logical terms and the apparatus 

of models. By requiring that logical terms be defined by fixed functions 

from models to structures within models, it allows logical terms to repre

sent "fixed" parameters of changeable states of amtirs. By requiring that 
logical terms be defined for each model by clemenls of this model, it 

ensures that the apparatus of models is not hypassed when logical truths 
and consequences are determined. Condition (C) also ta kcs care of the 
correspondence in categories between the syntax and the semantics. 

The point of (0) is to ensure that al/ possible states of affairs arc taken 
into account in determining logical truths and consequences. Thlls trutll 
in-all-models is necessary truth and consequcnce-in-all-modcls is 11£'l'l'.\'.wrr 

consequence. Conditions (B) to (0) together express the requirement that 
logical terms are semantically superimposed on the apparatlls of models. 

With (E) I provide a general characterization of formality: to be formal 
is not to distinguish between (to he invariant under) isomorphic slrucllIres. 
This criterion is almost universally accepted as capturing the intuitive 

(semantic) idea of formality. I will trace the origins of condition (E) and 

discuss its significance separately in section 7 below. It follows from (E) 

that if ~Il and ~12 are modeJs with the same universe A, then for every 

logical term C,fc(~(l) =fc(~{2)' Therefore, we can treat logical terms as 
functions on universes (sets) rather than models, i.e., use lV') instead of 
fc(~l). I will do so in chapter 4, using CA and C~I as abbreviations. l £) 

J can now give a semantic definition of (Tarskian) logical terms: 

DEFINITION LTC is a (Tarskian) logical term iff C is a truth-functional 
connective or C satisfies conditions (A) to (E) above on logical constants. 

J will call logical terms of the types (C.a) and (C.b) ahove logical 
predicates and logical functors respectively. Logical terms of type « '.c) I 

will call logical quantifiers, and logical terms of type (C .d) logical qllanl~/il't 

junctors. 

To lll.! a Logical Term 

What kind of expressions satisfy (LT)? Clearly, all the logical constants 

of standard first-order logic do. Identity and the standard quantifiers are 

defined by total flillctions.l~,f~, andj~ on models such that, given a model 

~l with universe ;1, 

( 4 ) .t;('ll) {(a, b): ll, b A & a = h}, 

(l5) .I~(~}{) = {B: B = A}, 

(16) f~('ll) {ll: B A & B i= 0}· 
The definitions of the truth-functional connectives remain unchanged. 

Among the nonstandard terms satisfying (LT) are all Mostowskian quan

tifiers. As explained in chapter 2, these are If-place predicative quantifiers, 
i.e., qU<lntiliers over n-tuples of predicates (where IJ is a positive integer, 
and a I -tuple of predicates is a predicate). Among these are the following, 

redenncd in the style of conditions (A) to (E). 

(17) 	The I-place "cardinal" 4uantifiers, defmed, for any cardinal IX by 

.I~('ll) = {ll: IJ A & IIII IX} 

( IX) The I-place q ualltifiers "finitely many" and "uncountably many," 

defined by 


.I;illilc('ll) {LJ: IJ c;;. A & \8\ < ~o} 


1:lllcolllllahlymully('ll) {LJ: B £ A & 181 > ~o} 

(19) 	The I-place quantifier "as many as not," defined by 


f:sl1lanyasllol(~I) = {B: B ~ A & IBI? IA - BI} 


(20) 	The I-place quantifier "most," defined by 

.I~f!('ll) = {B: B £ A & IB\ > IA BI} 

(21) 	The 2-place quantifier "most," defined by 

(~ll) = {(IJ, C): B, C ~ A & IBnel > IB el} 

We also have relatiollal quantifiers satisfying (LT). One of these is, 

(22) 	The "well-ordering" qualltiller (a '-place quantifier over 2-place 
relations), defined hy.f~o(~{) = {R : R £ A2 & R is a strict linear 
ordering such that every nonempty subset of Fld(R) has a minimal 

c1cmcnt in R}. 
I will call the logical terms below "relational quantifiers" as weB: 

(23) 	The second-level set-membership relation (a 2-place quantifier over 

pairs of a singular term and a predicate), deHned by 

.I:lIcmhe,shiP('1l) = {<a, B) : a E A & B ~ A & a E B} 



Chapter 3 
58 

(24) 	The quantifier "ordering of the natural numbers with 0" (a 2-placc 
quantifier over pairs of a 2-place relation and a singular term), 
defined by !>N'O(~() {(R, a) : R S A2 & a E A & and (A, R, a) is a 
structure of the natural numbers with their ordering relation and 
zero} 

Amongjimctors and quantifier jilllctors we have the fol/owing: 

(25) 	The n-place "first" functors (over n-tuples of singular terms), 

defined, for any 11, byj~irsl(~1) the function g : A" ---) A such that for 
any n-tuple (at, "', all) E A", g(a t , ... , all) = a, 

(26) 	 The I-place "complement" quantifier functor (over I-place 

predicates), defined by fcomp'emenl(~l) = the function 

g: peA) ---) peA) such that for any B S A, g(D) = A B 

Examples of constants that do not satisfy (L T): 

(27) The I-place predicate "identical with a" (a is a singular term of the 
language), defined bY!=a('11) = {h: b E A & b a~I}, where a~' is 
the denotation of a in ~I 

(28) 	The I-place (predicative) quantifier "pebbles in the Red Sca," 

defined by /Pebbles ... ('1() = {B: B S A & B is a nonempty sct of 
pebbles in the Red Sea} 

(29) 	 The first-level. membership relation (a 2-place first-level relation 
whose arguments are singular terms), defined by j~(~1) {(a, ") : 0, 

bE A & h is a set & a is a member of 

The definitions of these constants violate condition (E). To see why (29) 

fails, think of two models, ~{ and ~(' with universes {O, {O, I}} and {.Ican

Paul Sartre, Albert Camus} respectively. While the first-order structurcs 

({O, {O, I}}, (0, {O, I}» and ({Jean-Paul Sartre, Albert Camus}, (Jean

Paul Sartre, Albert Camus» are isomorphic (when taken as first-order, 

i.e., when the first elements are treated as sets of atomic objects), (0, {O, 

J}) Efe(~() but (Jean-Paul Sartre, Albert Camus) i.l~('1('). 


Another term that is not logical under (LT) is the dcfinite-description 
operator l. If we define 1 (a quantifier functor) by a function/that, given 
a model ~( with a universe A, assigns to ~( a partial function II from P(A) 
into A, then condition (C.d) is violated. If we make Ii universal, using some 
convention to define the value of II for subsets of A that are not singletons, 
it has to be shown that the convention does not violate (F). Wc can, 
however, construct a 2-place predicative logical quantifier "the," which 
expresses Russell's contextual definition of the description operator: 

(30) hhe(~l) = {(B, C) : B S C S A & B is a singleton set} 
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7 A New Conception of Logic 

The definition of logical terms in section 6 gives new meaning to "first 
order logic" hased on Tarski's ideas. "First-order logic" is now a 
schcmati<.:: title for any system of logic with a complete collection of truth
functional cOllllectives and a nonempty set of logical constants. It is open I: 
to LIS, the users, to choose which particular set of constants satisfying (LT) r 
we want to include in ollr first-order system. The logic itself is an open 

I'framework: any term may be plugged in as a logical constant, provided I' 

this is done in accordance with conditions (A) to (E). Any first- or second
level jimlllli term is acceptable, so long as it is incorporated into the 
system "in the right way." The general framework of logic based on this 
conception I will call Unrestricted Logic or UL. I will also refer to it as 
Tlirskiall togi(', since it is based on Tarski's conception of the task and 
structure of logic. A particular system of Tarskian logic is simply a logic. 
Both syntactically and semantically the new logic preserves the form of 
definition characteristic of standard mathernaticallogic: syntactically, the 

t:logical cOllstants serve as "formula-building operators" on the basis of I: 
which the sct of well-formed formulas is defined by induction; seman
tically, the logical constants are associated with pre-fixed .rules, to be used 
in the recursive definition of satisHlction in a model. Thus, for example, 
the syntactic definition of the 2-place quantifier "most" is given by the 
following clause: 

• 11'(1) and \11 arc well-formed formulas, then (Most 1.1 x)(<I>, '1-') is a well- r 
formed formula. I.' 

IiThe rulc associated with "most" is expressed in the corresponding seman
!tic clause: 

• Ifcl) and \(1 are well-formed formulas, ~( is a model with a universe A, 

and g is an assignment of individuals in A to the variables of the 
language, thcll 

\}I F (Most I. 1 x) (,I), 'PHR] ilT 


<{a E A : \)( 1= (l)lR(x/a)j}, {a E A : \)( 1= 'P[g(x/a)]}) E.rMI.I(~l). 


I will give a precise account of U L in chapter 4. In the meantime, I 
propose this provisional definition: i i 

DH1NITION UL .1£ is a logic in UL ifT !f' is a Tarskian first-order system 
with (I) a complete set of truth-functional connectives and (2) a nonemply 
sel of logical terms, other than those in (I), satisfying (L T). I 

I 
I 
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I will now show (what should be clear from the foregoing discllssion) 
that UL satisfies the pretheoretical requirements (C I) and (C2). Namely, 
if !£' is a first-order system in lJL, then the Tarskian definitioll of "logical 
consequence" for !jJ gives results in agreement with (CI) and «'2). 

First the case for (CI). It suflices to show that the assumption (AS) 

section 2) holds for UL. Let .!.t' be any system of UL with new logical 
constants, let rc be the logical vocabulary of 2', and let L be its extralogical 
vocabulary. The claim is that if <J) is a well-formed formula of Y, every 
possible extension of <J) relative to the vocabulary of .!I) is represented by 
some model for !f (where the extension of a sentence is taken to be a truth 
value, T or F). 

I will sketch an outline of a proof. Suppose that <J) is an atomic formula 
of the form "Px," where P is an extralogical constant. The strong semantic 
variability of P and the other primitive terms in L ensures that every 
possible state of affairs relative to these terms is represented by some 
model 2( for !t'. So the claim holds for <J). Now let <J, be of the form 
"(Qx) 'I'x," where Q is a quantifier and "'I'x" is (for the sake of simplicity) 
a formula with one free variable x. Assume the claim holds for "'Px." Q. 
being a member of~, is semantically rigid. Furthermore, its rigid inter
pretation is formal. But formal properties and relations intuitively do not 

change from one possible state of affairs to another. That is, while the 

number of, say, red things does vary among possible states of affairs, the 

second-level formal property "having /l objects in X's extension" docs not. 

Having n objects in a property's extension is always the same thing, no 

matter what property and what state of affairs we are considering. There

fore, the variability of situations with respect to "(Qx)'I'x" is reduced 

to the variability of situations with respect to "'Px." It is possible that 

"(Qx) 'I'x" has the extension T/F iff it is possible that "'Px" has an 
extension representable by a subset B of the universe of some model Vl 

such that B EfQ(~)/B rlfQ(~)' But by (the inductive) assumption, every 
possible extension of "'I'x" (relative to the vocabulary of .!:t') is repre
sented by some model for 2'. So if it is possible for "l.l'x" to have an 
extension as required, there is a model that realizes this possibility. In this 
model the extension of "(Qx)'Px" is TIE We can carryon this inductive 
reasoning with respect to any type of logical terms under (LT). 

The case for (C2) is straightforward. Condition (E) expresses an intui
tive notion of formality: to be formal is, intuitively, to take only structure 
into account. Within the scheme of model-theoretic semantics, to be for
mal is to be invariant under isomorphic structures. Now in UL, as in 
standard logic, logical-consequences depend on the logical vocabulary of 
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the language. The formality of logical terms ensures that logical con
sequences do not rest on empirical evidence and do not distinguish the 
identity or objects in any given universe. Hence logical consequences of 
U L are formal in Tarski's sense. 

Logics equivalent or similar to UL are often called in the literature 
"generalized logics," "extended logics," "abstract logics," or "model ! 

jtheoretic logics." These labels may, however, convey the wrong message. 
)1 

Driving a wedge between "core" logic and its new "extensions," they seem I, 
1 

to intimate that the "tight" and "lean" standard system is still the true I 
logic. Such an interpretation of UL would, however, be wrongheaded. UL .1') 
is not an abstract generalization of real logic. UL is real logic, full-fledged. 
As we have seen earlier in this chapter, the basic semantic principles of 
"core" logic (formulated by Tarski in the mid 1930s) are not fully mate
rialized ill the "standard" system. This system faits to produce all the Ii 
formally necessary, i.e., "logical," consequences with a first-level vocabul r 
ary. It takes the full spectrum of UL logics to carry out the original j' 
program. 

I have answered the question posed at the end of section 2. The broadest I 

notion of logical term compatible with the intuitive concept of "logical 
consequence" is that of (LT). (LT) redefines the bourtdaries of logic, Ileading to the unrestricted system of U L. Condition (E) is especially 

1 
important in determining the full scope of logic. It is worthwhile to trace I 
the origins of this condition. 

\ 

8 Invariance under Isomorphic Structures 

The condition of invariance under isomorphic structures first appeared, as I
I 
, 

' 
a characterization of logicality, in Lindenbaum and Tarski 1934-1935. 
({eferring to a simple Russellian type-theoretic logic, Lindenbaum and 
Tarski proved a theorem that informally says. "Every relation between 

(individuals, classes, relations) which can be expressed by purely 
logical means [Le., without using extralogical terms] is invariant with 
respect to every olle-one mapping of the 'world' (i.e., the class of all 
individuals) onto itself. .. 20 

Now the metalanguage from which we draw the pool of logical terms is 
equivalent to a subsystem of "pure" higher-order logic with Rus

sellian simple types. (--'or this language, Lindenbaum and Tarski's theorem 
shows that all definable notions satisfy the isomorphism condition with 
respect to "the world" (a "universal" model, in our terminology). The 
Lindenbaum-Tarski theorem appears to assume a notion of logicality that 
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depends on the classification of the standard logical operators of a simple 

Russellian type theory as "purely logical." However, it follows fr01l1 this 

very theorem that the standard operators themselves are invariant under 

isomorphic substructures, i.e., given any model \!( (a slIbmodel relative to 

Lindenbaum and Tarski's "universal" model) and a I-place formula (Ilx, 
"('1x)<1>x" is true in \![ iff for any I-place formula lJlx whose extension in 

~[ is obtained from that of "<1>x" hy some permutation of the uuiverse, 

"('1x)'I'x" is true in \!l, and similarly for the other Russellian operators. 

So the theorem shows (relative to a simple type-theoretic language alld the 

standard rules of logical proof) that Russellian logical terms and all terms 
that can be defined from them are "purely logical." 

The idea that logical notions are distinguished hy their invariance pro
perties next appeared in Mautner's "An Extension of Klein's Erlanger 

Program: LogiJ;_as.Jnvariant-Theory" (1946). Inspired by Klein's program 

ofclassifying geometrical notions in terms of in variance conditions, Maut

ner showed that standard mathematical logic can he construed as "in
variant-theory of the symmetric group ... of all permutations of the dOl\lain 
of individual variables." 21 

In his pioneering 1957 paper "On a Generalization of Quantifiers," 

Mostowski used the invariance property, for the first time, 10 license a 
genuine extension of standard first-order logic by adding new logical 

terms. Mostowski's condition technically was invariance under permuta

tions of sets induced by permutations of the universe (of a giveJl model). 

Informally, it was to be construed as the claim, (LQ2) of chapler 2, thai 

quantifiers do not take into account the identity of individuals in the 


universe of discourse. Mostowski's criterion included references to the 

aforementioned papers of Lindenha um and Tar-ski (1934 1935) and 

Mautner (1946).22 

In 1966 Per Lindstrom generalized Mostowski's condition to full in
variance under isomorphic (relational) structures, augmenting Mostowski's 

system with many-place predicative and relational quantifiers, oftell re

ferred to as "Lindstrom quantifiers." There is a minor difference between 

Lindstrom's definition and (E) above: Lindstr()Il1's structures are rela

tional, and O-place relations are not individuals but truth values, Tor F. 

Thus mathematical structures involving individuals cannot he directly 
represented by logical terms, as in (24). Lindstr()m, unlike Mostowski, was 

silent regarding the philosophical significance of his generalization. One 

might say his remarkable theorems solidify the distinguished status of 

standard first-order logic, but here again, it is unclear whether Lindstr()1n 

himselfconsiders compactness and the Lowenheim-Skolem property to be 
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essential ingredients of logicality or mere mathematically interesting fea

tures of one among many genuinely logical systems. This philosophical 

disengagement is characteristic of the abundant literature on "abstract 

logic" that has followed Lindstrom's work.l3 

I oftell wondered what Tarski would have thought ahout the conception 

of Tarskian logic proposed in this book. After the early versions of the 

present chapter had been completed, I came upon a 1966 lecture by 

Tarski, first published in 1986, that delighted me in its conclusion. In the 

lecture "What are Logical Notions?" Tarski proposed a definition of 

"logical term" that is coextensional with condition (E): 

Consider the class of all one-one transformations of the space, or universe of 
discourse, or "world" onto itself. What will be the science which deals with the 
notions invariant under this widest class of transformations? Here we will have ... 
notions, all of a very general character. I suggest that they are the logical notions, 
that we call a notion "logical" if it is invariant under all possible one-one trans
formations of the world onto itself. 24 

The difference hetween Tarski's 1966 lecture and the earlier Linden
baulll and Tarski paper is that here Tarski explicitly talks about the scope 

of logical terms for a first-order framework. (Indeed, in his introduction 

to the posthumously publishcd lecture, J. Corcoran suggests that we see it 
as a sequcl to Tarski's 1936 "On the Concept of Logical Consequence," in 

which the scope of logical terms was left as an open question.) It follows 

from the ahove definition, Tarski now says, that no term designating an 

individual is a logical term; the truth-functional connectives, standard 

qllantifiers, and identity are logical terms; Mostowski's cardinality quan

tifiers are logical. and in general, all predicates definable in standard 

higher-order logic arc logical. Tarski emphasizes that according to his 

definition, any mathematical property can he seen as logical when con

stnted as higher-order. Thus, as a science of individuals, mathematics is 

dillcrellt frol11 logic, hut as a science of higher-order structures, mathe
matics is logic. 

The analysis that led to the extension of Hlogical term" in Tarski's 

lecture is, however, different from that proposed here. Tarski, like Maut

ner, introduced his conception as a generalization of Klein's classification 

or geometrical disciplines according to the transformations of space under 

which the geometrical concepts are invariant. Abstracting from Klein, 

Tarski characterized logic as the science of all notions invariant under 

one-to-one transformations of the universe of discourse ("space" in a 

generalized sense). My own conclusions, on the other hand, are based on 

analysis of Tarski's early work on the philosophical foundations of logic. 

http:1946).22
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This is the reason that, unlike in the later Tarski, the critcrion for logical 
terms proposed here includes, but is not exhausted by, condition (E). To 
be a logical term is not just to be a higher-level, mathematical terlll; it is 
to be incorporated in a certain syntactic-scmantic system in a way that 
allows us to identify all intuitively logical consequences hy means or a 
given rule, e.g., Tarski's (LC). 

Following Lindstrom (Tarski's 1966 lecture remained unknown for a 
long time), condition (E) has been treated by mathematical logicians as a 
criterion for abstract logical terms. In the last decade condition (E), and 
some variants thereof, began to appear as a criterion of logicality in the 
formal semantic literature, often in combination with other criteria, like 
conservativity. If my analysis is correct, conservativity and other linguistic 
properties constraining (E) have nothing to do with logicality. 

The only thorough philosophical discussion of condition (E) that I 
know of appears in Timothy McCarthy's 1981 paper "The Idea of a 
Logical Constant." H MCCarthy rejects (E) as a sullkiel1t condition for 
"logicality" on the grounds that it does not prevent the definition of 
logical terms by means of "contingent" expressions. To illustrate Mc
Carthy's point, let us consider the quantifier "the number of plancts,-'
defined by 

fchcnumbcrorplancls(\!l) = {B: B A & IBI = the number of 

Clearly, the quanTiher "the numher of planets" satisfies (E). Now 
(3 J) The number of planets = 9 

is contingent in the metalanguage, i.e, its extension changes from one 
"possible world" (in which we interpret the metalanguage) to another. 

Consider the sentence 


(32) (The number of planets x)(Px & __ Px). 

This sentence is logically false as a matter of fact, McCarthy would say, 


that is, as a matter of the fact that the number of planets is larger than 

zero. However, in the counterfactual situation in which ollr slin had no 

satellites, (32) would turn out logically true. Therefore, "the number of 

planets x" will not do as a logical quantifier. 

McCarthy's objection, however, docs not affect my criterion, which 
includes conditions (A) to (D) in addition to (E). Condition (B) states that 
logical terms are identified with their (actual) extensions, so that in the 
metatheory the definitions oflogical terms are rigid. Qua quantifiers, "thc 
number of planets" and "9" are indistinguishable. Their (actual) exten
sions determine one and the same formal function over models, and this 
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fUllction is a legitimate logical operator. In another world another descrip
tion (and possihly another symbol) may designate this function. But that 
has no hearing 011 the issue in question. Inscription (32) may stand for 
dillcrcnl statements in different worlds. But the logical statement (32) is 
the same, and false, in all worlds. For that reason logic-Unrestricted 
Logic or any logic-- is invariant across worlds. From the point of view of 
logic presented here, McCarthy's demand that the meaning of logical 
terms be known a priori is impertinent. The question is not how we come 
to know the meaning of a given linguistic expression, but how we set out 
to lise it. I f we set it up as a rigid designator of some formal property in 
accordance with conditions (A) to (E), it will work well as a logical constant 
in any Tarskian system of logic. Set differently, it might not. Switching 
perspectives, we may say that the only way to understand the meaning of 
a term lIsed as a logical constant is to read it rigidly and formally, i.e., to 
','..nt'"'' it with the mathematical function that semantically defines it. 

9 Conclusion 

We have arrived at a general theory of the scope and nature of logical 
terlllS based 011 analysis of the function of logic and th~ philosophical 
guidelines at the hasis of modern semantics. Given the breadth of the 

enterprise, we discovered that the standard terms alone do not 
provide an adequate superstructure. Yet in view of its goal, not every term 
can be lIsed as a constant in Tarskian logic. There exists a clear. unequi
vocal criterion for eligible terms, and the terms satisfying this criterion far 
exceed those of "standard" logic. 

We can now answer the questions posed at the end of chapter 2. Mos
towski's claim that standard mathematical logic does not exhaust the 
scope of first-order logic has been vindicated. His semantic criterion on 

namely, "not distinguishing the identity of individuals in the 
universe," is most naturally interpreted as not discerning the difference 
hetween isomorphic structures. As for logicality and cardinality, the in
variance condition implies that the two coincide in the case of predicative 
quantifiers, hut in general, these notions are not essentially connected. 

The next task is to outline a complete system of first~order logic with j 

logical terms satisfying (L T). The series of conditions proposed in the 
present chapter constitute a definition of logical terms "from above": one \1 

call understand the conditions without thereby knowing how to construct 
all constants possessing the required properties. In the next chapter I will 
give a COllstntclil'e definition of logical constants, inspired by Mostowski. 

..t 
j'! 
tl 
Ii 

II 
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Mostowski's correlation of quantifiers with cardinality functions did to 
"predicative" generalized logic what the association of connectives with 

Boolean truth functions earlier did to sentential logic. It provided a highly 
informative answer to the questions, "What is a predicative quantifier'!" 
"What are all the predicative quantifiers?" Following Mostowski, I will 
present a correlation of logical terms with mathematical functions of a 
certain kind so that the totality of functions will determine the totality of 
logical terms and each function will embed the "instructions" for con
structing one logical term from the total list. 

~!laP!<:E.i--:-__-:-___--:-____________ 
Senulntics from the (jround Up 

IOur philosophical analysis in the last chapter has led to the conclusion that i
II 

any second-level mathematical predicate can be construed as a logical Ii 

quantifier undcr a semantic definition satisfying the metatheoretical con
I: 
j, 

ditions (A) to (E). Since the predicative quantifiers defined in chapter 2 
satisfy these conditions, they are genuine logical quantifiers, and Mos
towski's daim that they belong in a systematic presentation of symbolic 
logic is justilied. Our analysis also provides an answer to the question 
"Which second-level predicates on relations are logical quantifiers?" Rela
tional quantifiers are simply logical terms ofa particular type: second-level 
predicates or relations whose arguments include at least one first-level 
relation (many-place predicate). 

On my analysis, Mostowski's semantic condition on predicative quan
tifiers, (LQ2), the requirement that quantifIers should not distinguish 
the identity of elements in the universe of a given model, corresponds 
to Tarski's (C2), the requirement that logical terms (and hence logical 
quantifiers) beformal. Like Mostowski, I interpret (C2) as an invariance 
condition, and this condition, when applied to predicative quantifiers, 
coincides with his. More accurately, Mostowski's rendering of (LQ2) as 
invariallce under permutations of sets induced by permutations of the 
ulliverse is generalized to condition (E), which says that logical terms 
in general arc invariant under isomorphic structures. In terms of Mos
lowski's dclinition of quantifiers as functions from sets to truth values, I 
say thal a logical term over universe A is a function q from sequences of 
relations (predicates, individuals) of the right type to truth values, Tor F, 
sllch thal if s is a seqllence in Dom(q) and m is a permutation of A, 

tc/(s) = T ilf q(m(s» = T, 

where m(s) is the image of sunder m. i 
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The characterization of logical constants in terms of invariance under 
permutations of the universe is still not very informative, however. I n the 
case of predicative quantifiers, Mostowski was able to establish a one-to
one correspondence between quantifiers satisfying (LQ2) and cardinality 
functions of a specified kind, and this resulted in a highly informative 
characterization of predicative quantifiers: predicative quantifiers atlri
bute cardinality properties (relative to the cardinality of a given universe) 
to the extensions of I-place first-level predicates in their scope; the futlc
tions t associated with predicative quantifiers constitute "rules" for con
structing predicative quantifiers over a universe A. Although cardinality 
functions can be extended to logical terms other than predicative quan
tifiers, they evidently will not cover all the logical terms over a universe A. 

The latter express structural properties of sets, relations, and individuals 
in general, not just cardinality properties. 

My main goat-in the present chapter is to develop a semantic defini
tion of logical terms that captures the idea offorlllal struc/lIl'e in a way 
analogous to that in which MoSlowski's dellnition captures the idea of 
cardinality. Mostowski's definition distinguishes sets according to their 
size relative to the size of a given universe. I want to characterize all formal 
patterns of individuals standing in relations within an arbitrary universe 
A and then distinguish relations according to the forma: patlerns they 
exhibit. This will be the basis for my "constructive" definition of logical 
terms over A. But first I will examine the original characterization of 
logical terms satisfying (E), due to Per Lindstrl)m. 

Lindstrom's Definition of "Generalized Quantifiers" 

In "First Order Predicate Logic with Generalized Quantifiers" Lindstr<>111 
(1966a) associates generalized quantifiers with classes of structures 
(models) closed under isomorphism. More precisely, his semantic defini
tion goes as follows: 

DEFINITION LQ A quantifier is (semantically) a class Qof relational struc
tures of a single type t E w", n > 0, dosed under isomorphism, 

where a relational structure is a sequence consisting of a universe (a set) 
and a series of constant relations on, or subsets of, the universc 
(but not individuals). The type of structure '11 is an ordered II-tuple, 

(m\, ... , mil)' where n is the number of constant relations R j in '11 and lIli' 

! ~ i ~ n, is the number of arguments of the relation Ri . (A truth value is 
considered by Lindstrom a relation with no arguments. There are only two 
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O-place relations, T and F.) Each semantic quantifier Qis symbolized by 
a syntactic quantifier Q; different syntactic quantifiers corresponding to 

ditlcrent semantic quantifiers. IfQ symbolizes Q, Q is said to be of the type 
/ common to all the structures in Q. A syntactic quantifier Q of type 

t = (lilt, ... , mil) is a quantiller in "'1 + "'z + ... +"'11 variables that 

attaches to 11 formulas to form a new formula. 

The truth conditions for formulas with Lindstrom quantifiers are 


dcllned as follows: Let Q be a Lindstrom quantifier of type t = ("'I' ... , 

m,'). Let (1)\, .•. , <1>11 be formulas of first-order logic with Lindstrom quan
tifiers. Lct .X' \ , ••• , ,XII be a series of Il pairwise disjoint elements, where for 
, ~ i $ II, the clement i is a series of "'j distinct variables. Let 'll be a 

j 

model with universe A, and let g be an assignment of elements in A to the 

individual variables of the language. Then 

'11 1= «}x I' ... , .\:,,)«1)1' ... , (I)/I)(gl iff the structure 

(A, (1)~',"tL~l, ... , (l)t;IYnlgl) is a member ofQ, 

where ror 1 S; i $ II, 


T if ,Xi = ( ) and '111= «I>i{g] 


(l)j'11,,";Lld F if ,Xi = ( ) and '11 ~ «(>i{g} 

{ {iii: 'll \= (l)iIg(.tdi1;)]} otherwise 


I mj("{l/' stands for an arbitrary sequence of mj elements of A, at , ... , al , 

and "~(xddi)" abbreviates "g(Xj lai 1 ) ... (Xi"'# lajI )").In, 

C\carly, the quantifiers definable in lindstrom's logic include all the 

logical quantillers of chapter 3 over (sequences of) predicates and relations 
(but not over seqllences including individuals). In addition, all the logical 

predicates and all the truth-functional connectives are definable as Lind

slr()\l1 qllantiliers. Thus we have the following: 

(I) 	The existential quantifier of standard logic is defined as E = the class 
of all structures (A, P), where A is a set, P <;; A, and P is not empty. 

(2) 	The predicative quantifier RZ of chapter 2 ("there are more. , , than 
___ ") is dclillcd as RZ = the class of all structures (A, PI' Pz), where 

A is a set, Pi' Pz <;; A, and IPt! > IP2 1· 
(3) 	The "well-ordering" relational quantifIer of chapter 3, WO, is 

dcllncd as WO = the class of all structures (A, R), where A is a set, 

R s:; A2, a Ild R well-orders Fld (R). 

(4) 	The negation of sentential logic is defined as N = the class of all 
structures (A, F), where A is a set. (The structure (A, F) is non-

isomorphic to (A, T) by delinition.) 
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(5) The disjunction of sentential logic is defined as [:> = the class or all 

structures <A, Sl' S2), where A is a set and SI' S2 are truth vailles, 
at least one of which is T. 

My definition of logical terms in chapter 3 esscntially coincides with 
Lindstrom's. There are some small differences in the construction of 
models: Lindstrom's models include the two truth values T and F as 

components. This allows him to construe the truth-functional conncctivcs 
as logical quantifiers. (Indeed, I could incorporate the sallle device in Illy 

theory.) In addition, Lindstrom does not consider structures with indi

viduals. It is easy, however, to extend his definition to structures of this 

kind, and given such an extension, all logical terms of (LT) will I~tli 
under Lindstrom's definition. There is also a minor dillerence bctwecn 

Lindstrom's syntax and mine: whereas I constructed an II-place predica

live quantifier as binding a single individual variable in any II-tuple of 
well-formed formulas in its domain, Lindstrl)Ill's predicative 
bind II distinct variables. Thus what I symbolize as 

(QX)(<I>I x, ... , <l>flX) 

Lindstr6m symbolizes as 

(Qx 1 , ••• , XfI)(<I>IX 1 , ••. , <I'/IX/I)' 

However, since the two quantifications express exactly the same statelllent, 
the difference just amounts to a simplification of the notation. 

In chapter I, I pointed out that the apparatus of Tarskian model

theoretic semantics is "too rich" for standard first-order logic. We never 


use the model-theoretic apparatus in its entirety to state the truth condi

tions of sentences of standard logic, to determine standard logical truths 


and consequences, to distinguish semantically between nonequivalellt 
standard theories, etc. In particular, the collection of infinite models is to 
a large extent redundant because any sentence or theory represented by an 

infinite model is represented by uncountably many distinct infinite models 
(the Lowenheim-Skolem-Tarski theorem). The new conception of logic, 
which received its first full-scale expression in Lindstrl)II1, cllfiches the 

expressive power of the first-order language so that thc model-theoretic 
apparatus is put to full use. The extended logical vocabulary allows the 
formation of new sentences and theories, so evey model becomes the 
unique representation (up to isomorphism) of some theory of the new 

language. Put otherwise, every structure, up to isomorphism. is describ

able by a theory of the generalized language, indeed, in Lindstr()m's 
system, by a single sentence (if the language has enough nonlogical con-
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stallts of the "right" type). Thus, let \)( = <A, R I , ... , R,,) be a structure 

oftypcl <111 1, ... , "'fI)' LetQbethec1assofallstructures~isomorphic 
to '11, and let Q be the quantifier defined by Q. Let PI' ... , P" be distinct 
relatiollal constants of In I' ... ,m/l places respectively (~ being a sentential 

letter if III, 0), and let , ... , X/I be series of distinct variables as ex

plailled above. Then the sentence 

(6) (Qx l ,···, .\:fI)(PI·\'I' ... , P/I'X'fI) 

describes the unique strllcture '1( (up to isomorphism). 

l.illdstr()Ill'S definition, however, is "from above." As such, it does not 

sho\\' liS how to "construct" logical terms over a model 'l( using elements 

ill the universe of '11 as the initial building blocks. In addition, Lindstr6m's 

dclillitioll of logical terms over a specific model 'l( involves quantification 

the metalanguage) over all models. Thus, to determine whether an 

lI-tlJple of formulas «1)1' ... , <I),.) satislles a quantifier Q in \)(, we need 
information lIot ollly 011 the extellliolls of <I)., ... , <1>/1 in '1( but also about 
the class of all modcls for the language. In the next section I will propose 
a dclinitiull of logical terms "from the ground up." This definition shows 
how to huild logical terms over '11 out of constructs of elements of '11 and 
wit hout reference 10 the totality of models. 

2 Constructive Definition of Logical Terms 

The idea is this: Tarskian logical terms over a model '11 with universe A 
distinguish the fe/rill or structure of sets, relations, and functions over A. 
Any two relations diflering in structure will be distinguished by a logical 

term on A, but relations that share the same structure will not. Similarly 
for sets and functions. So, to define the totality of logical terms on A, we 
IIrst have to dellne the totality of "structures" over A. Once we determine 

the totality of, say, structures of binary first-level relations over A, we can 

delinc I-place binary rclational quantifiers on A as functions that assign 
the vallie T to some of these structures but not to others (allowing, of 

course, for the two extreme cases of functions that assign the value T to 
all binary relational structures, lind to none). The totality of these func

tions is the totality of binary relational quantifiers on A. The definition will 
be general enough to include all types of logical terms. For the sake of 
simplicity I will, however, omit logical functors and logical quantifier 

functors. It is easy to extend the dclinition to these logical terms as well. 

Before I hegin the formal prescntation, I will explain the idea behind the 

definition hy reference to a simple example. 



73 
Chapter 4 

72 SCllwntics from the Ground Up 

An informal account 
How 	shall we decide which of these structures are the extensions of 

Suppose we have a universe with ten individuals, say Alan, Becky, Carl, 

Debra, Eddy, Fred, Gary, Helen, Ian, and Jane. We want to identify all 
 ~~ 

structures involving these persons that are the extensions of (legitimate) 

first-order logical terms over a model VI with the above group as its 

universe. I will refer to this universe simply as "The (Jroup." 


Let us consider several structures involving members of the Group (de

signated by their initials): 


(7) ) 

(8) {a, c, d, i} 

(9) {a, b, c, d, e,f, g, h, i,)} 

(10) 	{{a,c,d,i}} 

(II) 	{{a, h, c, d, e, f, g, h, 

(12) 	{{a}, {c}, {d}, {h}} 

(13) 	 {{a}, {b}, {c}, {d}, {e}, {fJ, {g}, {II}, {i}, {)}} 
(14) 	{(a, a), (f, f), (g, g), (),)} 

(15) 	{(a, a), (h, h), (c, c), (d, d), (e, e), (/; f), (g, g), (II, II), 

(i, i), (), )} 


(16) 	 {0, {(a, )}, {(a, ), (c, d), (i, h)}, {(a, ), (c, II), (g, 

(17) 	{{(a, b), (h, c), (a, c)}. '" {(), a), (a, h), (), h)}. 


{(a, b), (h, d), (a, d)},,,, {(j, a), (a, c), (), c)}. 


{(a, h), (h, e), (a, e)}, ... {(), a), (a, d), (), d)}, 

. . 

{(a, ), (),g), (a,g)}, ... {(), i), (i, f), (i, f)}, 


{(a, i), (i, h), (a, h)},··. {(i, i), (i, g), (i, g)}. 


{(a, ), (), i), (a, i)}, ... {(), i), (i, h), (.i. II)}} 


(18) 	{0, ({(a, i)}, h), ({(c, d), (i, II)}. e), 

({(c, h), (g, d)}. f)} 

(19) 	{({(a,b),(b,c),(a,c)},a), ... ({(i,a),(a,h), (.i,h)}, j), 

({(a, b), (b, d), (a, d)}, a),··· ({(), a), (a, <'), (i, <')}, 

({ (a, h), (b, e), (a, e)}, a). '" ({ (.i. a), (a, d), (i, d)}, i), 
· . 	 .· . 	 .· . 	 . 

({(a, i), (), g), (a, g)}, a)"" ({(i, i), (i, f), (i, f)}. i), 


({(a, ), (i, h), (a, h)}. (I), '" ({(i, i), (i, (J, g)}, .i), 


({(a, J), (), i), (a, i)J. a), ... ({(), i), (i, II), (i, II)}. i)} 


logical terms over a model 'JI with the Group as its universe? The answer 
follows directly from the criterion for logical terms in chapter 3: a struc
ture is the extension of a legitimate logical term iff it is closed under 
permutations of the universe. 1 will call such a structure a logical structure. 
Thus if S' is a logical structure that contains the element E, then S also 
contains every element £' that can be obtained from E by some permuta
tion of the universe. Let us examine each of the above structures and see 
what kind of strllcture it is. 

Structure (7) consists of a particular member of the Group, Jane. Jane is 
not preserved under permutations of the Group, because such permuta
tions may assign Fred to Jane, and Fred is not Jane. Jane (like Fred, lan, 
and the rest) is not a "logical individual." Indeed, it is a basic principle of 
logic that there are no logical individuals and individuals do not constitute 
the extension of any logical term. 

Structure (8) is also not closed under permutations of the universe. A 
permutation that assigns Jane to Alan, Alan to Carl, Helen to Debra and 
Gary to Ian, will carry us heyond {a, c, d, i} to {a, g, h, }}. Here (8) may 
he the extension of the first-level predicate "x is redheaded," or "x is a 
Icftisl." But (8) does not represent any first-level logical property ofmem
bers of the Group. 

Structure (9), on the other hand, does represent a first-level logical 
property, since (9) is preserved under all permutations of the universe. 
Thus no matter who is assigned to Jane by a given permutation m, this 
person is already in (9). Put differently, the universal set is its own image 
under all permutations of the universe. We can associate with this set the 
property or being a member of the Group or see it as the property of being 
American. etc. No matter what other properties are "extentiated" in the 
Group hy the universal set, (9) is also an instantiation of the logical 
property of self-identity over the Group and hence is a logical structure. 

StrLlct ure (10), like (8), is not logical. It may be the extension of the 
second-level predicate "P is a property of redheads." or"P is an attribute 
of leftists." But these do not coincide with any second-level logical proper
ties of members of the Group. 

Strllcture (II), however, is the extension of a logical term, namely the 
uJlivcrsal quantifier over the Group. 

Structure (12) is also nonlogical, since it is not closed under permuta
tions of the universe. Suppose that among the members of the Group Alan 
is the only philosopher, I-Ielen is the only linguist, Carl is the only his
torian, and Dehra is the only novelist. Then (12) may be the extension of 
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the nonlogical second-level predicate" P is either a distinctive characteris
tic of philosophers, a distinctive characteristic of linguists, a distinctive 
characteristic of historians, or a distinctive characteristic of novelists." But 
(12) cannot be the extension of any logical term over t he Group. 

Structure (13), unlike (12), is logical. Structurc (13) is the extension of 
the quantifier "there is exactly one x such that" over ~l. As a predicate, 
(13) is the second-level attributc "P is a property of exactly one indi
vidual," an attribute whose extension is invariant under permutations of 
the Group. 

Structure (14) too is nonlogical. Structure (14) may he the cxtension of 
"x likes y's dog(s)" over the Group (each dog owner likes his own dog(s)), 
or it may be the extension of some other rclation over the Group, but thc 
relation in question is not logical, and (14) cannot exhaust the extension 
of any logical term over the Group. 

Structure (15) is the familiar relation of identity. This relation is elosed 
under permutation of the universe and hence is logical. 

Structure (16) may be the extcnsion of the second-level predic.lte ".r is 
the set of married' pairs (husband and wire) in 1981, or .r is the sct of 
married pairs in 1982, or ... , or Xis the set or married pairs in 1990." Thus 
(16) reflects the various matrimonial constellations wit hill the (iroliP in 
the last decade. For example, during the first live years there were no 
marriages among members of the Group. Then in 1986 Alan married Jane, 
in 1987 Carl married Debra and Ian married Helen, and in 1989 Debra 
divorced Carl and married Gary, while Carl married Helen, who divorced 

Ian. This chronicle is clearly not closed under permutations of 111 em hers 

of the Group. 


Structure (17), on the other hand, is elosed under perlllutations. h 

represents a linear ordering of triples in general. Structure (17) makes lip 
the extension of the relational quantifier" R is a strict linear ordering of 
triples." This quantifier, symbolized by Q, will appear in formulas of the 
form "(Qxy)<l>." Thus if three members of the Group graduated frolll 
Columbia College, and their graduation dates do not coincide, the state
ment "(Qxy) x graduated from Columbia Collcge hefore y" will turn out 
true in the universe in question. 

Another nonlogical structure is given by (18). Suppose that thcre arc 
three children in the Group: Becky, born to Alan and Jane in 1986, Eddy, 
born to Carl and Debra in 1987, and Fred, born to Gary and Debra in 
1989. A second-level predicate that records births in the Group next to 
weddings (of men to women, by year, as in (16», may have (18) as its 
extension. 

Semantics from the Ground Up 

Finally, (19) is a logical structure of pairs consisting of a strict linear 
ordering or a triple and its smallest element. This structure "extentiates" 
a relational quantifier over pairs of a binary relation and an individual, 
similar 10 (24) of chapter J. 

The prillciple of closure under permutations determines all the logical 
terms over a given universe. Every structure containing sets ofindividuals, 
relations or individuals, sequences of these, or sequences of sets/relations 
and individuals and closed under permutations of the universe determines 
a legitimate logical term over that universe. Hut the principle of closure 
under permutations can be used not only to identify but also to construct 
logical structurcs over a universe A. The construction of such structures is 
a very simple matter. 

Again, take the Group. Construct any set of members of the Group, say 
b, d, f}. Examine all permutations m of members of the Group and for 

each such permutation III add m(a), lIl(h), m(d) and me!) to your set. In 
other words, close the set {a, h, d, f} under all permutations of the uni
vcrSL:, or create a union or all its images under Stich permutations. You will 
elld lip extending la, b, d, f} to (9), the universal set of the domain. This 
set is the extension of the lirst-Icvcl logical predicate of self-identity over 
IhL: ( 

In a similar manner you can start rrom the relation (14), and by uniting 
(creating a union of) all its images under permutations of the universe, you 
will obtain the logical structure (15). the extension of the binary logical 
relation of identity. 

Likewise, (17) can he obtained from { {<a, h), <h, j), <a, j)} } by clos
ing it under permutations. And so on. 

Suppose now you start with {0, {tI}. {a. b}}. Closure under permuta
tions will give you a set whose memhers are the empty set, all unit sets, and 
all sets of two c1cments. This sct is the extension of the I-place predicative 
quantifier "there arc at most two" over the Group. 

I htl ve charactcrized the logical terms over a single universe, but my 
theory of logical terms says that logical terms do 110t distinguish between 
universes of the same canlillulity. That is, cach logical term is defined by 
a rule that docs not change from one universe of cardinality (X to another. 
Thus, although the characterization of identity for the Group by (15) 

would do, this is evidently not an adequate characterization for all uni
verses with 10 clcments. To capture the idea of a logical tcrm, the rule 
associated with such a term, rather than its extension in a particular 
universe, should he specified. A very simple method of associating terms 
with rules presents itself. Thc idea is this: instead of recording the actual 
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extension of a given term in a given universe, let us record its "index 

extension." Unlike its "object extension," the index extension encodes a 

rule that applies to all universes of the same cardinality. We can then 

distinguish between rules that do, and rules that do not, correspond to 
logical terms over universes of the cardinality in question. 

I will begin by specifying a fixed index set for all universes of a given 

cardinality. In case of the Group, I will take 10, identified with the set 

to, 1,2,3,4,5,6,7,8, 9}, as my index set. More generally, if A is a uni

verse of cardinality IX, I will take the least ordinal of cardinality IX, defined 

as the set of all smaller ordinals, to be a standard index set for all universes 

of cardinality IX. I will say that A is indexed by IX or, in the example above, 

that the Group is indexed by 10. There are, of course, many ways of 

indexing the Group by 10. We may start any way we want, say assigning 0 

to Alan, I to Becky, and so on, following the alphabetical order of the 

members's first names. Next we associate with each structure generated 

from members of the Group its index image under the chosen illdexing. 
Thus the index image of (14) is 

(20) {<O, 0), <5, 5)~ <6,6), <9, 9)}. 


The index image of (15) is 


(21) {<O, 0), <11...!),.(2, 2), <3, 3), <4,4), <5, 5), <6,6), <7,7), 

<8, 8), <9,9)}. 

And the index images of (7), (9), (I I), and (16) are respectively 

(22) 9, 

(23) {O, I, 2, 3,4, 5,6, 7, 8, 9}, 

(24) {{O, 1,2,3,4,5,6,7,8, 9}}, 

(25) {0, {<O, 9)}, {<O, 9), <2, 3), <8, 7)}, {<O, 9), <2,7), <6, 3)}}. 

Note that it is essential that we do not treat the members of 10 in the same 

way that we treat 10, namely as sets of all smaller numbers. The reason is 

that if we identify 9 with {O, I, 2, . ", 8}, (22) will represent not only (7) 
but also 

(26) {a, b, c, d, e, f, g, h, i}. 

Similarly, if we identify 0 with 0, (25) will not distinguish between (16) 
and 

(27) {a, {<a, i)}' {<a, i), <c, d), <i, h)}, {<a, i), <c, h), <g, d)}}. 

Therefore, I define an index set to be a set of ordinals treated as individuals 

(or as sets of pairs of the form (P, a), where a is some fixed object). More 
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precisely, an index set for a universe of cardinality IX is the set of all 

ordinals smaller than the least ordinal of cardinality IX, where the ordinals 

in the index set are themselves not sets of ordinals. 
Back to the index set 10. I call a member of 10 a IO-individual, a subset 

of 10 a IO-predicale, and a set of n-tuples of members of 10 (n > J) a 

IO-reiatioll. Thus (22) is aID-individual, (23) is a IO-predicate, and (20) 

and (21) are IO-relations. 
I call any tillite sequence of IO-individuals, IO-predicates, and/or 10

relations a to-argument. Such sequences constitute the arguments of logi

cal terms over the Group. It follows that a IO-individual is a IO-predicale

argllmell1; a finite sequence of two or more IO-individuals is a IO-relation

argllmell1; other to-arguments are IO-qualllijier-arguments. I say that 10
arguments are of the same type if they have the same structure: all indi

viduals are of the same type, all sets of individuals are of the same type, 

and all II-place relations of individuals are of the same type. Sequences 

of '" clements of corresponding types are also of the same type. (The 

formal definition of type is slightly different, but the notion of "same type" 

is the same.) Titus 

(28) <I, 2) 

and 

(29) <3,4) 


are of the same type, and so are 


(30) 


and 


(31) p, 4,5, 8}, 


as well as 


(32) <1.{1,2},{<1,)}) 


and 


(33) <9, {3, 4, 5}, 7), <7, 6)} ). 

I call two IO-arguments .rimilar iff one is the image of the other under 

some permutation of 10. Thus (28) and (29) are similar, but neither (30) 
and (31) nor (32) and (33) are. Looking at the logical structures among (7) 

through (19), we see that a logical structure is a structure of similar 

clements of a given type. More accurately, a logical structure over the 

Group is a structure of to-arguments of a single type closed ..under the 

relation of similarity. Since the relation of similarity is an equivalence 
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relation, each bgical structure corresponds to a union of cquivalcnce 
classes of similar IO-arguments of a given type. 

Note that while some logical terms can be identified wilh <l single 
equivalence class, others correspond to a union of equivalence <.:lasses. For 
example, "there is exactly one" is a function that gives to a lO-argument 
the value T iff it is a member of the equivalence class of all sets similar to 

but "there is at least one" assigns the valuc T to mcmbers of 
more than one equivalence <.:lass. So I define a logical tcrm Ovcr lIniverses 
with 10 elements as a function from all equivalence <.:Iasscs of a given type 
to fT. F~ "There is exactly one" assigns the value T to Ihc 

and F to all other equivalence <.:lasses of subsets of the 
whereas "there is at least one" assigns the value T to 

I, 2, 3, 4, 5, 6, 7, 8, 9}] and F to [0]. J call such 
What can wedo with IO-operators? 

do. We can take a IO-operator of type t (that is, an operalor delined over 
equivalence classes of elcments of type I), a Sll"IIcturc of the sallie type 
generated from the Group (a IO-individual being matched \\'ith a lIIelllber 
of the Group, etc.), and ask whether the latter satisfies the logical terlll 
defined by the former. For example, we can take the extensioll of the 
predicatc "x is a philosopher," namely {al·, and ask whether it satisfies a 

given I-placc prcdicative quantifier over the Group. To lind the answer, 
we first index the Group by 10 (in any way we choose). Theil we take the 
index image of {a} and see whether the quantifier in question (defined as a 
IO-operator) gives the value T to [( illdcx(a)} J. This test will show that 
(34) (At least one x) x is a philosopher 

is true in the intended model of the Group (Alan is a philosopher), but 
(35) 02 x) x is a philosopher 


and 


X IS a DhllosODher 

are false in the same model is the 
Second, we can take a structure over the (jroup, ask whether it defines 

a logical term over the Group, and, if the answer is 

semantic schema of the logical term in question. We do this hy creating an 
index image of the structure and examining whether the result is a union 
of equivalence classes under the relation of similarity. Thus (21), an index 
image of (15), is an equivalence class of all pairs similar to <0,0) and 
therefore (15) does determine a logical term, namely identity, over the 

\!: 
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Group. The index image (20) of (14) does not constitute such an equiv
alem:e class (or a union of cquivalence classes under similarity), and hence 
(14) does not determine a logical term ovcr the Group. 

Third, we can take any IO-operator and use it as a blueprint for con
structing a logical term over the Group. Thus, starting with any indexing 
of the Group by 10, I take the lO-operator Hexactly one," a function 0 

from all equivalence classes of subsets of 10 to {T, F} defined as 

= TifrrN1 = [ 

and transform it into a quantifier in extension by going through the 
clemcnts of the equivalence class(es) assigned T and constructing their 
correlates over the Group: {aL {h}, etc. I then collect these correlates into 
a set, and this is ( 13), the quantifier "there is exactly one" over the Group. 

I define the totality of all logical terms over the Group as the 
totality of predicates, relations, and quantifiers corresponding to all dis
tinct IO-operators. Generalizing, I define the totality of logical terms as 
fllnctions that to each cardinal a assign an a-operator. 

A furmal account 

hrst, let Ille makc some preliminary remarks. In the foregoing definitions 
I use the variable a to range over cardinals identified with equipollent least 
ordinals. But while I take a cardinal a to be a set of ordinals, I require that 
the ordinals in a are themselves not sets of ordinals. This requirement is 
introduced to ensure that "the index image of x:' defined below, is one
to-one. (We can treat ordinals as individuals, we can replace each von 
NClImann ordinal a with the pair (fl, a). where a is some fixed object, etc.) 
Throughout the book I use lowercase Greek letters a, fi, y, b, ... both as 
variables ranging over cardinals and as variables ranging over ordinals. It 
is alwavs clear from the contcxt what the range of a given variable is. 

H I-Iunlc with its member, i.e., (x> = x. 
J often distinguished between predicates (I place) and 

relations Below I will talk onlv about predicates, referring 
"'·"H/_nl,.rp predicates. 

DHINIIION I Let A be a set indexed by ex = IA I, where an indexing of A 
hy a is a onc-to-one function from a onto A. The index image of x, i(x), 

under the givell indexing is as follows: 

• If x E A, i(x) (If! E a)(x (/p)' 

• If x s::: An, 11 2 I, i(x) {(fll"'" fin> E a": (apl"'" ap"> EX}. 

http:H/_nl,.rp
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TERMINOLOGY Let a be a cardinal numbcr. An a-illdil'idllal is a member of 
a; an n-place a-predicate is a subset of aPl. 

Tf A is indexed by a IA I, then since the indexing function is one-to-one 
and onto, an a-individual is the index imagc ofsolllc a E A, and an II-place 
a-predicate is the index image of some R <;;. An, under the given indexing. 

DEFINITION 2 Let k be a positive intcger. I call R(a) = 

an a-predicate-argumenr if each ri(a), I ~ i ~ k, is an a-individual. 

call R(a) = (r, (a), ... , rk(a» an a-quall1~tier-argull1elll if each 

I ~ i ~ k, is either an a-individual or an a-predicate and at least onc 

I ~ i ~ k, is an a-predicate. If R{a) is either an (X-predicate-argull1cnt or an 

(X-quantifier-argument, I say that R{a) is an (X-argument. 


Below I categorize various kinds of entities into "types." To simplify the 

type notation, r use two systems of categorization. Entities categorized by 

the first system will be said to have marks, and entities categorized by the 

second system will be said to havc types. An entity with a type is a 

function, and its type is essentially the mark (sequence of marks) or ils 

argument(s). 


DEFINITION 3 A type is a sequence of natural numbers, (t" ... , I k ), 


k > O. A mark is also a sequence of natural numbers, (Ill" ... , IIl k ), 


k > O. 


CONVENTION If P is the k-tuple 

f say thatp = Ok.lfp = ot, I say thatp O. 

DEFINITION 4 Let R(a) = (r1 (a), ... , r,,{(X» be an (X-argument. The mark 

of R{(X), mR{(X), is a k-tuple, (m, , ... , IIlk), where for I ~ i ~ k, 

if rj{(X) is an (X-individual, 
til, {~ if rj{(X) is an n-place (X-predicate. 

DEFINITION 5 Let R t (a), R2 (a) be two (X-arguments. Rdex) and R2 (ex) 

are similar iff for some permutation m of (X, R.(ex) m(R 2 (a»), where 
m(R2 (ex» is the image of R 2 {ex) under the map induced by III (which I also 
symbolize by m). 

TERMINOLOGY If R(a) is an a-argument, J designate the equivalence class 
of R(a) under the relation of similarity, defined above, as rR (::d 1. I call 
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a gellC;,ratlzCa ex-argument. If R«(X) is of mark p, I say that [R(a)1 is 
also of mark p. I call a set of opnpr:lli7'ed a-anmments an a-structure. 

DHINIIION 6 Let [9l(a)] be the set of all generalized (X-arguments of a 

given mark. An a-operator is a function 

0.1: 1~"laJJ --. {'I', 

If [9l(ex)j is a set of generalized (X-predicate-arguments, J call OCJ: an a
predic{/Ie-Operator; if[9t(a)] is a set of generalized (X-quantifier-arguments, 
I call O;r an ex-quallt(tier. If the members of [9t«(X)] are of mark p, I say that 
Oa is of Iype p. We can identify an (X-operator with an a-structure, namely 
the set of all [R«(X)j's in its domain such that o([R((X)]) = T. 

To prove one-to-one correspondence between (X-operators and logical 
predicates and quantillers of UL restricted to \}((1911 = (X), we need a few 

additional definitions. 

DEFINITION 7 II' C is a logical predicate or quantifier satisfying conditions 
(1\) to (E) of chapter 3, then lite restriction ofe to ~I, C'llt is as follows: Let 
((VI) he as in chapter 3, section 6. If.f;(~l) is a subset of B, x .. , x H" (see 
condition (C», then C\l1 is a function from IJI x .. , x H" into {T, F} such 

that ('",(x" ... , Xk) = T iff (XI' "', x,,) E./A'JI). 

DEFINITION R Let A he a set. If x E A, then the mark of x is O. If x £; A", 

II > 0, the lIlark of.\' is II. 

DHINIIION 9 Let \)( be a model with universe A. 

• If (. is a k-place logical predicate, then the type of C9t is 


(0, .. ,0) = 0". 

~ 

k t illle~ 

• If C is a k-placc logical quantifier and x (Xt' ... , Xk) E Dom(C'ld, 
then the Iype of C'1' is (1" ... , tk ), where for I ~ i ~ k, tj is the mark 

of Xi (sec definition 8). 

I slim up the mark/type classification in table 4.1. 
I now state a theorem establishing a one-to-one correspondence be

tween ex-operators and logical predicates and quantifiers of UL restricted 
to all arbitrary model \)( of cardinality (x. 

1 HF()RF~I I Let '!I he a model with a universe A of cardinality a. Let rC/9( 

be IIH.." sct of all logical predicates and quantipers of UL restricted to 91. 
I.et (' l be the set of all 'X-operators. Thcn there exists a I-I function h from 
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Table 4.1 

The classification 


Mark 	 Type 

a-individual: 0 k-phll.:'e a-predicate operator, 1'2: 01 

n-place a-predicate: n k-place a-quantifier, 'I,,: (II' ... , I A>. 
x E A : 0 k-plal.:'e logjl.:'al predicate, P'll : 01 

x !:'; A" : n k-place logical quantitier, Q~I : (I I' ... , I.) t 

• Here Ii' 1 :5 i :s; k, is the mark of 'j(a). where [R(a) ('I (a), ... , 'dIX»] E 

Dom(q(l)' 

tHere Ii. 1 :5 i:5 k, is the mark of Xi' where (XI' .. , Xl> E DOIll(Q'./I)' (I assume 

that an empty ,,-place relation has a different mark from an empty l1I-place rela

tion. where n ¥- m.) 


(!)u. onto rcl~( defined as follows: For every 0u. E (!)u., h(o(l) is the logical term 
C'11 such that 

• 	 0(1 and C'11 are of the same type; 

• 	 if (.'11' ..• , Sit) is a k-tuple in Dom(C,,,), then (''11('\'1' ••. , sd = 
o(l[(i(sJ)' ... , i(sd)], where for some indexing 101' A by a, ;(SI)' ... , 

i(slt) are the index images of .'11' ••• , S,p respectively, under I. 

Proof See the appendix. 

I symbolize the a-operator correlated with C'll as ()~. 
Let me give a few examples of the a-operators corresponding to logical 

predicates and quantifiers restricted to an arbitrary model ~( with a uni
verse A of cardinality a. I will define the a-counterparts of the logical 
predicates and quantifiers of the examples in chapter 3. 

(37) The identity relation I'll corresponds to 0:, an a-predicate of type 

(0,0), defined by o:(X) = T itffor some pEa, X = [(P, P)J. 
(38) The universal quantifier V'11 corresponds to 0:, an a-quantifier of type 

(I), defined by o:(X) = T iff X = [a]. 

(39) 	The existential quantifier 3'.11 corresponds to 0;, an a-quantifier of 
type (I), defined by o;CX) = T ilr for some s c;; a slIch that s 1= k'1, 
X = [.'I]. 

(40) The cardinal quantifiers C'll correspond to 0:, a-quantifiers of 
type (I), defined by o:(X) T iff for some s c;; a such that lsi = (), 

X = [s]. 
(41) 	The quantifiers "finitely many" and "uncounlably many," FIN'll 

and UNC'1I' correspond to O!IN and O!JNC, a-quantifiers of type (I), 

defined by O:-IN(X) T itffor somes c;; a such that\sl < t-{o, X = lsJ; 

O~NC(X) = T iff for some s~ a such that Ixl > t-{o, X = lsJ. 

SemaJJtics from the Ground Up 

(42) 	The quantifier "as many as not," MNl1h corresponds to O!'N, an 
a-quantifier of type < I), defined hy O~N(X) = T iff for some s c;; a 

such that lsi 2 la s\, X = [.'I]. 

(43) 	The I-place quantifier "most," M~l' corresponds to O~I, an 
a-quantifier of type (I), defined hy O~I (X) = T itT for some s £; a 

such that lsi> la s\, X [s]. 
(44) 	The 2-place quantifier "most," M ~i 1, corresponds to O~1.1 , an 

a-qualltifier of type (I, I), defined by 0~1.1 (X) = T iff for some 

s, t ~ a such that lsn tl > Is - t\, X = [(s, t)]. 

(45) 	The I-place "well-ordering" quantifier WQ'll corresponds to 0:'°. 

an a-quantifier of type (2), defined by o:'O(X) = T iff for some 


r c;; a 2 stich that r well-orders Fld(R), X = [r]. 

(46) 	The (second-level) set-memhership quantifier SM '11 corresponds to 


O~M, an a-quantifier of type (0, I), defined by O;M(X) = T iff for 


some I' E a and s c;; a such that fl E S, X = [( II, s)]. 


(47) 	The quantilier "ordering of the natural numbers with zero," NZ'1lt 
corresponds to o~z, an a-quantifier of type <2,0), defined by 
O~/(X) = T iff for some r C;; a 2 and pEa such that (Fld(r), r, /1) ~ 
(CI), 	 <,0), X = l<r, IJ)]· 

(48) 	The "the" quantifier, THE'll> corresponds to 0;"\ an a-quantifier of 
type < I, I), defined by O;IIE(X) = T itT for some s, t ~ IX such that 

lsi = I and s C;; t, X = [(s, t)]. 

I define logical operators as follows: 

DEHNITlON 10 A logical operator of type t is a function that assigns to 

each cardinal a an a-operator of type t. 

3 {lnrestricted First-Order Logic: Syntax and Semantics 

I call now delineate the syntax and the semantics of first-order logic with 
Tarskian logical terms satisfying the metatheoretical requirements spe
cified in chapter 3 and defmed by means of logical operators. As before, I 
will leave logical fUllctors and quantifier functors out for the sake of 

simplicity. 

Syntux 
Ldllle first present the preliminary notion ofthe type ofa constant. A type 

t 	is, recall, a sequence of natural numbers (t l' ... , tit), where k is a 
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positive integer. Intuitively, the type of a constant 
LIS 	 illfonnatioll 

about its arguments. 

• Individual constants do not have a type (since they do not have 

arguments). 


• The type of logical and nonlogical k-place first-level predicates is 
<0, ... ,0) = 01, 


'---y---J 

1 limes 

• The type of k-place quantifiers is <II' ... , I".>, where for some 
lsi S fl, k j > O. (Intuitively, if the ith argulllent of a k-placc 
quantifier Q is a singular term, Ii 0; if the ith argument is an Il-place 
first-level predicate, Ii = fl.) 

Primilive symbols 

I. 	Logical symbols 

a. sentential connectives: any collection that semantically forms a 
complete system of truth-functional connectives, say,....., &, v, 
-to,+-+ 

b. 	 n logical predicates and/or quantifiers, ('I' ... , (~ of types 

II' ... , In respectively, n > 0 


2. 	 Variables: XI' x2 , '" (informally: x, y, z, V, w) 

3. 	 Punctuation symbols: (a) parentheses: ( , ); (b) comma: ,. 
4. 	 Nonlogical symbols 

a. 	 individual constants: ai' ... , am, m ~ 0 

b. 	 predicate constants: for each n > 0, a finite (possibly empty) set of 
n-place predicates, P~, ... , P:'. 

We ll:lormedformulas (wi/v) 

I. 	Terms: Individual constants and variables are terms. 
2. 	 Atomic wffs: If S is an n-place predicate (logical or nonlogical) and 

s" ... , Sn are terms, then S(SI' ... , sn) is an atomic wlr. 
3. 	 Wffs 

a. 	 An atomic wff is a wff. 

b. 	 If<b, 'I' are wffs, then so are (-<b), (tl>& \p), «(1) v \p), «1> -to '11) and 
($ +-+ '1'). 

c. 	 If Q is a quantifier of type I (II' ... , I,,), II is the maXinHIITl of 
, ... ,11 x J ' • •• , Xn are distinct variables, and LJ

I 
, ... , LJ arc

k 

expressions such that for each lsi s k, if Ii 0, LJ
j 

is a tcrm and 
otherwise Bj is a wiT, then «Qx l , ... , xn)(LJ1 , ••• , LJd) is a wlr. 

SCllIdlllil:s fmm Ihe (,round Up 

I follow the convention that outermost parentheses in wffs may be 
omitted. 

LJoul/d (//l(lji'ee occurrences of variahles in w.Us I say that x occurs in an 
ex.pression e iff either x e or x is a member of the sequence of primitive 
symbols constituting e. 

• There are no bound occurrences of variables in terms. 
• If (I) is an atomic wIT, then no occurrence of x in $ is bound. 
• I f <I> is a wIT of the form - \fI, then an occurrence of x in $ is bound iff 

it is bound in \.11. 

• If(l) is a wIT of the form 'I' &5, 'I' v 5, \fI-to 5, or \fI+-+5, then an 
occurrence of x in <b is bound iff it is either a bound occurrence in \fI 

or it is a bound occurrence in 5. 
• If <I> is a wIT of the form (Qx I' ... , xn)(BI , ••. , B1 ), where Q is of type 

<II' .. '[k)' then an occurrence of x in $ is bound iff it is an 
occurrence in some Ri , ) sis k, such that either x is bound in Bj or 
for some I $; III I;, x xm . 

• An occurrellce of x in <I) is free ifT it is not bound. 

The idea is that if Q is, say, of type (I, 2,0) and R 1 , R2 are two 2-place 
predicates of the language, then in the wff 

(Qx, y)(R 1(x, y), R 2 (x, y), x) 

Q binds the first two occurrences of x and the second occurrence-·of y, but 
the third occurrence of x and the first occurrence of yare free. To make 
the notation more transparent, I sometimes indicate the type of a quan
tifier Q with a superscript. That involves rewriting the formula above, for 
example, as 

(QI.2.0.\", y)(R,(x, R2 (x, y), x). 

Sentenccs A sel1lellc£' is a wIT in which no variable occurs free. 
In practice I will sometimes omit commas separating the variables in a 

quantifier expression. Thus instead of(Qx, y), I will write (Qxy).1 will also 
Lise variolls types of parentheses. 

Sl'1113l1tit.'s 

I cl ::-,' bl' a tJr:,t-Mlkr I()gil' with synta.x as defined above. Say !l' has 
I '~< t ;--:,_1<,.:,;;" J . J' . 1';~:21 .J'.2~n.!;~:,~;;; Q:., . Q.... nonlogical 

" - 'f ."...--::-: .. ::.. - -~ ~ , 
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P".' Each logical predicate or quantifier C of type t is semantically defined 
by means of a lo&ical operator OC of the same type. 

Let 'If be a model for the language with universe A of cardinality ex, 
defined relative to the nonlogical vocabulary of 2) in the usual way. That 
• 	 \l( = (A "II '11 p'll II.' et g f e ementsp'll) 	Lb' IIS,;': , ai' ... , a IIJ' I, ..• , e an asslgnmenl 0 

in A to the variables of the language. I define an extension of g, g. to the 

terms of the language as follows: For a variable x, g(x) = g(x). For an 
individual constant a, g(a) a'll. 

DEFINITION OF SATISFACTION \Jl satisfies the wfT <I> with the assignmenl 
g-\JII= <J>[g]-iff the following conditions hold: 

1. 	 Atomic wffs 

a. Let P be an n-place nonlogical predicate and S I, •.. , SII terms. Then 

'If 1= P(s l' ... , slI)[g] iff (g(s d, ... , g(slI» E p'll. 

(As before, I identify a I-tuple with its member.) 

b. Let V be an n-place logical predicate and SI, ••. , Sn terms. Then 

'II 1= V(Sl' ... ; sll)[g] iff there is an indexing 1 of A 


by ex such that o:[(i(g(s.», ... , i(g(sn»)] T, 


where for 1 ~ j ~ n, i(g(sj» is the index image of g(Sj) under I. 
(See definition 1.) 

2. 	 Nonatomic wffs 
a. 	 Let <J), 't' be wffs. 

m1= -- «1>[g] iff 'If t;C <J)fg]; 


m1= (<<1> & 'II) [g] iff 'II 1= <J)fg] and 'If 1= 'P[gJ 


b. 	 Let Q be a quantifier of type <I I' ... , I,,), let n be the maximum of 

{t l' ... , t,,}, let Xl' ... , XII be distinct variables, and let BI , .•. , B" 
be expressions such that for each I ~ j ~ k, if I j = 0, ~ is a lerm, 
and otherwise ~ is a wff. Then 

'II 1= (Qx 1, ... , xlI)(BI , ... , B,J [g] iff there is an indexing I 
of A by IX such that o~[<i(gi (Bd), ... , i(gj (B,,»)] T,t. 'Jc 

where for 1 ~ j ~ k, 

if tj = 0, then gx,/Bj) = g(~); 


if ')' ~ 1. gj (BJ) = {(a l •...• a/) E Ali: '11 F= 

'i 

t?:~!rl'(. 1.) ('t".":. \11 

~ 	 ::: 
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" \1Let!/! and 91 be as above. Let <J) be a I, 

sentence of 2). Then (I> is true in \J(-\J( 1= <J>-iff for some assignment g \: 
Ijof elemenls in A to the variables of the language, \JI F <J>{g]. 
! 

Examples Let '.!( be a model with the Group as its universe. Let P and M 
be the I-place predicates "x is a philosopher" and "x is a mathe
malician" respectively, pili = {Alan}, and M'fl = {Alan, Jane}. Let G be 

the 2-place relation "x graduated from Columbia College before y" 
and (/'11 = {(Ian, Carl), (Carl, Gary), (Ian, Gary)}. The quantifiers 11 
("there is exactly one"), M 1. 1 ("most are ... "), and TL-F (Hthree 
individuals stand in the linear relation __, the first being .. , "), restricted 

to '.!l, are definable by the following 10-operators: 

(49) 	0'11 : EQ(P( to» - {T, F}, where Oi/O[X] = T itT X is similar to {O}.
0 

(50) 	O~I(:.I : EQ(P(lO) x P(IO» - {T, F}, where O~~·I{(X, Y)] = T iff 

X (\ l'I > IX Y\. 

(51) 	ark- F EQ(P( 102 ) x 10) - {T, F}, where oIk-F{<R, x)] = T iff 

(R, x) is similar to ({(O, I), (1,2), (0, 2)}, 0). 

EQ(Z) is the sel of all equivalence classes of members of Z under the 

relation of similarity. 
Let I be any indexing of the Group by 10, say indexing by alphabetical 


order of members' first names. Then 


(52) 	There is exactly one philosopher, 

or formally, 

(53) (! I x) Px, 


is true in'll, since i(p'll) = {O}. 


(54) 	There is exactly one mathematician, 

or, 

(55) (!l xL\f.\". Ii;
:; 


is false in '11. since inf~l) = 9} is not similar to {OJ. 


I ~I-.I 'i.~,' rh;l "-"rh:,"~ 3":' :?l~-' """::!f'h:,"""::!f;C';:::"~ 


'i~ 

;1; . tlD2 
\'-," 

, ~\ 

I
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or, 

(59) (TL-Fxy)(Gxy, 'an), 

is true in VI, because < {(8, 2), (2, 6), <8, 8) is similar to 

(f(O, I), (1,2), (0, 2)}. 0). 


Higginbotham and May's Relational Quantifiers 

My characterization of logical terms as logical operators puts all logical 
predicates and quantifiers on a par. It cLlpturcs a basic principle of 
cality, namely that to be logical is to take only structure into consider
ation. Also captured is the complementary principle that every structure 
is mirrored by some logical term. It is, however, interesting to dividc the 
expanse of logical terms into groups according to signilicHnt character
istics. Mostowski's work allows us to single out predicative quanticrs hy 
identifying a method of individuation particular to thesc l.JuHntilicrs. In 
"Questions, Quantifiers, and Crossing" (1981) J. Higginbotham and R. 
May distinguish four groups of relational quantiliers of the simplcst 
type (2), by means of the illl'ariallce cOIu/iliolls they satisfy. Their criterion 
orders simple relational quantifiers according to their complexity. rrolll 

quantifiers that can only distinguish the numbcr of pairs a binary relation 
R contains to "fine-grained" quantifiers that take into accollnt thc inncr 
structure of R. 

Given a universe A, Higginbotham and May define a binary relational 

quantifier over A as a function q: P(A x A) -- {T, F}. They consider the 

following invariance conditions: I 


a. 'nvariance under automorphisms of A x A 
b. (I) Invariance under I-automorphisms of A x A 

(2) 'nvariance under 2-automorphisms of A x A 
c. 'nvariance under pair-automorphisms of A x A 
d. Invariance under automorphisms of A 

Given a set A, m: A x A -- A x A is a (set) automorphism of A x A ill' 
m is a permutation of A x A. 

An automorphism m : A x A -- A x A is a I-uutomorphism of A x A ill' 
for all a, h, ai, hi, c, d, c' , d ' E A, 

m(a, h) = (ai, and m(c, d) = (e ' , tI') implies (a c ilL/ ("). 

That is, m isa I-automorphism of A x A iff there is an automorphism 1111 

of A such that for all a, hE A, 

h) (m l (a), 
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1'01 SOI1\C hi EA. Informally, if PI and P2 are pairs with the same first 
clcll1cnt, thell a I-automorphism m will assign to PI and P2 pairs that also 
sharc thcir first clement. In such a case I will say that m respects first 
clements. 

An automorphism m : A x A -- A x A is a 2-alilomorphism of A x A iff 
iifor all a, h, a', h', f, tI, (,', (/' E A, Ii
Ii 

1Il(1l, h) = (a', h') and m(c, d) (c', el') implies (h = d iff hi = d /). 

That is, m is a 2-'llItomorphism of A x A iff there is an automorphism m2 

of A sllch that for all a, hE A, c 
111(0, h) (a',11I2(h» 

for somc ti' EA. Informally, m respects second clements. 
An automorphism m : A x A -- A x A is a pair-automorphism of A x A 

ilr 111 is both a I-automorphism of A x A and a 2-automorphism of A x A. 

That is, III is a pair-alltomorphism of A x A ill' there are automorphisms 
nil' "'2 of A sHch that for all a, hE A, 

lI1(a, h) = (Ill) (a), 111 2(1))). 

In such a casc I will say that m respects both first and second elements. 
The invariancc conditions (a) to (d) increasingly extend the notion of 

relational quantifier, with (a) reflecting a minimalist approach and (d) a 
maxima list approach. All quantifiers satisfying (a), (b), or (c) satisfy 
but somc quantifiers satisfying (d) do not satisfy (a) to (c); some quantifiers 
satisfying (c) do lIot satisfy either (b. I ) or (b.2), etc. The more invariance 
conditions a quantifier satisfies, the less distinctive it is. A quantifier satis
fying (a), for instance, does not distinguish between relations that have the 
same llumber of clements but otherwise differ in structure (for example, 
the onc is a well-ordering relation, while the other is not). Quantifiers 
satisfying (0) arc those for which I developed my "constructive" defini
tion. Ipso facto, all quantifiers satisfying Higginbotham and May's condi
tions fall under my dellnition. Let us describe the quantifiers in each of 
Iligginbotham and May's categories. 

Im":uiancc condition (a) The relational quantifiers satisfying (a) consti
tute an immcdiate extension of Mostowski's quantifiers and are definable 
by his cardinality functions. Thcse quantiliers treat relations as sets, and 
dcments or relations, i.e., Il-tuples of individuals, us individuals. I will call 
thesc wcak relaliolla/ quantifiers. 

The contrihution of weak relational quantifiers to the expressive power 
of lirst-onler louic is straightforward. They allow us to enumerate the 
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elements of relations: "__ puir(s) of individuals in the universe stand(s) 

in the binary relation R," and similarly for n-place relations. Thus we can 
define the I-place weak relational quantifier 

(60) (Most I xy)Rxy 

("Most pairs of individuals in the universe fall under the relation R") by 
the same function t that defines the I-place predicative "most" Similarly, 
the 2-place relational "most," 

(61) (Most l 
•

l xy)(Rxy, Sxy) 

("Most pairs standing in the relation R stand in the relation S"), is defined 
by the same cardinality function as the 2-place predicative "most." 

Weak relational quantifiers do not exhaust the cardinality properties of 
relations, however. Among the cardinality properties not expressible hy 

weak relational quantifiers is the following: 


(62) The (binary) relation R has a elements in its domain, 


where a is a cardinal number. I nstances of (62) can be stated using a pair 

of predicative quat:ttifiers: 


(63) (!a x)(3y)Rxy 


But no weak relational quantifier is equivalent to the pair (!ex x) (3.-). 


Invariance condition (b) The relational quantifiers satisfying invariance 
condition (b) essentially say how many individuals in the universe stand 
to how many individuals in a given relation R. The difference hetween the 
two conditions (b.1) and (b.2) is in the direction from which the relation 
is perceived. Quantifiers satisfying the first condition basically say that ex 
objects in the universe are such that each stands in the relation R to fl 
objects in the universe. Quantifiers satisfying the second condition say that 
there are fl objects in the universe to each of which ex objects in the universe 
stand in the relation R. (The properties predicated on relations hy quan
tifiers satisfying (b. J) and (b.2) can be more complex than those descrihed 
above, but for my purposes it suffices to consider the hasic properties.) 
Since the two conditions under (b) are symmetrical, it is enough to discuss 
just one. Following Higginbotham and May, I will concentrate on the 
first. Higginbotham and May prove that all quantifiers satisfying 
assign cardinality properties to relations in their scope. A detailed descrip
tion and proof of their claim appears in the appendix. 

Intuitively, we arrive at the cardinality counterparts of quantifiers satis
fying invariance condition (b. I ) in the following way: Given a model'll 
with a universe A of cardinality ex and a binary relation R A2, we can 
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describe R from the point of view of its cardinalities by stating, with 

respect to each element of A, to how many objects in A it stands in the 
relation R and to how many objects in A it does not stand in the relation i 

I: 
R. We can thus represent the cardinalities of R by means of a function I 

. a -+ (fl, )'),,' 
11 

where a serves as a set of indices for the elements of A (as in section 2 
above) and (fl, y)" is the set of all pairs of cardinals p, y whose sum is ex. 	 \\ 
Given an element lid E A, f(~) is the pair of cardinals (/1, y) such that ad 	 ~} 

I)stands in the relation R to fJ individuals and ad does not stand in the 

relation R to )' individuals. But quantifiers do not distinguish which ele
 II 
ments of A are associated with a given pair of cardinals (P, y). Therefore, 

!l 
1\ 

Higginbotham and May construct equivalence classes of functions/under 
a similarity relation. Quantifiers are then defined as functions from such II 
equivalence classes to truth values. As you can see, there is a certain (I 
resemblance hetween Uigginbotham and May's cardinality functions and H 
my a-operators. Indeed, I arrived at the idea of my definition by generaliz-	 if

,1 
ing Iligginhotham and May's method. 

;~
:1 
11Invariancc condition (c) Quantifiers invariant under pair-~utomorphisms 

of A x A distinguish identities and nonidentities both in the domain and 
'1in the range of a given relation R. These quantifiers can express such ;1

properties of relations having to do with identities as, e.g., " is a 

one-to-Olle relation." 
:I 

Innriancc condition (d) I will call relational quantifiers satisfying invari ;i
,I 

ance under automorphisms of A, but not the other invariance conditions, ~ 1 
i! 

:i'I5/r0I1f{ relational l/lIl1l1tf{iers. Strong relational quantifiers are genuine logi
cal terlllS, and they can be represented by logical operators defined in 


section 2 ahove. These quantifiers make the finest distinctions among rela

tions that logical terms are capable of making. Below I will give several 

examples of strong relational quantifiers in natural language, and also of 


weaker relational quantifiers satisfying (a) through (c). 


5 Linguistic Applications 

Several "types" of logical terms of UL have received ample attention in 

logico-linguistic circles, usually under the heading of "generalized quan

tifiers." In chapter 2 we saw Mostowskian quantifiers being used to inter-


determiners. In the present section I will further expand the domain 
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of applications of UL quantifiers. My discussion will not asslIme the form 

of a survey. Instead, I will describe applications of logical quantifiers that 

came up ill the course of my own invcstigations. (Othcr works dcvoted to 
linguistic applications of, or thcoretical linguistic approaches to, gCllc

ralized quantifiers are listed in the references. The reader is refcrred to 

Barwise and Cooper, Higginbotham and May, Kcenan, Kecnan and 

Moss, Keenan and Stavi, May, van Benthem, and Wcstcrstahl, among
others.) 

I will begin with a ncw application of Mostowskian 
HndthclI 

proceed throul!h Higginbotham and May's 
incrcas

in natural lan~lIa~e. 

Generalized operations on relations 

In standard first-order logic we lise the cxistcntial and univcrsal 

as operators that, given two binary relations Rand S, yield ncw relations 
called the relative product of Rand S R fP S and the rclativc slim of R 
and S-RlsS. These are dcfined (by dual conditions) as follows: 

RIPS =df {(x, y) : (3z) (x Rz & zSy)} 

RIBS =df {(x, y) : (Vz)(xRz v z ..S~I')} 

Linguistically, we can interpret thc relation "being a patcrnal uncle of" 

as the relative product of the relations "being a brother of" and "being a 


father of," etc. By generalizing the definitions of relative product and SlIlll, 


we arrive at the notion of a relative product/sum modulo Q, where Q is a 


I -place Mostowskian quantifier. I define the relative product and slim of 

binary relations Rand S modulo Q as follows: 


RI~S =df : (Qz)(xRz & Z~I')} 

RI~S =df {(x, : (Qz)(xRz v zSr)} 

(As in the traditional product and sum, if Q 1 is the dllal of Q2' the 

definiens of Rlbl S is the dual of the definiens of RI~/i'.) I will c,1I1 the 
standard relative product the relative product modulo 3 and the standard 

relative sum the relative slim modulo V. The notions of relative product 

and sum allow us to define relations that include a "cardinality factor." 
The operation of relative product modulo Q appears to be especially 
useful, as can be seen in the following examples: 

(64) x is a friend of many people who know y. 

(65) x has few common acquaintances with y. 

When R is an ordering relation, we can define relations that have to do 
with distance or relative position in R as rclative products of R modulo 

Scmalllic.:s from the Ground Up 93 

the ""r'HW;!ltp Q. In this way we can define 

Thcrc arc 11 elements between x and y in R. 

(67) x is far behind/ahead-of yin R. 

(68) x is second best to )' in P. 

Here P is a property (e.g., diving) that determines the field oran"implicit i 
I 

ordering relation R, "being better at .... " I 

Two-place predicative quantifiers can also be used to define sets and j 
.jlrelations lhal include a cardinality factor. I call the operation of con

structing slIch a set (or relation) from two initial relations Rand R' jj 
"a generalized relative product of Rand R'." For example, using the 

quantifier "same number," defined in the obvious way, we can single out I!
the median clement in a linear ordering relation with li 

IC-lIl1I11DCr z)(xRz, zRx). I' 
'I

In a similar way, we can define "x is relatively high/low in R." 
It is often uscful to consider "semilinear" orderings, an ordering like a !Il 

·1linear ordering hut with the requirement "(Vx)(Vy)(x < y v y > x v x 
I' 

l~
replaced by H(VX)(Vy)(x < Y V )' > x v x ~ y)," where ~ is some 

H" 
equivalcnce relation, for example "being in the same income bracket as." I! 
Thus if R is a semilillear ordering relative to "being in the same income t'i 
bracket as," (69) will give us the set of all clements in the middle income il 
bracket. Using a second predicative quantifier, we can now express state Ii 
ments indicating how many individuals occupy a certain relative position ~f
in R. For example, 

i,l
(70) Proportionally more women hold high-paying jobs in San Diego .I 

than in other cities in the country. 
11
[IOther statemcnts stating formal properties of generalized relative products II,:

of Rand S can be constructed using relational quantifiers defined in this n 
" 

\Vcak relational (IUantilicrs 

I will indicate some of the uses of weak relational quantifiers. Given a 

relative product modulo Q, e.g., (66), we can use weak relational quan

tifiers to makc statements of the form 

(71) Thcre are m pairs whose distance in R is II. 

Other cases of quantifkation where pairs are taken as basic units are 

also naturally expressed using weak relational quantifiers. For example, 

(72) Most divorced couples do not remarry. 



l 

r 

~ i 
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Consider, however. 

(73) Four married couples left the party. 


The most natural construal of(73) as a weak relational quantification fails. 

Suppose that "exactly 4," !4, is a 2-place weak relational quantifier over 


binary relations. Then. since!4 is essentially a Mostowskian quantifier, we 

can define it by a cardinality function as described in chapter 2. That is, 


given a universe A, 1~4 is a function such that for any quadruple tX, fl, y, b, 

where ex + p+ y + b = IAI. 


1~4(ex, p, )I, b) = T iff ex = 4. 


This means that if Rand S are binary relations on A, 

!4(R, S) = Tiff IR () SI = 4. 

Now, if we interpret (73) as 

(74) (!4 xy)(x is married to y, x and y left the party), 


then (74) turns out true when the number of married couples who left the 

party is two, n?t four. (This is because there are two pairs in a couple.) 

Thus (74) is an incorrect rendering of (73). There are various remedies to 


the problem. Among them are the following: 


a. 	We can treat binary relations as sels ofCOlipIes (a couple being an 
unordered pair) and then define weak relational quantiHers as regular 

Mostowskian quantifiers by setting numerical conditions on the 

atoms of the Boolean algebra generated by n-tuples of such "sets" in 
a given universe A. The couple quantifier !4 will thus be defined by 

the same I-function as the corresponding quantifier based on pairs: 

!4(R. S) = T iff the intersection of the two sets of couples Rand S 
yields a set of 4 couples. 

b. 	We can construe couple quantifiers as strong relational quantifiers, 

i.e., quantifiers satisfying invariance condition (d). 

By adopting strategy (a), we will be able to use weak relational qllan

tifiers to symbolize the following English sentences: 

(75) 	Half the students in my class do not know each other. 

(76) 	Most of my friends have few common acquaintances. 

(77) 	 Few townsmen and villagers hate each other. 

(78) Almost all brothers compete with each other. 

Thus, for instance, (75) will be symbolized as 

(79) 	(Half xy)[x is a student in my class & y is a student in my class & 

x ::f:; y, -(x knows y & y knows x)]. 

95 
Sc..:mantics from the Ground Up 

But to interpret 

(80) 	Most younger brothers envy their elder brothers 

we mllst go back to quantifiers based on pairs. 
I should say that weak relational quantifiers (based on pairs or on 

couples) do not exhaust the possibilities of interpretation of the sentences 

in our examples. On my interpretation, (75), for instance, is true ifmy class 

consists of four students, a, b, c, and d, and one of the students, say a, 
does not know (and is not known to) anyone in the class, but the rest-b, 

e, and d -all know each other. Someone may wish to interpret (75) so that 

it will come out false in the situation just described. This can be done by 

adopting stronger relational quantifiers. 

I Jnearity quantifiers 
Higginbotham and May's I-place relational cardinality quantifiers over 

a universe A, i.e., I-place binary quantifiers invariant under I-automor
phism of A x A. essentially say how many individuals stand to how many 
individuals in a given binary relation R. But this is exactly what a linear 
quantilier prefix with two I-place predicative quantifiers says about a 
relation R in a model ~l with a universe A. For that reason I name 

relational cardinality quantifiers linearity qllallt~fiers. 'Higginbotham and 
May called the operation of constructing a relational quantifier equivalent 

to a linear quantifier prefix with two predicative quantifiers absorption. A 

relational quantifier constructed by absorption is said to be separable. 
The rule of absorption is this: if Ql and Q2 are two I-place predicative 

quantifiers over a universe A and R is a binary relation included in A2, then 

the quantifier prefh (QI X)(Q2Y) will be absorbed by (Q3 XY), where Q3 is 

a linearity quantifier over A such that 

Q" ( R) = T iIf Q.( {a E A : Q 2 ( {b E A : aRb}) = T}) = T. 

We can generalize the operation of absorption to n-place quantifier 

prefixes by denning I-place linearity quantifiers on n-place relations over 

a universe A. A I-place linearity quantifier on an n-place relation over a 

universe II is a function 

'I: p(An) - {T, F} 


that is invariant under Iillear automorphism,\' of A". I deHne "linear auto


morphism of An" as follows. The function 

m:An_An 

is a linear automorphism of An iff In is an automorphism of A" and for 

any (/1,a2, ... ,a,pll~,a~, ... ,a~, b 1 ,b2 , .. ·,bll , b~, b~, ... ,b~EA the 
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following holds: 

If m(a l , a z , ... , all) = (a~, a;, ... , a~) and m(h" 

(h; , h2' ... , h~), then 
I. at h\ iff a~ = h~, and 
2. if a l = hI' then llz hz iff ll2 = h;, and 
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hz, ... , h
ll

) = 

n - I. if al b l and az = h2 and ... and ll,,-2 = h,,-2' then (/,,-1 = h" I 

iff a~_, = b~_I' 
To return to absorption of two linearly ordered I-place predi<:ative 

quantifiers, let A be a set of 11 children, II ~ 3. Consider the scntence 

(81) Three children had three friends each. 


We can formalize (81) with either (82) or (83) below: 


(82) (!3 x) (!3 y) x is a friend of y. 


Here!3 is a I-place predicative quantirier defined, for A, by a Mostowskian 

function I such that for any (k, m) in its domain (k + m = 11), t(k. m) T 

iff k = 3. 


(83) (3/3 xy) x is a friend of y. 


Here 3/3 is a linearity quantifier of type (2) defined, for If, hy a t Iig

ginhothtam-May function k such that for any tfl in its domain 

(/: n - (), k)/I)' k[fJ = T iff/is similar to some f* such that 


1"'(0) = f*( I) = f*(2) (3, Il 3) and 


1"'(3), ... ,f*(11 - I) =1= (3, n - 3). 


Intuitively, the functionf'" assigns 3 to children 0, I, and 2 as the number 
of their friends, and n - 3 as the number of their nonfriends. To all other 
children f'" assigns a different combination of numbers of friends and 
nonfriends. (For the sake of simplicity I assumed that a child can have 
himself or herself as a friend.) 

Note, however, that linearity quantifiers on binary rclations can also 
express Boolean combinations, possibly infinite, of linear quantifier prc
fixes with predicative quantifiers. Thus, consider the following infinite 
conjunction in which "number" stands for "natural number" and 11 ranges 
over the natural numbers: 

(84) One number has no predecessors, and two numbers have at most 
one predecessor, and three numbers have at 1110st two predecessors, 
and ... , and Il numbers have at most /I - I predecessors, and ... 
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This illlinitc conjuction cannot be formalized in first-order logic with 
predicative quantillcrs, but it can be formalized in first-order logic with 

:i'linearity quantifiers on binary relations. I will symbolize it as I, 
Ii 

(85) (II at 1110st (II I) xy)x has a predecessor y, 	 lj 
d 

where "" at most (/I I)" is defined, in a universe A of cardinality ~o, 	 II 
by a function !I 
k : If'l -+ {T, F} 	 lj, 
sllch that for any [f1 E [Fl, k[f1 = Tifflis similar to the function 	 'I 

'\ 
IitI :' 

f* : ~() -+ (k, /)t-:o ' 

which is sllch that for every /I < ~o, 

f"'(/I) = (II, ~o)· 

Int lIitivcly,f represents a relation R with field of cardinality ~o such that 

under some indexing of the universe A by ~o, ao stands in the relation R 

to no objects in A, (/1 stands in the relation R to one object in A. a2 stands 

in the relation U to two objects in A, and so on. Clearly, k also defines the 


complex qllantilier in (X6): 
(X()) 	One IlIIl11her has no predecessor, and one Ilumber has exactly one 


predecessor, and one number has exactly two predecessors, and ... • 

and one number has exactly 11 predecessors, and ... 


Note that k need not express a condition which exhibits a regularity. 

Using a quantifier k, similar (in the intuitive sense) to k, we can represent 


an irregular situation like the following: 


(87) Two children have two friends each, and ten children have four 

friends each, and twelve children have nine friends each, and ... 


Another kind of cardinality condition expressible with linearity quan
tiliers, but not with a standard preHx of two I-place predicative quanti .. 

~~ Hers, is exempli lied by the following sentence: 

(88) There is a great variance in the number of friends of each of these 

youngsters I 

(whicb could also be phrased as "These youngsters differ considerably in ·1 
the n\1mbers of their friends"). Assuming, for simplicity, that the universe 

consists of "these youngsters" and that the friends in question are 

members or the universe, (88) could be expressed as 


(Rt)) (Grrat \',uiance xd youngster x has youngster y for a friend, 
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where for each universe A of cardinality a, "great variance" is defined by 

the function k such that for every [/l E Dom(k), 

k((fD = T iff there is a wide distribution of cardinals }' 

such that for some fJ E a,/( (l) = (y, a 

We can construct 2-place linearity quantifiers, of type <I, 2), that will 

enable us to restrict linear quantification to B1 R (R with its domain 

limited to B). If we want to symbolize the following sentence without 

assuming the universe consists of "these youngsters," we will use the 
2-place "great variance" quantifier. 

(90) There is a great variance in the number of words in the active 

vocabulary of each of these youngsters. 

This sentence will "be rendered "(Great variance xy)(x is one of these 
youngsters, x has word y in his active vocabulary)." 

Let us now turn to absorption of two 2-place predicative quantifiers. A 
linguistically interesting case is that of quantifications of the form 

(91) (Q.x)(~, (Q2Y)('V' E», 

where <f,), 'V, E are well-formed formulas. The quantil1crs ill (91) are 
absorbed by the quantifier (Qt/Q2)I,2.2, defined, for a universe A, as 
follows: for every D £; A and C, D £; A 2 , 

(Q. !Q2)A(B, C, D) = Tiff (QI )A( {a E A : a ED}, 


{a E A: (Q2)A({b E A: (a, b) E C}, {h E A: (a, h) ED}) Tn = T 


It is easy to see that (9 J) is equivalent to 

(92) «QI/Q2)I,2,2 xy)(<f,), 'P, E), 

whose satisfaction condition in a model ~[ with a universe A by an assign
ment g is 

21 F (QI/Q2XY)(~, 'P, E)[gJ iff (QI )A( {a E A : ~r F <!)[g(x!a)]}, 

{a E A : (Q2)A({ bE A : WF '¥[g(x/a)(y/b)]), 

{h E A : ~[F E[g(x/a)(y/b)J}) = T}) = T. 

This definition of absorption is similar to one proposed by R. Clark and 

E. L Keenan in "The Absorption Operator and Universal Grammar" 

(1986). But there is an essential difference: whereas I constructed the 

absorption quantifier Q1 /Q2 in such a way that in the formula 

(QI/Q2)(<I)X, 'Vxy, Exy) 

Q./Q2 binds all free variables, Clark and Keenan defined QI/Q2 in such 
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a way that it docs not bind the occurrence of x in 'fIxy. The reason the 

absorbing quantifier has to bind x in 'fIxy is simple: Ql /Q2 has to be so 
1defined that I' 

(93) (01/02xy)«I), 'f', E) 

is logically equivalent to 

(94) (01 (Q2Y)('f', E», 
no matter what well-formed formulas <f,), '¥, and E are. Now it is an 

essential feature of(94) that any free occurrence of x in <1>, 'f', or E is bound 

by Q I' and similarly, that any free occurrence of y in 'P or E is bound 

by 02' The relation of binding between quantifiers and free variables 

in (94) must be preserved by (93). In particular, if x occurs free in 'fI, it 

should be bound by QI /Q2' The definition of absorption by Clark and 

Keenan that I have referred to goes as follows: for every D, C £; A and 

J) A2, 

(Ql/Q2),.1(8, C, D) = T ifr(QI )A({a E A: a ED}, 


{h E A : (Q2) A ( {h E A : h E C}, {h E A : <a, b) ED} ) = T} ) = T. 


This definition is intended to "simulate" quantifications of the form 


(01 x) l(l)x, (02.}') (lJIy, Exy)]. 


Bllt as we have seen, it is not adequate for absorbing all well-formed 


formulas of the form 


(01 x)l(I', (Q2y)(\jJ, 3)]. 

Note that the definition of satisfaction allows me to apply my absorbing 


q uantitier whether x occurs free in '¥ or not. For example, I can apply 


absorption to 


Every man loves some woman, 

or formally, 

(96) (Vx)[Mx, (3)')( L.x)')), 

and get 

(97) (V/3xy)(Mx, Wy, 

which has the right truth conditions. This is because the truth definition 


of (97) ill a model VI is 


'11 ~-:-.: (V/3x.I')(Mx, W)" I.xy) ill VAl {a E A: 'It F Mx[g(x/a)]}, 


{tl E A : =J;t( {h E A : '11 F JVy[g(xla)(y/h)]}. 


{h E A : VI F Lxy{g(x/a), (y/b)]}) = T}] T, 




rr 
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and 21 F Wy[g(x/a), (y/b»} is equivalent to 21 F JVy[g(y/h)]}. 
Absorption operators were originally investigatcd by Higginbotham 

and May (1981) in an attempt to account for the logical structure of cross 

reference, as in the Bach-Peters sentence 

(98) Every pilot who shot at it hit some Mig that chased him. 

May. in "Interpreting Logical Form" (1989). explains the issue as follows: 

If scope is represented asymmetrically [as it is in formulas of form (91) I, then 
the narrower scope quantifier cannot bind, as a hound variable, the pronoun 
contained within the broader scope phrase, which, in virtuc of having broadcr 
scope, is outside its c-command domain. Thus if the el'ery-phrase has broader 
scope, il cannot be a variable bound by the narrower sOlfll'-phrase. or <..:ourse this 
problem disappears if the proper structure associated with [(98)1 at LF is one 
of symmetric c-command, since then it would reside within the c-commund 
domain of some Mig that chased him simultaneously with him residing within the 
c-command domain of every pilot who shot at it. [Absorption is then presented as) 
a structural readjustment of asymmetric structures into symmctric oncs. 2 

I will not describe the exchange of views regarding this maller in the 
linguistic Iiterature. 3 However, I would like to propose for consideration 
two formalizations of (98) in the spirit of May's suggestion. 

First consider the 2-place predicative quantifier 3*·'·, which 1 will call 
"the conditional existential quantifier" or "the conditional some." Given 

a universe A. I define 3J as follows: for any B. C £; A, 

3,1(B, C) = T iff either B = 0 or Bn C =10. 

In terms of cardinality I-functions (see chapter 2), 3,: is defined by the 
function I r such that for any (a, p, )', £5) in its domain, 

If(a. p, )I, £5) = T iff either fJ = 0 or a "# O. 

Figure 4.1 helps elucidate the relation between 3* and If. Clearly, if (1), '¥ 
are wffs. 

(99) (3* x)(<I>. 'P) 


is logically equivalent to 


(100) (3x)<I> -4 (3x)(<I> & 'P). 


The quantifier 3* might be used to interpret such English scntences as 


(101) Every boy who chased a unicorn caught one, 

understood as having the same truth conditions as 

(102) ('Ix) {Bx -4 [(3y)( Uy & Cflxy) -4 (3y)( Uy & Cllxy & Cxy) I}, 
with the obvious symbolization key for B, U, ('II and C. Thc formal 

11, 
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Figure 4.1 

sentence (102) is equivalent to 

( 103) ('Ix) lOx -4 (3* y) (Uy & C /lxy. Cxy)], 


which in some respects is closer in form to (10 I). Returning to the Bach


Petcrs scntcm:e (98), the meaning of (98) seem to be captured by 


(104) 	(Vx){PX-4 

l<3.l') (My & Cyx & Sxy) -+ (3y)(My & Cyx & Sxy & Hxy)]). 


with the obvious readings for P, M, C, S, and H.- (In understanding 

(9X) as having the same meaning as (104), I follow Higginbotham and May 

in "Questions, Quantifiers, and Crossing" and Clark and Keenan in "The 
Absorption Operator and Universal Grammar."4) However, although 
(104) avoids the problem of cross binding, it does not appear to have the 
same logical structure as (98), I propose, therefore, that we assign to (98) 

the logical form 
(105) 	(Vx)[Px -4 (3*y)(My & Cyx & Sx)" IIxy)]. 

Alternatively, we ean analyze (98) as 

(106) (Vx)lPx, (3* y)(M.l' & ('yx & Sxy, IIxy)] , 

which is obtained from (105) by replacing the I-place V by its 2-plaee 
variant. Both (\05) and (106) are equivalent to (104). but I think they offer 

a better scmantic representation of (98) than does (104), while solving the 
problem of cross binding just as wei\. I f absorption is still desirable. we can 

apply it to the linear pair (V, 3*). We then obtain 

(\07) (V(j*I.2.2X.l')(PX, My & Cyx & Sxy, IIxy). 

Finally, to increase the structural similarity with (98). we can rewrite 
( \(7) using a quantilier equivalent to V /3* 1. 2.2 but of the type ('. 2, 2, 2)_ 

This quantifier will be so deHned that 
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(108) 	 ('1/3*1.2.2.2 xy)(PX, Sxy, lIxy, My & (~)'x) 

is equivalent to (107). Alternatively, we can construct a 3-place variallt of 
3* and replace (106) with 

(109) ('tx)[Px, (3. 1,1.1 y)(Sxy, I/xy, Aly & Cyx)]. 


The quantifier \;//3*1.2,2.2 will then be obtained by absorption from 

<'I, 3".)·1.1) in the 'obvious way. Formally, thcrc is no problem in con


structing "superfluous" versions of quantifiers, and indeed, in chapler 2, f 

noted that such terms are common in naturallanguagcs. The 3-pl:.tcc 3* is 

defined by a function t as follows: 


t A(a, p, y, b, t, " 1}, 8) Tiff either bOor a =I:- 0 

The relation between 3*1.1 and 3*1,1,1 becomes clear whcn we compare 

figure 4.1 to figure 4.2. (Given an x, B I represents "Sxy," B2 represents 
"My & Cyx," and C represents HHxy.") 

If my analysis is correct, it is left for the linguist to account for the 
occurrence of "superfluous" logical forms in certain natural-language 
constructions. I will not attempt such an account. It may indeed bc the 
case that what is superfluous from a purely logical point of view is signi
ficant from a linguistic viewpoint. 

Pair quantifiers 

Pair quantifiers are ) -place quantifiers satisfying Higginbotham and 
May's invariance condition (c) but not (b) or (a). Hcrc are two examplcs: 

(110) 	Three villagers and two townsmen exchanged blows. 

(III) 	Two Germans and three Americans will challenge each other in 
the next tournament. 

SClllalltics fwm the Ground Up 

Note that the number words in each of these sentences can themselves 
be construed as quantifiers. But as predicative quantifiers, neither is within 
the scope of the other. Therefore, these are not ordinary predicative quan
tifkations but fall under the category of branching quantifications. A 
gcneral analysis of the branching structure will be given in chapter 5. 

Other pair quantifiers express various correspondence relationships. 

Thus, treating modes of unhappiness as individuals (or allowing ascent to 
sccond-order logic), we can analyze Tolstoy'S opening to Anna Karenina 
as a pair quantification slaling a one-to-one correspondence: 

(112) Each unhappy family is unhappy in its own way. 


Other examples of pair quantifiers are 


( 113) 	('ourses vary in the students they attract. 


(114) My countrymen are divided in their views about war and peace. 


( I 15) Different students answercd different questions on the exam. S 


Statemcnts of the form "For every A there is a B," discussed by G. Boolos 

(1981), can also be construed as pair quantifications. 


(116) For every drop of rain that falls, a flower grows. 6 


Sentcnces (112) to (116) include quantifiers that take into account not only 

cardinalities but more refined formal features of objects standing in rela

tions. In particular, these quantifiers discern sameness and difference be

twecn objects within (though not across) each domain of a given relation. 

Thus the I-place quantifier "vary," as in 


(Vary xy)Rxy, 

is dcfined, for each cardinal a, by a logical operator 0a such that, for 
exam pic, 

()~gY([ {< 1,6), (2,6), <3,6), <4, 6), <5, 7)}]) = F, 

while 

ol~{Y([{(1. 6), <2,7), <3,8), <4, 3), <5, 9)}D T. 

Finally, I would like to point out a construction with strong relational 
quantillcrs that is morc common in Hebrew than in English. Consider the 
following situation: A group of objects is divided into pairwise disjoint 
subgroups of II members each, and a certain condition is set on the mem
bers of each group. For example, given an initial group of students, the 
mcmbers of each subgroup are assigned a room in the dormitory, or given 
an initial group of soldiers (sayan army in disarray), the members of each 
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subgroup "fight their own war." These situations are described \.. 0 II\" I:I\;I 

in the sentences below. 

(117) Every four students will receive a room. 
~ Kol arba'ah studentim yekablu heder. ] 

(I 18) Every several soldiers their own war. 

Kol kama hayalim lahamu at Illilhamlam shelahem. 

"Every four" and "every several" (in the sense indicated ahove) arc na
turally understood as strong relational quantifiers that distinguish 
tions of a certain size in the domain of the quantified relation. 

Strong relational quantifiers 

Strong relational quantifiers arc quantifiers satisfying the strollgest in
variance condition (d) in Higginbotham and May's list but 1I0t (a) 

(c). As we have seen above, "couple" quantifiers 1~1I1 undcr this category. 
Other genuinely strong relational quantifiers are qualltiliers requirillg the 
detection of sameness and dilference across domains. Thus the qualltifier 
"Reflexive xy" is a strong quantifier, as arc allqll<lntiliers attributing order 
properties to relations in their scope. Consider the following exalllples: 

(119) Parenthood is an antirel1exive relation. 

(120) Forty workers elected a representative from alllollg thelllseives. 

We have completed the description of first-order Unrestricted 

(UL) based on the philosophical conception developed in chapter J. This 

conception was formally and linguistically elaborated in the present 
chapter. Along with Lindstr()m's original semantics, I have proposed a 

"constructive" method for representing logical terms with ordinal func

tions. This method constitutes a natural extension of Mostowski's work 

on I-place predicative quantifiers. Some philosophical issues concerning 

the new conception of logic will be discussed in chapter 6. But lirst I \voldd 
like to investigate the impact of the generalization of quantiliers 011 an
other new logical theory. This theory has to do 1I0t with logical 


but with complex structures of logical particles. It is the theory of hrmfch

illg qlUJIlI!/icalioll. 


~~al_~!£.~ 
Ways of Branching Quantifiers 

Introduction 

Brallchillg quantifiers were !irst introduced by L. Henkin in his 1959 paper 
"Sullie Relllarks on Inlinitely Long Formulas." My "branching quanti 
Hers" Ilellkill meant a new, nonlinearly structured quantifier prefix whose 

was triggered by the problem of interpreting infinitistic formulas 
or a cerlain form. I The branching (or partially ordered) quantifier prefix 

is, however, not essentially infinitistic, and the issues it ~aises have largely 

been discussed in the literature in the context of finitistic logic, as they will 

like to know whether branching quantification is 

a genuine logical form. But today we lind ourselves in an interesting 

situation where it is not altogether clear what the branching structure is. 

While lien kin 's work purportedly settled the issue in the context of stan

dan.1 quantifiers, Barwise's introduction of new quantifiers into branching 

theory reopelled the question. What happens when you take a collection 

of quantiliers, order them in an arbitrary partial ordering, and attach the 

result to a given formula? What truth conditions are to be associated with 
the resulting expression? Are these conditions compositionally based on 
the single quantifiers involved? Although important steps toward answer-

these questions were madc by Rarwisc, WeslersUihl, van Benthem, and 
others, thc qllestion is to my mind still open. Following the historical 

dcvelopment, I will bcgin with standard quantifiers. 

Initially there were two natural ways to approach branching quantifica
tioll: as a generalization of the ordering of standard quantifier prefixes and 

tiS a generalization of Skolem normal forms. 
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A generalization of the ordering of standard quantifier prefixes 

In standard modern logic, quantifier prefixes are linearly ordered, both 

syntactically and semantically. The syntactic ordering of a quantifier pre

fix «QIXI)' ... , (Qnxn» (where Qi is either V or 3 for I ~ i ~ Il) mirrors 
the sequence of steps used to construct well-formed formulas with that 

quantifier prefix. Thus, if 

(I) (QIXI)··· (Qnxn)fb(x l ,···, xn) 


is a well-formed formula, of any two quantifiers QjXj and QjXj (I ~ i :f:. 

j ~ n), the innermore precedes the outermore in the syntactic construction 

of (I). The semantic ordering of a quantifier prefix is the order of deter

mining the truth (satisfaction) conditions of formulas with that prefix, and 

it is the backward image of the syntactic ordering. The truth of a sentence 

of the form (I) in a model 2( with 'universe A is determined in the folIowing 


order of stages: 2 


1. 	 Conditions of truth (in ~l) for (QI x d'P 1(x I)' where 

'PI = (Q2 X2) .... (QnXn)CI>(XI' X2, ... , xn) 

2. 	Conditions of truth for (Q2X2)'P2(X2), where 

'P2 = (Q3 X3)'" (Qn xn)«1>(a l , X2, X3, ... , xn) 


and a1 is an arbitrary element of A 


n. 	 Conditions of truth for (Qnxn)'P n(xn ), where 

'Pn = <I> (a 1 , a2, ... , an-\! xn) 

and ai' ... , an - 1 are arbitrary elements of A 

We obtain branched quantification by relaxing the requirement that 
quantifier prefixes be linearly ordered and allowing partial ordering in
stead. It is clear what renouncing the requirement of linearity means 
syntactically. But what does it mean semantically? What would a partially 
ordered definition of truth for multiply quantiHed sentences look like? 
Approaching branching quantifiers as a generalization on the orderillg of 
quantifiers in standard logic leaves the issue of their correct semantic 
definition an open question. 

A generalization of Skolem normal forms 

The Skolem normal form theorem says that every first-order formula is 
logically equivalent to a second-order prenex formula of the form 

(2) 	(3fd ... (3fm)(VXI) ... (Vxn)<l>, 

. \\lays of Branching Quantifiers~ 

where x I' ... , xn are individual variables, fl' ... , fm are functional vari 
ables (m, Il ;;:: 0), and fb is a quantifier-free formula. 3 This second-order 
formula is a Skolem normal form, and the functions satisfying a Skolem 

normal form are Skolemfunc:tions. 
The idea is roughly that given a formula with an individual existential 

uantilier in the scope of one or more individual universal quantifiers, we 

obtain its Skolem normal form by replacing the former with a functional 

existential quantifier governing the latter. For example, 

(3) (Vx)(Vy)(3z)fb(x, y, z)
't 
,'!. 

is eq uivalent to " 
(4) (~l2 )(Vx)(Vy)<ll[x, y, f2(X, Y)l. 

The functional variablef2 in (4) replaces the individual variable z bound 
hy the existential quantifier (3z) in (3), and the arguments of/2 are all the 
individual variables bound by the universal quantifiers governing (3z) 
there. It is characteristic of a Skolem normal form of a first-order formula 
with more than one existential quantifler that for any two functional 
variables in it, the set of arguments of one is included in the set of 
arguments of the other. Consider, for instance, the Skolem normal fonn of 

(5) (Vx)(3y)(Vz)(3w)<I)(x, y, z, w), 


namely, 


(6) (~ll )(3g2)(Vx)(Vz)<l>[x,f I (x), z, g2(X, z)]. 

In general, Skolem normal forms of first-order formulas are formulas of 

the form (2) satisfying the following property: 

The functional existential quantifiers (3/1)' ... , (31m) can be ordered. 
in such a way that for all I ~ i,j ~ In, if (3jj) syntactically precedes 

then the set of arguments of}; in <ll is essentially included in 

the set of arguments ofjj in fb. 4 

This property reflects what W. J. Walkoe calls the "essential order" of 

linear t)uantiller prelixes. 5 

The existence of Skolem normal forms for all first-order formulas is 

thought to reveal a systematic connection between Skolem functions and 
existential individual quantifiers. However, this connection is not sym
metric. Not all formulas of the form (2), general Skolem forms, are expres

sible in standard (i.e .. linear) first-order logic. General Skolem forms not 

~ali~r: ing (7) are not. 
11 i, llJlurJI It"' generalize the connection between Skofem functions and 

w:_ r 

• ~ •• ..:=-~ ;_.. ~--':~! r-~_~~:-~_~:---:,,: E';- ~:.:~~ ~ g~~~r-___ 
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ization requires that first-order quantifier prefixes not be ill general 
linearly ordered. The simplest Skolem form 110t satisfying (7) is 

(8) 	(~r 1 )(3g 1 )(Vx) (Vz)(I>[x,/ I (x), z, g I (z)]. 

Relaxing the requirement of syntactic linearity, we can COIIStruct a "lirst
order" correlate for (8), namely 

(Vx) (3Y» 
(9) 	 <1>(x, )" z, w). 

(Vz)(3w) 

We see that the semantic structure of a partially ordcred quantifier 
prefix is introduced in this approach together with (or even prior to) the 
syntactic structure. The interpretation of a first-order branching forllluia 
is fixed to begin with by its postulated equivalence to a second-order, 
linear Skolem form. 

Do the two generalizations ahove necessarily coincide? Do second
order Skolem forms provide the only reasonahle semantic interpretation 
for the syntax of partially ordered quantilied formulas? The definition of 
branching quantifiers by generalized Skolem functions was propounded 
by Henkin, who recommended it as "natural." Most suhsequent \Hilers 
on the suhject took Henkin's definition as given. I was led to renect 011 the 
possihility of alternative delinitions hy J. Barwise's paper "On Branching 
Quantifiers in English" (1979). Barwise shifted the discussion frolll stan
dard to generalized branching quantifiers, forcing liS to rethink the prin
ciples underlying the branching structure. Reviewing the earlier contro
versy around Hintikka's purported discovery of branching quantifier COII

structions in natural language and following my own earlier inquiry illto 
the nature of quantifiers, I came to think that hoth logico-philosophkal 
and linguistic considerations suggest further investigation of the branch
ing form. 

Linguistic Motivation 

In "Quantifiers vs. Quantilkation Theory" (1973), J. lIintikka first pointed 
out that some quantifier constructions in English arc branching rather 
than linear. A well-Known example is, 

(10) Some relative of each villager and some relative of each townsman 
hate each other. 6 

Hintikka says, "This [example] may ... ofrer a glimpse of the ways ill 
which branched quantification is expressed in English. Quantifiers occur

'N. 	 ,of Branching Quantifiers 

111 conjoint constituents frequently enjoy independence of each other, 
it seems, hecause a sentence is naturally thought of as being symmetrical 
semantically vis-.i-vis sllch constituents."7 Another linguistic form of the 
branching-quantifier structure is illustrated by 

( II) Some book by every author is referred to in some essay by every 

critic. s 

Ilintik k<J'S point is that sentences such as (10) and (II) contain two 
il/dependellt pairs of iterated quantifiers, the quantifiers in each pair being 
outsidc the scope of the quantifiers in the other. A standard first-order 
formalization of stich sentences----for instance, that of (10) as 

(12) (Vx)(3.1')(V:) (3w) (Vx & 1'z -+ Ryx & RII'z & Hyw & Hwy) 

or 

( 13) (V.\) (V:) (3.1') (3w) (Vx & 1'z -+ Ryx & Rwz & Hyw & Hwy) 

(with the obviolls readings for V, T, R, and /I )--creates dependencies 
where none should exist. A hranching-quantifier reading, on the other 

halld, 

(Vx)(ir) 

'x & T::: -~ U.l'x & UIl'Z & /IyH' & /lwy,
( 141 


(V:) 


accurately simulates the dependencies and independencies involved. 
Hintikka docs not ask what truth conditions should he assigned to (14) 

but rather assllmes that it is interpreted in the "usual" way as 

(15) (3(1 )(3g )(Vx)(Vz){ Vt & Tz -+ R(f'(x), x) & R(g'(Z), z) &' 

11(/1(.\"), gl(Z) & /I(gl(z),fl(X»)}. 


Hintikk'(l paper hrought forth a lively exchange of opinions, and G. 
Fallcollllier (1975) raised the following objection (which I formulate in my 
own words): (15) implies that the relation of mutual hatred between rela
tives of villagers alld relatives of townsmen has what we might call a 
/11([,\'.\;1'(' IIlIc/ell.\' OIlC that contains at least one relative of each villager 
and olle relative of each towl1sman--and such that each villager relative 
ill thc nucleus hates all the townsman relatives in it, and vice versa. 
Ilo\\'c\'cr, Fallconnier objects, it is not true that every English sentence 
wilh sYl1tadically indepcndcllt quantifiers implics the existence of a mas
,ire IlIie/eliS of objects standing ill the quantified relation. For instance, 

( 16) S()I1lC player of every foothall team is in love with some dancer of 

c\ er: hallet company 
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does not. 9 It is compatible with the assumption that mcn are in love with 
~l. 

one woman at a time (and that dancers/football-players do not belong to 
more than one ballet-company/foot ball-team at a time). Even if Hin
tikka's interpretation of (10) is correct, Fauconnier continues, i.e., even if 
(10) implies the existence of a massive flueleus of villagers and townsmen 
in mutual hatred, (16) does not imply the existence of a mll.v.\';l'e flue/ells of 
football players in love with dancers. Hintikka's interpretation, therefore, 
is not appropriate to all scopewise independent quantifiers in natural 
language. I i1Iustrate the issue graphically in figures 5.1 and 5.2. The point 
is accentuated i!l..l~~ fC?lIowing examples: 

(17) 	Some player of every football team is the boyfriend of some dancer 
of every ballet company. 

(18) 	Some relative of each villager and some relative of each townsman 
are married (to one another). 

Villagers Villagers' Mutual Townsmen's Townsmen

Relatives Hatred Relatives 


v1 .--------------)10. • "'E;:::: ===-- •••-c------- u --_. 11 

v2 .un___ u_)Io. • • • '>€C= ",' .... =:> fifE :;:>s/==--:::" .-C__ h_h __ h _____ • 12 

v3 .--u-u-n--____,.••c= )('=:;}e=')(' ~ ••-c----- ___ u_u .• 13 

v4 .-n_uu_uh___ U,...c;::= /';;,''' --;"~'" ~ -CU __ n_hu ___ n __ , 14 

v5 .--------------•• • .........- :::::,,;;a, .-c-----_h ________ • 15 

Figure 5.1 

Football Players Love Dancers BalletTeams ::0-	 Companies 

f1 0--------------•• • · 	 )0 ••• -c n ______ __ • b1n 

7 

12 0----------••• • • • 	 .-c---------------_. b2)0 

MASSIVE 
f3 .----------------,.. - ......-c-- ______ • b3 

NUCLEUS 

n 

f4 0------------------.. )o-c------u--- ___ n • b4 

15 0--------------•• 0 . 7 
)0 .-c- n _____________ • b5 

Figure 5.2 

Ways of Branching Quantifiers 

Is (17) logically false? Docs (18) imply that the community in.question is 
polygamous? 

Fallconnier's conclusion is that natural-language constructions with 
quantifiers independent in scope are sometimes branching and sometimes 
linear, depending on the context. The correct interpretation of (16), for 
instance, is 

(19) (V'x)(V'y)(3z)(3w)(Fx & By -+ Pzx & Dwy & Lzw). 

Thus, according to Fauconnier, the only alternative to "massive nuclei" is 
linear quantification. 

We can, however, approach the matter somewhat differently. Acknowl
edging the semantic independence of syntactically unnested quantifiers in 
general, we can ask, Why should the independence of quantifiers have 
anything to do with the existence of a "massive nucleus" of objects stand
ing in the quantifIed relation? Interpreting branching quantifiers non
linearly. yet without commitment to a "massive nucleus," would do justice 
both to Ilintikka's insight regarding the nature of scope-independent 
quantifiers and to Fauconnier's (and others') observations regarding the 
multiplicity of situations that such quantifiers can be used to describe. We 
are thus led to search for an alternative to Henkin's definition that would 
avoid the problcmatical commitment. 

3 Logico-philosophical Motivation 

Why arc quantifier prefixes in modern symbolic logic linearly ordered? M. 
Oummett (1973) ascribes this feature ofquantification theory to the genius 
of Fregc. Traditional logic failed because it could not account for the 
validity of inferences involving multiple quantification. Frege saw that the 
problem could be solved if we construed multiply quantified sentences as 
complex step-by-step constructions, built by repeated applications of the 
simple logical operations of universal and/or existential quantification. 
This step-by-step syntactic analysis of multiply quantified sentences was 
to serve as a basis for a corresponding step-by step semantic analysis that 
unfolds the truth conditions of one constructional stage, i.e., a singly 
qllallt!/ied .lcu·mula, at a time. (See section I above.) In other words, by 
Frcgc's method of logical analysis the problem of defining truth for a 
quantificd many-place relation was reduced to that of defining truth for a 
series of quantified predicates (I-place relations), a problem whose solu
tion was essentially known. 10 The possibility of such a reduction was 
based, however, on a particular way of representing relations. In Tarskian 
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semantics this form of representation is reflected in the way in which the 
linear steps in the definition of truth are "glued" together, namely by a 
relative expression synonymous with "for each one of which" ("f.e.w. 
Thus, for example, the Fregean-Tarskian definition of truth for 

(20) (Q I X)(Q2y)(Q3Z) RJ(x, )', z), 

where Ql' Q2, and Q3 are either V or 3, proceeds as follows: (20) is true in 
a model '11 with a universe A aT there are III a's in A, Le.w. there arc l/2h'S 

in A, f.e. w. there are q3 e's in A such that" R3 (a, h, C)" is true in ~1. where 
q" Q2' and Q3 are the quantifier conditions associated with Q,. Q2, and 
Q3 respectively. I I 

Intuitively, the view of R3 embedded in the definition of truth for (20) 

is that of a multiple tree. (See figure 5.3.) Each row in the multiple tree 
represents one domain of R J (the extension of one argument place of RJ); 

each tree represents the restriction of R J to some one clement of the 
domain listed in the upper row. In this way the extension of the second 
domain is represented relative to that of the first, and the extension of the 
third relative to the (already relative) representation of the secolld. Differ
ent quantifier prefixes allow different multiple-tree views of relations, hut 
Frege's linear quantification limits the expressive power of quantifier pre
fixes to properties of relations thal arc discernihte in a Illulliple-tree repre
sentation. 

We can describe the sense in which (all but the outermost) quantifiers in 
a linear prefix are semantically dependent as follows: a lillearfl' depl'I,dem 
quantifier assigns a property not to a complete domain of the relation 
quantified but to a domain relativized to individual elements of another 
domain higher up in the multiple tree. It is characteristic of a Iillear 
quantifier prefix that each quantifier (but the outermost) is directly depen
dent on exactl.>:one other quantifier. I will therefore call linear quantifiers 
unidependent- or simply dependent. 

t\" t\, h,
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Figure 5.3 

v or Branching Quantifiers 

i here arc two natural alternatives to simple dependence: (I) no depen
{kll~e. i.e., independence, and (2) complex dependence. These correspond to 
two ways in which we can view relations in a nonlinear manner: we can 
view each domain separately as complete and unrelativised, or we can view 
a whole cluster of domains at once in their mutual relationships. 

Syntactically, I will represent an independent quantification by 

(QI.\I) 

R"(x" ... , .xn)(21 ) 

(Q"X n ) 

and a complex quantification by 

(QIXI~ 

(22) .: 7~ R"(x l ,···, x,,). 

(Q".\,,) 


Of course, there arc many complex patterns of dependence among quanti 

fiers. These can he represented hy various partially ordered preflxes. 


()\II' analysis indicates that the concept of independent quantification is 
dillcrent from that of complex quantification. Therefore, the first question 
regarding the ~orrcct interpretation of natural-language sentences with 
hranching quantiliers is, Arc the quantifiers in these sentences independent 

or complex? 

4 Independent Urancldng Quantifiers 

It is easy to give a precise definition of independent quantification: 

(Q1x) 
(23) I <Nx, Y) =df (QI x)(3y)<I)(x, Y) & (Q2y)(3x)<J>(x, y), 

(Q2.1') 


or more generally, 


({J 1'\'> 

<l)(.x- I' ... , x,,) =df(24) 

(Q".\,,) 

(Olxl)C1X'z) .. (3x,,)(I)(x l ,···,x,,)& ... & 

(Q/I.\,.)(3x l ) ... (3xn ... I )<Nx" ... , XII)' 

This new definition or nonlinear quantification is very ditferent from 
that or Henkin's. I ndependent quantification is essentially first-order. It 
docs not involve commitment to a "massive nucleus" or to any other 
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complex structure of objects standing in the quantified relation. Therefore, 

it enables us to analyze natural-language sentences with scope-independent 

quantifiers in a straightforward manner and without forcing any indepen

dent quantifier into a nested position. f thus propose (23) as a definition 

of branching quantifiers as independent quantifiers. Linguistically, this 

construal is supported by the fact that "and" often appears as a "quantifier 

connective" in natural-language branching structures in a way which 

might indicate a shift from its "original" position as a sentential cOllnec
tive. Moreover, natural-language branching quantifiers are symmetrical in 
much the same way that the conjuncts in my definition are. An English 

sentence with standard quantifiers that appears to exemplify independent 
quantification is 

(25) Nobody loves nobody, 


understood as "Nobody loves anybody." 12 I will symbolize (25, as 


( 
(26) Lxy 

( -3y) 

and interpret it as 

(27) -(3x)(3y)Lxy & -(3y)(3x)Lxy. 


By extending our logical vocabulary to I-place Mostowskian quantifiers, 


we will be able to interpret the following English sentences as independcnt 
branching quantifications: 

(28) Three elephants were chased by a dozen hunters. 

(29) Four Martians and five Humans exchanged insults. 

(30) An odd number of patients occupied an even number of beds. 

The "independent" interpretation of (28) to (30) reflects a "cumulative" 

reading, under which no massive nucleus, or any other complex relatioll

ship between the domain and the range of the relation in question. is 
intended. 13 We thus understand (28) as saying that the relation "elephant 

x was chased by hunter y" includes three individuals in its domain and a 

dozen individuals in its range. And this reading is captured by (23). Sillli
(23) yields the cumulative interpretations of (29) and (30). 

The extension of the definition to 2-place Mostowskian quantifiers 

(which in this chapter I symbolize as Q2 rather than QI.l) will yield 
independent quantifications of the form 

(Qix) 'PIX, 

(31) <I>xy. 

(Q~y) 'P 2 y, 

Ways of Branching Quantiliers 

Here. however, we can apply the notion of independent quantification in 

several ways. Given a binary relation R, two sets A and B, and two 

cOllditions q 1 and q2' we can say the following: 

a. The relation R has ql As in its domain and ql Bs in its range. 
b. The relation A 1R t /J has ql elements in its domain and ql elements in 

its range (where A 1R t B is obtained from R by restricting its domain 

to A and its range to B). 
c. The relation A 1R ~ B has ql As in its domain and q2 Bs in its range. 

d. The relation R t B has q1 As in its domain and ql Bs in its range. 

It is easy to see that (a) through (d) are not equivalent, 14 However, for the 

examples discussed here it sulfices to define (31) for case (c). I thus propose 

as the definition of a pair of 2-place independent quantifiers 

«)~ x) I 'I'I x, 
=df (Q~ x)['P 1x, (3y)('P I x & 'I' 2Y & <l>xy)] &(32) 

(<)~y) I '1/
2.1', (<)iy)l'l/2Y' (3x) CP I X & 'I' 2Y & <l>xy)]. 

\Vhcn <); and <)~ satisfy the property of tivilll-! on, i.e., when (Q2x){<I>x, 'I' x) 

is logically cquivalent to (Q2 X )(<1)X, (I>x & 'Px), we can replace (32) with 

thc simpler 

(<)i x) I 'I'I x, 

(.B) I <J'xy =df (Q~ x)['I' 1 x, (3y)('P 2Y & <l>xy)] & 

(Q~y) '1'2)" (Q~)')['P2Y' (3x)CP Ix & <I>xy)]. 

this definition, we can interpret (34) and (35) below as independent 

quanti licat ions: 

(34) All the hoys ate all the apples. 
ls 


(35) Two boys ate half the apples. 


We can also analyze (28) to (30) as independent quantifications of the form 


(33). I () 

\Vltat about Ilintikka's (10) and Fauconnier's (16)? Should we interpret 

these as independent hranching quantifications of the form (33)? Under 
such an interpretation. (10) would say that the relation of mutual hatred 

het ween relatives of villagers and relatives of townsmen includes at least 
olle relative of each villager in its domain and at least one relative of each 
townsman in its range; (16) would be understood as saying that the rela

tion or love hetween foothall players and ballet dancers includes at least 

one player of each football team in its domain and at least one dancer from 
each hallet compallY in its range. Such interpretations would be compat
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ible with both figures 5.1 and 5.2. Later on I will suggest a test to determine 

whether the intended interpretation of a given natural-language sentence 

with branching quantifiers is that of an inuepcndent or complex qUHntili
cation, and this might give us a due regarding lIintikka's and Fallcollllier's 

sentences. As for the linear optioll, here the question is whcther one pair 

of quantifiers is within the scope of the other. Gcnerally, I would say that 

when "and" appears as a quantifier conncctive. that is, "QI As lind Qz Bs 

stand 	in relation R," the quantification is not linear. Howevcr. whcn 

the quantification is of the form "QI As R Qz Us." the situation is less 
clear. (For further discussion. see May 1989 and van Benthem 1989,17) I 1f 

should note that sometimes the method of semantic representation itself 

favors one interpretation over another. For example, in standard seman

tics, relations are so represented that it is impossible for the rangc of a 
Jgiven binary relation to be empty when its domaill is not empty. Thlls a 

quantification of the form "Three As stanu in the relation R to zero lis" 
would be logically false if interpreted as indcpenucnt branching quanti 
fication. To render it logically contingent, we may construe it as a nested 
quantification of two I-place predicative quantillers. and this gives liS the 
linear reading. 

lIarwisc's Generalization or Ilcnkin's Quantifiers 

I now turn to complex quantification. Evidently, Henkin's quantifiers be

long in this category. I ask: What kind of information on a quantificd 

relation does a complex quantifier prefix give us? As wc shall soon scc, the 
shift to a more general system of quantifiers. namely Mostowski's I and 

2-place predicative quantifiers, throws a new light 011 the naturc of COtll 

plex branching quantification. 

Barwise (1979) generalized Henkin's definition of standard branching 

quantifiers to I-place monotone-increasing Mostowskian quantificrs in 
the following way: 18 

(QI X» 
(36) 	 $xy =df (3X)(3 Y)[(QI x)Xx & (Qzy) Yy & 

(Q2)') (V'x)(Yy)(Xx & Y)' -+ <J>xy) 1. J<~ 
Technically. the generalization is based on a relational reading of' 'he 
Skolem functions in Henkin's uefinition. Thus, Barwisc's equivalent <)f 
Henkin's (8) is 

(37) 	 (3R)(3S) [(Yx)(3y)Rxy & (V'z)(3w)SzH' & 

(V'x)(Yy)(V'z)(V'w)(Rxy & Sz,,' -+ (J)(x. y. =. w»]. 

Ways or Branching Quantifiers 

('Icarly. Barwisc's quantificrs. like lIenkin's. are complex, not indepen

dellt, hranching quantificrs. 
Barwise suggestcd that this gencralization enables us to give English 

sentences with unl1ested monotone-increasing gencralized quantifiers a 

"lIenkinian" intcrpretation similar to Hilltikka's interpretation of (10) 

aud (II), Ilcrc arc two of his cxamples: 
zo 

(8) 	1\,10st philosophers and most linguists agree with each other about 

hranching quantification. 

(.N) <)uitc a fcw boys in my class and 1110st girls in your class have 

all dated each other. 

To interpret <JR) and (,39), we have to extend (36) to 2-place predicative 

quantificrs. This we do as follows: Let Qi and Q~ be 2-place monotonc

im.:reasing predicativc quantifiers. Then 

(<)~.r) 	 . 'I'I x, 

(40) 	 (J>xy =df 

(<)~r) . '11 
2 .1'. 

)(3 Y)[ (Qi x)( \fJ I x, Xx) & (Q~y)(\f zy, Yy) & 

(V'x)(V'y) (Xx & Yy -+ (I>x)')]. 

We can now intcrpret (38) as 


(1\1 2x) , Px. 


(41 ) Ax)' & Ayx =df 


(MZy) . Ly. 


(3.\')(3 r )[(M 2x)(Px, Xx) & (Mz)')(Ly, Yy) & 

(V'.\)(V'y)(Xx & Yy -+ Ax)' & Ayx)], 

\vith the ohviolls readings of P. L A and where "M 2 .. stand for the 2-place 

"most." We interpret (39) in a similar manner. 
Barwise cmphasized that his dcflnition of branching monotonc

increasing generalized quantifiers is not applicable to monotone-decreasing. 
non-Illonotone, or mixed hranching quantifiers. 21 This is easily explained 

thc ahsurd results of applying (36) to such quantifiers: (36) would 

rendcr any l1lonotonc-d<.~creasing branching formula vacuously true (by 
taking .\ and r to he the cmpty set); it would rcnuer false non-monotone 

branching formulas true. as in thc case of "Exactly one x and exactly one 
r stand ill the relation R:' where R is universal and the cardinality of the 

universe is largcr tllnll I. 
Bar\\'isc proposed the following dcfinition for a pair or I-place monotone

dccrea<;ing hranching quantifiers: 
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(QIX)~ 
(42) 	 /clJxY =,Ir (3X)(3 Y) [(Ql x) Xx & (Q2Y) }~I' & 


(Q2Y) (Yx)(Yy)(<I)xy ---I> Xx& }~,.)J.22 


Definition (42), or its counterpart for 2-place quantifiers, provides an 
intuitively correct semantics for English sentences with a pair of ul1Ilestcd 
monotone-decreasing quantifiers. Consider, for instance, 

(43) 	Few philosophers and few linguists agree with each other about 


branching quantification. 


As to non-monotone and mixed branching quantifiers, Barwise left the 
former unattended and skeptically remarked about the latter, "There is no 

sensible way to interpret 

QI 
X>(s) 	 A (x, y) 

Q2Y 

when one [quantifier] is increasing and the other is decreasing. Thus, for 
example, 

(t) 	?Few of the boys in my class and most of the girls in your class 
have all dated each other. 

appears grammatical, but it makes no sellse."2J 
Barwise's work suggests that the semantics of branching quantifiers 

depends on the monotonic properties of the quantifiers involved. The 
truth conditions for a sentence with branching monotone-increasing quan
tifiers are altogether different from the truth conditions for a sentence with 
branching monotone-decreasing quantifi(;rs. and truth for sentenccs with 
mixed branching quantifiers is simply undefinable. Is the meaning of 
branching quantification as intimately connected with mOllolonicity as 
Barwise's analysis may lead one to conclude? 

First, I would like to observe that Barwise interprets branching 
monotone-decreasing quantifiers simply as independent quantifiers: whcll 
Q 1 and Q2 are monotone-decreasing (42) is logically equivalent to my (23). 
The latter definition, as we have seen, has meaning-- the same meaning 
for all quantifiers, irrespective of monotonicity. On this first-order rcad
ing. (43) says that the relation of mutual agreement about branching 

quantification between philosophers and linguist'.' include" (at tn0"U fe\\ 
philosorhers in its domain and (at most) fe\\ lingu;q" in it" range 

Barwise e~plained the limited applicability of (36) in the follo\\ ing \\ a~: 

Every fonnula of the form 

Ways of Branching Quantifiers 

(44) (Qx)(1>x, 
where Q is monotone-increasing, is logically equivalent to a second-order 

formula of the form 

(45) (3X) [(Qx) Xx & (Yx)(Xx -+ <1>x)], 


which is structurally similar to (36). This fact establishes (36) as the correct 

definition of branching monotone-increasing quantifiers. However, (45) 


is not a second-order representation of quantified formulas with non

monotone-increasing quantifters. Hence (36) does not apply to branching 

quantilicrs of the latter kind. The definition of branching monotone

decreasing quantifiers by (42) is explained in a similar manner: when Q is 


monotone-decreasing, (44) is logically equivalent to 

(46) 	 rLf)[(Qx)Xx & ('1x)(<I>x -+ Xx)], 

which is structurally similar to (42).24 
I do not find this explanation convincing. Linear quantifiers vary with 

respect to ll1onotonicity as much as branching quantifiers do, yet the 
semantic definition of linear quantifiers is the same for all quantifiers, 
irrespective of Illollotonicity. Linear quantification is also meantngful for 
all cOnihillOtiOllS of quantifiers. Why should the meaningfulness of the 
hranching form stop short at mixed monotone quantifiers? Moreover, if 
the second-order representation of "simple" first-order quantifications 
determines the correct analysis of branching quantifications, Barwise has 
not shO\vn that there is no second-order representation of (44) that applies 

Wlirer.wlly. without regard to monotonicity. 

6 	 A General Definition of Complex, Henkin-Barwise 

Branching Quantifiers 

The conception of complex branching quantification embedded in Bar
wise's (36) assigns the following truth conditions to branching formulas of 

the 101m 

() 1 x)"
'-. 

(47) 	 )'el'.H. 

(V2 r )/ . 


wherc VI and Q2 arc monotone-increasing: 

DEItNIIION I The branching formula (47) is true in a model '11 with 
universe A ifT there is at least one pair, (X, Y), of subsets of A for which 

til:, 1".,11,'\\ in~ c0 rd i ti()T1" hold: 
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I. X satisfies the quantifier condition QI . 

2. Y satisfies the quantifier condition Q2' 

3. Each element of X stands in the relation <1,'11 to all the clements of Y. 

The condition expressed by (3) I shall call the each-all (or all-all) condition 
on (X, Y) with respect to <1>91. We can then express definition I lIlore 

succinctly as follows: 

DEFINITION 2 The branching formula (47) is true in a model'll with a 
universe A iff there is at least one pair of subsets of the universe satisfying 

'! 
the each-all condition with respect to q,'1I, with its first element satisfying 

Q1 and its second element satisfying Q2' 

Set-theoretically, definition 2 says that <1>91 includes at least one Cartesian 

product of two subsets of the universe satisfying Ql and (.)2 rcspec..:tivcly. 
(The "massive nucleus" of section 2 above was an informal term for a 
Cartesian prod uct.) 

Is the complex quantifier condition expressed hy definition 2 menningful 
only with respect to monotone-increasing quantiflers? I think that the idea 
behind this condition makes sense no matter what quantifiers Q, and Q2 
are. However, this idea is not adequately formulated in definition 2 as it 
now stands, since this definition fails to capture the intended condition 
when QJ and/or Q2 are not monotone-increasing. In that case Q, and/or 

Q2 set a limit on the size of sets X and/or Y such that (X, Y) satisfies the 
each-all condition with respect to <1>91: (47) is true only if a Cartesian 

product small enough or ofa particular size is included in q,'1I. But defini
tion 2 in its present form cannot express this condition: if q, '.11 includes a 

Cartesian product larger than required, definition 2 is automatically satis
fied. This is because for any two nonempty sets A and H, if Ax B is (J 

Cartesian product included in q,'1I. so is A' x 8', where A' and H' are any 

proper subsets of A and 8 respectively. The difficulty, however. appears to 
be purely technical. We can overcome it by demanding that the condition 
be met by a maximal, not a suh-, Cartesian product. I n other words, only 
maximal Cartesian products included in q, '11 should count as satisfying the 
each-all condition. 

I thus add a maximality condition to definition I and arrive at the 

following general definition, in which no restrictions are set 011 Q I and Q2: 

DEFINITION 3 The branching formula (47) is true in a model'll with 

universe A iff there is at least one pair (X. Y) of subsets of A for which 

Ways or Bram.:hin!! Quanlilicrs 

the following conditions hold: 
I. X satisfies quantifier condition Q1' 
2. r satisfies quantifier condition Q2' 
J. Each clement of .I" stands in the relation <1>'11 to all the elements of 

r. 
4. The pair (X, Y) is a maximal pair satisfying (3). 

Referring to (3) and (4) as "the maximal each-all condition on (X, Y) 
with respect to <1>," we can reformulate definition 3 more concisely as 

follows: 

DEFINITION 4 The branching formula (47) is true in a model ~ with 
universe A ilf there is at least one pair of subsets in the universe satisfying 
the maximal e(1ch-a/l condition with respect to <1>'11 such that its first 

clement satisfies Q I and its second element satisfies Q2' 

I thus propose to replace (36) with 

t<)1 x) 

(4H) <1>.\')' =df> 
(V2Y) 


(:lX)(HrH (Q( x)Xx & (Q2)') Yy & (Vx)(Vy)(Xx & Yy -) q,xy) & 


(V.X')(V Y')[(Vx)(Vy)«Xx & Yy -) X'x & fly) & 

(X'x & Y'y -) q,xy» -) 

(Vx)(Vy)(Xx & Yy +-+ X'x & y'y)]} 

as the definition of Henkin-Barwise complex branching quantifiers. We 

call rewrite (4R) more succinctly, lIsing common conventions, as 

(V,x)"" 
(49) 	 )d}xr =df 


(V2Y)/ 


(lX) (::I Y)I(Q\.'dXx & (Q2)') Yy & X x Y s; <I) & 


(V X' )(V Y' )(X x r s; X I X Y' s; <I. -) X x Y = X' x Y / )]. 


More concisely yet. we have 


(Q\X» 

(50) (I.xy =df 

(Q2.1') 

(jX)(3 Y)\(Q, x)Xx & (Q2.1') yy & 
(VX')(VY')(XX )'s;X'x Y's;<lh-tXx Y=X'x Y')]. 
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It is easy to see that whenever Ql and Q2 are monotone-increasing, (49) 

is logically equivalent to (36). At the same time, (49) avoids the problems 
that arise when (36) is applied to non-monotone-increasing qlJantifjcrs. 

Maximality conditions are very common in mathclllatks. 
when a structure is maximal, it is "complete" in some relevant sense. 25 The 

Henkin-Barwise branching quantifier prefix exprcsses a certain conditioll 

on sets (subsets of the quantified relation). And when we talk about sets, 

it is usually maximal sets that we are interested in. Indeed, conditiolls on 

sets are normally conditions 011 maximal sets. Consider. for installce, the 

slatement "Three students passed the test." Would this statement be true 

had 10 students passed the test? But it would be if the quantifier "13" set 

a condition on a non maximal set: a partial extension of " x is a student who 

passed the test" would satisfy that condition. Consider also "No student 

passed the test" and "Two people live in America." 
The fact that quantification in general sets a condition 011 maximal sets 

(relations) is reflected by the equivalence of any first-order formula of the 
form 

(Qx)<I>x, 

no matter what quantifier Q is (monotone-increasing, monotone-decreasing 
or non-monotone), to 

(51) (3X)[(Qx)Xx & X s; <I> & (V'X')(X X's; <1> ---} X' X)j, 

which expresses a maximality condition. The logical equivalence of(44) to 

(51) 	provides a further justification for the reformulation of(36) as (49). 

We have seen that the two conceptions of nonlinear quantification dis
cussed so far, independence (first-order) and comp/cx dependence (second

have little to do with monotonicity or its direction. The two con

ceptions lead to entirely different definitions of the branching quantilier
prefix, both, however, universally applicable. 

Linguistically, my suggestion is that to determine the truth conditions 

of natural-language sentences with a nonlinear quantifier-prefix, one has 
to ask not whether the quantifiers involved are monotone-increasing, 

monotone-decreasing, etc. but whether the prefIX is independent or COI11

plex. My analysis points to the following clue: Complex Henkin-Rarwise 

quantifications always include an inner each-all condition, explicit or 

Independent quantifications, on the other hand. do not include 

any such condition. 

Ilarwise actually gave several examples of branching sentences with an 

explicit each-all condition: 

123 
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a few boys in my class and most girls ill your class_nave all(J9) 
dated each other.26 

21 
rv10st or the dots and most of the stars are all connected by lines. 

Such an explicit "all" also appears in his 
in your class have(t) 	Few of the boys in my class and most of the 

28(//1 d.ltcd each other.
 

I therefore suggest that we interpret Barwise's (t) as an instance of (49). 

SOIllC natural examples of Henkin-Barwise complex branching quanti 


fiers in English involve non-monotonic quantifiers. For example, 


A couple of boys in my class and a couple of girls in your class were 

0/1 dating each other. 

(54) All cvcn nmnber of dots and an odd number of stars are all 

cOlillectcd by lines. 

Another expression that seems to point to a complex branching structure 

(which indicates a second-order form) is "the same." Consider 

(55) Most of my friends have applied to the same few graduate programs. 

To interpret the above sentences accurately, we have to extend (49) to 
2-pI;ICC ql1(llllif1ers. As ill the case of 2-place independent' quantifiers (see 

section 4 .lbove), we can apply the notion of complex each-all quantifica
tion in more than one way. I will limit my attention to one of these, 

defining "Q\ As and Q2 Bs all stand in the relution R" as "There is at least 

one maximal Cartesian product included in A 1 R t B with Ql As in its 

domain ,lIld Q2 IJs in its range." I n symbols, 

(Gf\) 'PtX, 

(56) 	 (I)x), =df 

«)~y) '1'2,1', 

r )I ( Q 7x )( 'IJ 1x, Xx) & (Q ~ y)( \f' 2Y' Yy) & 

(V' X' )( V' Y')( X x}' X' x Y' s; 'I' 1 1<I> t \f' 2 +-+ 

X x r X' x f')j. 

Linguistically, my accollllt explains the meaning (function) of inner quan

tifiers that, like Barwise's "all." do not bind allY new individual variables 

ill addition to those bound by 0\ and Q2' A "standard" reading of such 
quantifiers is problematic, since all the variahles are already bound by the 
outer quantifiers. On Illy analvsis.these quantifiers point to a second-order 

condition. 

http:other.26
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Going back to the controver!'y regarding Bintikka's reading of natural
language sentences with symmetrical quantifiers. we can rcformlilate Fall

where .:J I represents any (first-order) maximal quantifier-condition on a 
pair of subsets of the universe with respect to d)'II. The following are a few 

connier's criticism as follows: Some natural-language scntenccs with UI1 ~;, instanccs of :II: 

nested quantifiers do not appear to contain, explicitly or implicitly. an 
inner each-all quantifier condition. On my analysis. thesc arc not f Icllkill
Barwise branching quantifications. Whcther lIilllikka's (10) includes an 

implicit each-all condition 

Hintikka's claim that (10) is a Henkin sentence is to interpret "each" in 
"each other" as elliptic for "each-all.") 

The reading of a natural-language branching quantification wil h no 

explicit each-all condition involves various linguistic considcrations. Our 
logical point of view has so far indica ted three possible rcadings: as an 

independent quantification, as a linear quantification, or as a Hcnkin
Barwise complex quantification. But as wc will prescntly see, these arc not 
the only ontions. In the next section I will introduce a 

that extends considerablv the scope of nonlincar nl1!lllllfil'~llinn 

Branching QuanHfiers: A Family of Interpretations 

The Henkin-Barwise definition of branching quantifiers, in its narrow as 
well as gcneral form, includcs two qualltificr conditions in addition to 
t hose explicit in the deflniendum: the outer quantifier condition "thcre is 
at least one pair (X, Y)" and the inner (maximal) ('och-all quantificr 
condition. By generalizing these conditions, we arrive at a new definition 
schema whose instances comprise a family of semantic internretations for 
multiple quantifiers. Among the members of this 
independent branching quantifiers of section 4 and the Hcnkin-Banvise 
complex quantifiers of section 6. This generalized definition schcma de
lineates a totality of forms of quantifier dependence. Degencratc dcpcn
dence is independence; linear dependence is a particular case of (nol1

degenerate) Henkin-Barwise dependence. 29 

We arrive at the definition schema in two steps. First we gencralizc thc 
inner each-all quantifier condition (sec definitions I 4), and wc obtain the 
'ollowinlJ schema: 

GENERALIZATION I A branching formula of the form (47) is truc in a 
model ~l with a universe A iff for at Icast one pair (X. Y) of subscts of 
the universe satisfying the maximal quantifier condition -:2, with respect to 
<J>'ll, X satisfies Qt, and Y satisfies Q2' 

('ollllilioll //: ow' 011(' The pair (X, r) is a maximal pair such that each 
c1cment or ,,r stands in thc relation (1)11 to exactly onc element of Yand for 
cach c1cmcnt or Y thcre is exactly one element of X that stands to it in the 

rcla t ion (I> '1', 

COlldilion 11: clIch 111'0 or morc Thc pair (X, Y) is a maximal pair such 
that e~,ch clcmcnt of X stands in the relation <1>'11 to two or morc elements 
of }' and for each elcment of Y there is an element of X thal stands to it 

in the relation (1)'11. 

CO/lditioll c: ('(lch more Iliall The pair (X, Y) is a maximal pair 
such that each clemcnt of X stands in the relation <b'll to more than 
c1cmcnts of Y and for each element of Y there is an clement of X that 

stands to it in the relation 

('ollt/ilioll /): cach (II 1e1iSI lla(l/aI leasl ha(l- cach The pair (X, Y) is a 
maximal p,lir slIch that cach clcment of X stands in the relation <bill to at 

least hall' the c1elllellts or Y ami to each clcmcnt or Y at least half the 

elemcnts of.X stand in tile relation <»'1'. 

\Vc: call find natural-language sentences that exemplify ger.eralization 

substitlltilH! conditions A Ihrom!ll 0 for 
and most of my left-hand gloves Most of my 


match (onc to OIlC). 


(5R) Most of my fricnds saw at Icast two of the same few TrulTaut 


lIlovies. 


(59) The same few characters repeatedly appear in many of her early 

novcls. 

Most of thc boys and most of thc girls in this party are such that 
(00) 
each hoy has chased at least half the J!.irls and each girl has bcen 

chased bv at least half thc 

The adaptation of gcncralization I to 2-place quantifiers, needed in order 
to give t hesc sentcnccs prccise intcrpretations. is analogous to (56). 

\Ve can verify the corrcctncss of our interprctations by checking whether 
(57) to (60) can hc put ill the following canonical forms: 

(61) 1\1ost or Illy right-hand gloves and most of my Icft-hand gloves 
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are such that each of the former matches exactly one of the latter 
and vice versa. 

(62) Most of my friends and few of Truffaut's movies are stich that each 
of the former saw at Jeast two of the latter and each of the Jalter 
was seen by at least one of the former. 

(63) Few characters and many of her early novels are such that each 

of the former appears in more than_of the latter and each of the 
latter includes at least one of the former. 

Sentence (60) is already in canonical form. 

By replacing J2 1 in generalization I with condition E below we get the 
independent quantification of section 6. 

Condition E: each-some/some-each The pair (X, Y) is a maximal pair 
such that each element of X stands in the relation (I) '11 to some elel1lent of 
Yand for each element of Y there is some element of X that stands to it 
in the relation cl>9f. 

Thus, both independent branching quantifiers and complex, Hellkin
Barwise branching quantifiers fall under the general schema. 

The second generalization abstracts from the outermost existential con
dition: 

GENERALIZAnON 2 A branching formula of the form (47) is true in a 

model 91 with universe A iff there are }!)2 pairs (X, Y) of subsets of 
the universe satisfying the maximal quantifier condition 3 with respect to 

<1> '11 such that X satisfies QI and Y satisfies Q2' 30 
1 

The following sentences exemplify generalization 2 by substituting "by 

and large" (interpreted as "most") and "at most few" for is the 

each-all condition): 


(64) By and large, no more than a few boys and a few girls all date one 

another. 


(65) There are at mos/lew cases of more than a couple Eastern delegates 
and more than a couple Western delegates who are all on speaking 
terms with one another. 31 

The family of branching structures delineated above enlarges consider
ably the array of interpretations available for natural-language sentences 
with multiple quantifiers. The task of selecting the right alternative for a 

given natural-language quantification is easier if explicit inner and outer 
quantifier conditions occur in the sentence, but is more complicated other-

of Branchillg Quantifiers 

wise. Onc could, of course, be assisted by "context," but linguists will be 
interested in formulating general guidelines that hold across contex.ts. 
Indeed. we may look at Barwisc's claims regarding monotone-increasing 
<lnd Illollotone-decreasing English branching quantifiers in this light. 
According to Barwise, in English monotone-increasing branching quan
tHicrs (lrc usually accompanied by an inner "all," indicating a complex 
"each all structure" (with "some" as the outer quantifier condition); 
monotone-decreasing quantifiers arc usually not accompanied by an inner 
ljuantificr condition, pointing to an independent (each·· some/some-each) 
structure. These conjectures can be expressed in terms of my general 
definition schema of branching quantification (generalization 2).32 How
ever, the ncw Illultiplicity of inner and outer quantifier conditions intro
duced in thc prcsent section calls for refinement and supplementation of 
Barwisc's conjectures. 

8 Conclusion 

investigation has yielded a general deHnition schema for a pair of 
hranching. or partially ordered, generalized quantifiers. The existing def· 
illilioJls, due to Barwisc, constitute particular instances of this schema. 
The 1It''<t task is to extcnd the schema, or particular instances thereof, 
espt'cially (49), to arhitrarily large partially ordered quantifier prefixes. 
This task, however, is beyol\d the scope of the present work. 

III "Branching ()uantifiers and Natural Language" (1987), D. Wester
stithl proposed a general definition of (Barwise's) branching quantifiers 
diffelent !"rom the ones suggested here. Although Westerstahl's motivation 
\vas silllilar to mine (dissatisfaction with the multiplicity of partial defini
tions). he approached the problem in a different way. Accepting Barwise's 

dellnitiolls of monotone-increasing and monotone-decreasing branching 
quantifiers. along with van Benthem's dellnition of branching non
monotonic quantifiers of the form "exactly 11," Westerstahl constructed 

a general formula that yields the above definitions when the quantifiers 
plugged ill have the "right" kind of monotonicity. That is, Westerslahl 
was looking for all umbrella under which the various partial ex.istent 
dellnitions would fall. From the point of view of the issues discussed here, 
Westerst,lhl's approach is very similar to Barwise's. For that reason I did 
not include a separate discussion of his approach.33 As for van Benthem's 
propos:tI for the analysis of lion-monotonic branching quantifiers, his 
definition is 

http:approach.33
http:contex.ts
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(Exactly-n x) . Ax, 	 syntactically well-formed but semantically empty (loosely defined) linguis

(66) Rxy =df (3X)(3 r)(,x t:;; A & r c; lJ & 	 tic form? I am not sure what the right answer to this question is. Some of 

(Exactly-m y) . By, IXI 11&1 YI m& R X x }').J4 

For I-place quantifiers, the definition would be 

(Exactly-n x) 

(67) 	 Rx}' =df (3X)(3 Y)(IXI = If & IYI III &> 
(Exactly-my) R =.X x Y). 

Since (67) is equivalent to (68) when R is not empty, I can express van 
Benthem's proposal in terms of my second generalization by saying that 
quantifiers of the form "exactly n" tend to occur in complex quantifica
tions in which 221 is "each-all" and 222 is "the (only)." 

(68) 	 The (only) pair (X, Y) of subsets of the universe satisfying the 
maximal each-all condition with respect to R is such that X has 
exactly 11 elements and Y has exactly m clements. 

I would like to end with a few general notes. Russell, recall, divided the 
enterprise of logic into two parts: the discovery of universal "templates" of 
truth and the discovery of new, philosophically significant logical forms. 
Branching quantifiers offer a striking example of an altogether new logico
linguistic form unlike anything thought to belong to language before 
Henkin's paper. One cannot, however, avoid asking: When does a generali
zation of a particular linguistic structure lead to a new, more general form 
of language and when does it end in a formal system that can no longer be 
considered language? Henkin, for instance, mentioned the possibility of 
constructing a densely ordered quantifier prefix. Would this be considered 
language? What about a prefix of quantifiers organized in some nOI1
ordering pattern? Even the thoroughly studied form of an infinitely long 
linear prefix has yet to be evaluated with respect to our general concept of 
language. 

Another question concerns the possibility of "importing" new struc
tures into natural language. New forms continuously "appear" in all 
branches or mathematics and abstract logic. The "discovery" of branching 
prefixes in English makes one wonder whether new constructions cannot 
be introduced into natural language as well. Let us look back at Hintikka's 
"revelation" that branching quantifiers exist in English. Did Hintikka 
discover that all along we were talking about villagers' and townsmen's 
relatives hating each other ell masse (each-all hatred) when we said that 
some relative of each villager and some relative of each townsman hate 
each other? Or did he, perhaps, propose to give a new meaning to a 

the Fnglish ex.amples discllssed in the literature strike me as having had a 
dear branching meaning even before the oflicial seal of "branching quanti 
fication" was allixed to them. But others impress me a's-flaving been 

hopelessly vague before the advent of branching theory. These could have 
rr. been semantically undetermined structures, forms in quest of content. 

Prescnt-day languages have not used up all their lexical resources. Is 

logical form another unexhausted resource? 
Investigations of the branching structure in the context of "generalized" 

logic led Barwise to extend Henkin's theory. My own inquiries have led to 
an even broader approach. I n the next chapter I will return to the general 
conccption of logic developed in this book and introduce some of its philo
sophical consequences. The philosophical ramifications of "unrestricted" 
logic have never before been (publicly) investigated. I will briefly point the 
direction of some philosophical inquiries and spell out a few results. 
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The broad questions underlying this work concern the scope and limits 
of logic. Are the principles underlying modern logic fully exhausted by 

the standard system? Do generalized quantifiers signify a genuine break
through in logic? What are the boundaries of logic from the point or view 
of modern semantics? Starting with a general outlook oflogic, I proceeded 
to examine Mostowski's generalization of the standard quantiriers, tracing 
its origins to Frege's interpretation of Ilumher statements. I then used 

Mostowski's theory as a jumping board for investigating the notion of 
"logicality." The initially loose philosophical question regarding the prin
ciples of logic received specific content: What makes a linguistic expression 

into a logical term? What are all the logicalterrns? My method of HnS\\ier

ing this question was conceptual. Examining Tarski's foundatiollal work 

in semantics, I was able to identify a central motivation for constructing 
logic as a syntactic-semantic system in which logical truths and con
sequences are determined by reference to a full-hlown system of models. 

f showed that within the framework of model-theoretic semantics the 
Success of the logical project depends on the choice of logical terms. 
Inasmuch as logical constants represent the formal and necessary COIl

stituents of possible states of affairs. the system will accomplish its task. 
But the task is fully accomplished only if all forlllal and necessary cOllstit
uents arc taken into account. The standard system carries us one step to

ward the goal. It takes the full range of Tarskian or first-order Unrestricted 
Logic (UL) to achieve the objective in full. This outlook on logic is realizcd 

by logicians working within the dynamic field called "ahstract" logic. It is 
also reflected in the work of linguists seeking to ellhancc the rcsourccs for 
studying the logical structure of natural language. 

If the central claim of this book is correct, namely that standard Illathe
maticallogic, with its limited set oflogical constants, does not fully exprcss 

A New Conception of Logic 

the idea of logic. the question arises of whether a conceptual revision in 

the "ofIkial" doctrine is called for. Should "unrestricted logic" become 

"sl<lIldard" logic? Because of the prominent place of standard first-order 
not only ill mathematics but also in philosophy, linguistics, and 

related disciplines. at stake is a change in a very general and basic concep

tual scheme. What are the philosophical ramifications of the new concep

tioll of logic? What new light does it shed on old philosophical questions? 

Are the conditions ripe for an "official" revision? And how should the new 

developments in semantics be viewed from the standpoint of proof theory? 

1 would like to end this work with reflections on some aspects of these 

qllestions. 

Rrlision in I,ogic 

PUlll;llll Il:Is cOllvincingly argued that a change in a deeply ingrained 
conceptual schelllc is seriously cntertainable only if a well-developed alter
Illlti\'C already exists. Referring to the revolution in geometry, Putnam 
argued that the laws of Euclidean geometry could not have been aban
dOlled "hcfore someone had worked out non-Euclidean geometry. That is 

10 say, it is incollceivable that a scientist living in the time of Hume might 

havc comc to the conclusion that the laws of Euclidean geometry are false: 

'I do not know what geometrical laws are true but I know the laws of 

Euclidean geol1letry are false.'" I Principles at the very center of our con

ceptual system (Ire not overthrown unless "a rival theory is available."2 

Is there a serious alternative to standard logical theory incorporating 
the principles of Unrestricted Logic delineated in this book? The unequi
vocal answer is yes. There exists a rich body of literature, in mathematics 

as \vell as in linguistics, in which nonstandard systems of first-order logic 
satisfying (U L) have been developed, studied, and applied. Mostowski's 
and Lindslr()Il1's pioneering work led to a surge of logico-mathernatical 
resc:lI'ch. Frolll l-indstr61ll's famolls clwractcriz,l tions of "elementary 
logic" (Il)(,t) to works like Keisler's proof of the completeness of Hrst

order IOl!ic \vith the quantifier "there exist uncountahly many," the yield 

of mathematical investigations is astounding. For a representative collec
tion of ,nticlcs pillS a comprehensive bihliography of more than a thousand 

ilems. the le:Hlcr is referred to the 19R5 volume Mod('/-I1,corelic Logics, 

cdited hy Barwise and Feferman. 
In linguistics. Barwise and Cooper's 1981 paper also led to a profusion 

of literature. Gcneralized quantifiers becal11e an essential component of 

forl1l,II semantics and of the theory of Logical Form within generative 
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grammar. Representative works by van Benthem, Keenan, May, Wcstcr
shihl, and others are listed in the rcfcrences. 

Philosophically, the view that Tarskian or unrestricted logic is logic 
proper has not yet received its duc attcntion. In particular. fcw philo
sophical arguments in support of the ncw vicw appeared in print. f hope 

this book has, to some extent, filled the void. If my argumcnt is cogcnt, it 

will add a new philosophical dimension to thc support that the ncw logic 
has received from other quarters. 

2 The Logicist Thesis 

The logicist thesis says that mathematics is reduciole to logic in thc scnse 

that all mathematical theories can be formulated oy purely logicallllcans. 

That is, all mathematical constants are definaole in terms of logical COI1

stants and aI/the theorems of (classical) mathematics arc derivahlc from 

purely logical axioms by means of logical rulcs or dcrivation (and defini
tions). Now for the logicist thcsis to be mcaningful, the notions of logical 
constant, logical axiom, logical rule of derivation, and definition lllllst oe 

well defined and, moreover, so dcflned as to make the reduction 1I0ntriviai. 
In particular, it is essential that the reduction of mathematics to logic he 

carried out relative to a system of logic in which mathematical constants 

do not, in general, appear as primitive logical terms. The "fathers" of 

logicism did not engage in a critical examination of the conccpt of logic;]1 


constant from this point of view. That is, they took it for granted that there 


is a small group of constants in terms of which thc reduction is to oe 


carried out: the truth-functional connectives, thc existential (universal) 

quantifier, identity, and possibly the sCHllemoership relation. The new 


conception of logic, howevcr, contcsts this assulllPtion. If my analysis of 

the semantic principles underlying modern logic in chaptcr J is correct. 

then any mathematical predicatc or functor satisfying condition (E) can 

play the rolc of a primitive logical constant. Since mathematical COllstants 
in gencral satisfy (E) when defined as higher-Ievcl, the program of reducing 

mathematics to logic becomes trivial. Indeed, even if the wholc of mathc

matics could be formulated within pure standard first-order logic, thell 
(since the standard logical constants arc nothing more than certain partic

ular mathematical predicates) all that would have becn accomplished is a 
reduction of some mathematical notions to others. 

Whilc thc logicist program is meaningless from thc point of vicw of the 

new conception of logic, its main tenct, that mathcmatical constants arc 
essentially logical, is, of coursc, strongly supported oy this conception. 

A Ncw ('(Inception or Logic 

Indeed, Russell's account of the logicality of mathcmatics in Introduction 
to Mathematical Philosophy is in complcte agrecment with my analysis: 

There ale words thai express form.. . /\ml in every symholization hitherto invented 
of Illalitclllatical logic there are symbols having constant formal meanings .... 
Such words or symbols express what arc called 'logical constants.' Logical con
stants may he defined exactly as we defined forms; in fact, they are in essence the 
salllc thing.. . In this sensc all the 'constants' that occur in pure mathematics are 
logical constants."' 

The difTercnce betwcen the ncw conception and the "old" logicism re

garding mathcmatical constants is a matter of perspective. Both approaches 

are hascd 011 the equation that being mathematical = being formal = 

heing logical. But while the classical logicists say that mathematical con

stants arc essentially logical, the new conception implies that logical con

stants arc cscntially mathematical. Thus if the classical thesis is "the 

logicist thesis of mathcmatics," the new one is "the mathematical thesis of 

logic." Another point of diflcrence worth noting is that according to the 
IlC\\' conccption, mathematical constants are logical only whcn construcd 

as higher-level. Accordingly, the natural numbcrs, as individuals, are not 

logica I objects. But as second-Icvel entities, classes ofclasses, they are. This 
vicw is, as we saw in chapter 2, in some respccts vcry Fregcan. Frege's 

lo~i«(/I delinition of thc naturalnumbcrs takes numbers to.be higher-level 

cnl ities. i.e., classes of classes or e1asses of concepts. Indeed, the formula

tion or 11l1ll1crical statcmcnts as first-order quantifications in UL is exactly 

the salllC as Fregc's in 111e Foundations (~lArilhmetic. 

J l\ la.h<.'lIIa'ics ami Logic 

My disclission oflogicisl1l above highlighted one aspect of the relationship 

between logic and mathel1latics: in thc new conception of logic any mathe

matical constant call play thc role of a logical tcrm, subject to certain 

rcquiremellts on its syntactic and semantic definitions. However, mathe

matical constants appear in the new logic also as extralogical constants, 

and this rcl1ects another side of thc relationship bctween logic and mathe

Illatics: as logical terms, mathematical constants are constituents of logical 

frameworks in which theories of variolls kinds are formulated and their 

logical COllsequcnces arc drawil. But the "pool" of formal terms that can 

as logical constn nts is created in mathematics. The semantic defini

tion of. say, the logical quantifier "there arc 1I1lcountaoly many x" is based 

011 SOIl1C mathematical theory of sets. Similarly, the semantic definition of 

the quantifier "there is an odd number of x" is based on arithmetic. And 
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even in standard logic, the semantic definitions of the truth-functional 
connectives and the universal (existential) quantifier are based on certain 
simple Boolean algebras. These observations point to a difference between 
logic and mathematics vis-a.-vis formal terms: formal terms <Ire ('fcated in 
mathematics; they are used in logic. 

Now since logic provides a framework for theories in general. the mean

ing of formal terms can be given by a mathematical theory formulated 
within logic. We can thus picture the interplay between logic and mathe
matics as a cumulative process of definition and application. Starting with 
a logical system that applies certain elementary but powerful mathe
matical functions (Boolean truth functions, the universal/existential
quantifier function and, usually, identity) to a first-level extralogical vocab
ulary, we construct various formal theories. Such theories describe mathe
matical structures by delimiting the semantic variability of the extntlogical 
terms of the language. This is done by introducing a set of extralogical 
axioms that partition the "universe" of all models for the language into 
those that do, and those that do not, "realize" the theory. In this way the 
axioms of the theory give specific mcanings to HII nonlogical terms of the 
language. Once mathematical terms are defined within the framework of 
standard first-order logic, they can be incorporated in the superstructure 
ofa new, extended system of logic. As an example. consider the first-order 
theory of Peano arithmetic. As soon as arithmetic terms receive their 

meaning within this theory, we can convert them into logical arithmetic 
quantifiers: the numerical quantifiers, the "even" quantifier. quantitative 
comparative quantifiers ("there are fewer x's such that ... than x's such 
that "), and so on. We can now use the new logical vocahulary 
to formulate theories--mathematical, physical. etc.- that assume the 
~xistence of a machinery for counting and comparing sizes. In these 

theories we will logically conclude that, say. there are 4 Bs. given that there 
are 2 Cs, and that the number of Bs is twice the number of es. As we shall 
see below, there is an essential difference between applying mathematics 
by using mathematical terms as part of the logical superstructure and 
applying mathematics by adding extralogical mathematical constants nnd 
axioms to a theory of standard first-order logic. 

4 Ontological Commitments of Theories 

Quine is known for the thesis that the logical structure of theories in a 
standard first-order formalization reflects their ontological commitments. 
To determine the ontology of a theory.'?I formulated in natural language 
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(or a scientifk "dialect" thereof). we formalize it as a (standard) first-order 
.'1 , and examine those models of in which the extralogical

1 
tcrllls receive their intended meaning..'Y is committed to the existence of 
slIch (,hjccts as populate the universes of the intended model(s) of .r1 · 

Thus if .J includes a sentence of the form 

(I) Uncountably many things have the property P, 

then, since the notion of uncountably many is not definable in pure stan

dard first-order logic, we have to include in .'?It some theory in which 
"uncolllltably many" can be defined. Choosing a set theory with Ur

elemellts. we express (I) as 

(2) (3.\")[x is a set & x is uncountable & 

(\fy)(y E x ~ y is an individual & Py)l. 

And through (2), :Y is committed to the existence of sets. 
Now. consider what happens if we formalize .'?I within the framework 

of U L. lIsing a system !.f' that contains, in addition to the standard logical 
terms ~lIId axioms. the logical 4uantifler "ullcOllntahly many" and appro
priate axioms (e.g .. Keisler's). Ohviollsly, we do not need set theory to 
express (I) in !I'. The meaning of (I) is adequately captured by the sentence 

(Ullcollntably Illany x)Px. 

which docs not commit .'Y to the existence of sets. So with a "right" choice 

or logical vocabulary, :Y can be formalized by a theory, whose ontol

ogy consists merely of individuals. not sets. 
\Ve see that the new conception of logic allows us to save on ontology 

by augmenting the logical machinery. We can weaken the ontological 
commitmcnts of theories by parsing more terllls as logical. We no longer 
talk about till' ontological commitment of an unformalized (or pre
formalized) theory .'1 (there is no such thing!). Instead, ontological 
considerations become a factor in choosing logical frameworks for for

malizing theories. 
The examination of Quine's principle from the perspective of UL 

reveals the relativistic nature of his criterion. The comparison of ·'?It and 
.'1 highlights the crucial role played by logical constants in deciding 

2 
commitment in other theories of logic and ontology as well. Consider the 

simple. straightforward view that the commitment of a theory under a 
formalization .~ is determined by what is common to all models of .rtF. 
Ilere too the difference in logic.,1 terms between the formalizations!Yt and 
:1 of.1 results in essentially difl'erent cOl11mitments. The occurrence of 

2 
the quantifier "ullcountably many" in (3) ensures that in every model of 
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.~, P is assigned an uncountable set of individuals. But by the Luwenheilll
Skolem theorem, .r,. has at least one 1II0dei in which the predicate "x 
is uncountable" is given a nonstandard interpretation and P is assigned a 
countable set. We can thus say that :12 is cOlllmitted to an olltology of 
uncountably many objects, whereas .'T1 is nol. 

We see that logical terms are vehicles of strong ontological commitment, 
while extralogical terms transmit a relatively weak cOlllmitlllent. This 
difference in ontological import between logical and extralogical terms is 
explained by the fact that logical terms arc selllantically pre-fixed, whereas 
the meaning of extralogical terms is relative to models. To usc Putnam's 
turn of speech, extra logical terms are viewed from lI'ithin models, whereas 
logical terms arc viewed from the outside. 4 Including formal terms as part 
of the logical superstructure allows us to use them in the logic with "(I view 
from the outside." 

The distinction between "strong" and "weak" ontological commitments 
explains the difference between using mathematical notions as part of the 
logical machinery and using them as extralogical terms in theories within 
the logic. It also suggests a guideline for choosing logical frameworks. If 
you formulate, say, a physical theory and you want to usc 1'0 rill a I tools 
created elsewhere (i.e., in some mathematical theory), you might as well 
include the mathematical apparatus as part of the logical superstructure. 
This will renect the fact that you arc not interested in specifying the 
meanings of the mathematical terms but in saying something about the 
physical world, using mathematical notions which you take as given. The 
pre-fixed notions will enable you to make some very strong claims ,Ihout 
the physical world, strong in the sense that what they say docs not vary 
from one model of the theory to another. ;\11 this will be dOlle without 
compromising the usefulness of the logical framework in determining 
necessary and formal consequences. If, on the other hand, your goal is to 
define the mathematical notions themselves, you cannot construe them as 
logical, because as such their meaning would have to be given at the outset. 
You have to use undefined terms of the language (i.e., extralogical terms) 
and then construct a theory that will give these notions a distinctive 
content. 5 

Metaphysics and Logic 

What role, if any, does metaphysics play in logics based on Tarski's ideas? 
First, for Tarski, the very notion of semantics has a strong lIIetaphysie<1I 
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cOllnol<ltioll. Semantics investigates concepts having to do with the relation
ship hetween language and the world (sec page 39). The categories used in 
c1assi rying relev,lIlt features of the world are, ipso facto, an important 
r;lctor in the ,lIwlysis of stich concepts. More specifkally, as we have seen 
earlier in the book, it is crucial for Tarski that an adequate system of logic 
yield consequences that hold necessarily of reality. In that way meta
physics provides an important criterion for evaluating logical systems 
vis-;I-vis their goal. Utlt the role of metaphysics docs not end with this 
extern;1I criterion. To see the metaphysical dimension of Tarski an seman
tic" 11IOre clearly, it might be well to contrast his model-theoretic method 
with another type of theory, which, following Etchel11endy 1990, I will call 
"interpretational." The interesting feature of interpretational semantics 
frol11 my point of view is that it purports to ensure the satisfaction of 
Tarski's metaphysical condition by purely syntactic means. The inter
pretational defillition of "logical consequence" is the following: 

I>ITINIIION Lei The sentence X is a logical consequence of the set of 
sentences K ilf there is no permissible substitution for the nonlogical 
terl1ls ill the sentences of K and in X that makes all the former true and 
the latter hllse. 

(;\ suhstitution is permissible if it is uniform and it preserves syntactic 
categories.) This definition, in essence, goes back to Bolzano (1837). It can 
also he found in l110dern texts, e.g., Quine's Philosophy (~lLogic (1970). 

The distinctive feature of the interpretational test for logical conse
quence is that it is based on substitution of strings of symbols. Definition 
(1,(") docs not t,lke into account anything but grammar and the distribu
tioll or truth values to all the sentences of the language. Thus to the extent 
tlwt syntactic analysis alld a list of truth values arc all that are needed to 
determine logical truths and consequences, interpretational semantics has 
lIothing to do with metaphysics. 

Tarski rejected the substitutional definition of "logical consequence" 
just for that reason. The success of interpretational semantics depends on 
the expressive power of the lallguage. Relevant possible states of affairs 
may not be taken illto account if the language is too poor to describe them. 
Thus, consider a language in which the only primitive nonlogical terms are 
the individual constants "Sartre" and "Calllus" and the predicates "x is 
;Ictive in the French Resistance" and "x is a novelist." In this language the 
sentence 

(4) S;Jrtll~ was active in the French Resistance 

5 
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will come out logically true under the substitutional test. BlIt obviollsly, 
(4) is not necessarily true. 

r Etchemendy pointed out another problem with interpretational theory 
:,! due to its syntactic character. 6 In interpretational "semantics," as in llIodel
" 

r theoretic semantics, "logical consequence" and the other logical concepts,: 
are defined relative to a set of logical constants. But in interpretational 
semantics, the set oflogical constants is an arhitrary set of terms, 

because the interpretational theory does not oficr a guide for determining 
whether a term is logical or not. Logical and extralogical terms arc defined 
by use, and for all that interpretational semantics has to say, any term 
might be used either way. What Quine calls the rel11arkable concurrence 
of the substitutional and model-theoretic definitions of "logical conse
quence" for standard first-order logic is no more than a "happy" accident. 7 

Since the standard logical constants do not form a grammatically distinct 
group, they are, from the point of view of interpretational semantics. 
indistinguishable from other terms that can also he held constant ill the 

test. Thus even if every individual, property, and relation 
"participating" in relevant possible states of affairs has a name in the 
language, some divisions of terms into the logical and extralogical will 
yield unacceptable results. Suppose, for instance, that expressions naming 
Sartre and the property of being active in the French Resistance are 
included in the set of/ixed(i.e., logical) terms. Then (4) will again turn out 
to be logically true. (See chapter 3.) 

Tarski's semantics avoids the two problems indicated above by lIsing 

a semantic apparatus which allows us to represent the relationship be
tween language and the world in a way that distinguishes rormal and 
necessary features of reality. The main semantic tool is the model, whose 
role is to represent possible states of affairs relative to a given .....o~ue ..... 

Since any set of objects together with an "interpretation" of the non
logical terms within the set determine a model, every possible state of 
affairs vis-a-vis the extralogical vocabulary is represented (extensiollally). 
Furthermore, the choice of logical constants is constrained by the require
ment that the logical superstructure represent formal, metaphysically un
changing parameters of possible states or affairs. (It should be noted that 
"possibility" in this context is "formal possibility." Therefore, thc totality 
of models reflects "possibilities" that in general metaphysics might be 
ruled out by nonformal considerations. That is to say, the notion of 

nllpr',,; ... n the choice of models is wider than in mphl.,'l\l.,;"" 
proper.) 

A New 'onccrllioll or 

Although metaphysical considerations are central to Tarskian seman
tics. only the most basic and general metaphysical principles are taken into 
account. The historical Tarski expressed a dislike for "abstruse" philo
sophical theories. The notions of necessity and possibility he used were, he 
emphasized, the common, everyday notions, not the philosopher's. I think 

Tarski's mistrust of philosophy is not warranted, but the claim that the 
philosophical foundation of logic should not rest on the web of philo

controversies regarding modalities appears to me sound. Thus the 
vic,v underlying the new conception of logic, that the mathematical "coor
dinates" of reality do not change from one possible world to another (and 
therefore mathematical constants can, in general, play the role of logical 
constants), is based on a basic, generally accepted belief about the nature 
of reality. 

We cannot rule out. howevcr. divergence or opinions even with respect 
to "core" metaphysical principles. And for those who do not share the 
"COllllllon" helief regarding the nature of mathematical properties, I pro
posc the following relativistic view of logic: we can look at the definition 
of "logical terms" ill chanter 3 as a schema saying that to treat a term as 

a rigid, formal property or function (fixed 
across possmlc states or allairs) and define it in accordance with conditions 
(l') to (F). It is then left for the user to determine whether or not it is 
appropriate to treat a given term in that way. (A similar strategy will 

enable one to reconcile nominalistic compunctions with the new concep
tion: depending on the metalinguistic resources one finds acceptable, one 
will construe those mathematical predicates that are definable in one's 
language as logical constants.) 

The foundations of Tarskian semantics reach deep into metaphysics, 
but the link between models and reality may have some weak joints. In 

Tarski has never shown that the set-theoretic-structures that 
make lip models constitute adequate representations of all (formally) 
possible stales of affairs. This issuc is beyond the scope of the present 
hook. btlt two questions that may arise are the rollowing: Is it formally 
necessary that reality consist of discrete, countable objects of the kind that 
can be represented by Ur-elements (or other constituents) of a standard set 
thcory? Does the standard model-theoretic description of all possible states 
of affairs have enough parameters to represent all relevant aspects of 
possihlc situations (relcvant, that is. for the identification of formally 
nccessary consequcnces)'! These and similar questions lie at the bottom of 
nonstandard models for physics, probablistic logic, and, if we put aside 

such discourse theories as "situation semantics." 



,£ 

Chapter 6 140 

6 Proof-Theoretic Perspective 

The philosophical justification of the new conception of logic is based on 
an analysis of certain semantic principles underlying modern logic. What 
about proof theory? Should we not set proof-theoretic standards for an 
adequate system of logic, for example. that it be complete relative to an 
"'acceptable" deductive apparatus? The new logic. one would then object. 
surely fails to comply with this requirement! I think this judgement is 
premature. The "new conception of logic" is a result of reexamining the 
philosophical ideas behind logical semantics in response to certain mathe
matical generalizations of standard semantic notions (Mostowski and 
others). There is no sense in comparing the generalized semantics with 
current un- or pre-generalized proof theory. To do justice to the new 
conception from a proof-theoretic perspective, one has to cast a new. 
critical look at the standard notion of proof. This task may be exacting 
because there is no body of mathematical generalizations in proof theory 
directly parallel to "generalized logic" in contemporary model theory. 
However, if the new philosophical extension of logic based on semantics 
is significant, it poses a challenge to proof theory that cannot he over
looked. I can put it this way: if Tarski is right about the basic intuitions 
underlying our conception of logical truth and consequence, and if my 
analysis is correct, namely that these intuitions are not exhausted by 
standard first-order semantics, then since standard first-order logic has 

equal semantic and proof-theoretic power (completeness), these intuitions 
are not exhausted by standard first-order proof theory either. Semantically, 
we have seen, it suffices to enrich the superstructure of first-order logic by 
adding new logical terms. But what has to be done proof-theoretically? I 
hope that future researchers will take up this question as a challenge. 

Appendix 

Chapter 2, t Section 2 

DEFINITION I Let A be a set. A qualll(fier 011 A is a function 

q : 1'(,.1) -- {T. F} 
sllch that if III : A --io A is an automorphism (permutation) of A, i.e., m is 

one-to-one and onto A. then for every B ~ A, 

(/(",(11)) q(l1). 


where m( B) is the image of IJ undcr m. 


It is easy to see that Boolean combinations of quantifiers on A are also 


quantilicrs on A. 


DEFINITION 2 Let rJ. be a cardinal number. A 2-partitioll oj rJ. is a pair of 


cardinals (fl. )') such that {1 + }' rJ.. 


DHINIIION J Let ({1. r)a be the class of 2-partitions of rJ.. A cardinality 


.tim('tion 011 2-parlith'IlS (~lrJ. is a function t : (fJ, }')a -- {T, F}. 


THEOREM I (M ostowski 1957.) Let A be a set. Let .'Y be the set of car

dinality functions on 2-partitions of rJ. = IA I. Let!} be theset.of quantifiers 

011 A. Theil thcre exists a one-to-one function h from .r onto fl defined 


as follo\vs: 

For any I E :1, h(1) = the quantilier q on A such that for any B £; A, 


(I (B) t (IJJI, IA -- B I). 


I will symbolize a quantifier q on A as QA' Given a quantifier on A, Q... , I 
will call the cardinality fUllctioll t satisfying the above equation the car

dillalily cOIlIllcrpart of QA and symbolize it as t<J. 

http:theset.of
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DEFINITION 4 A qualllifier Q is a function that assigns to each universe A 

a quantifier on A. QA' and such that if A. A' are universes of the same 

cardinality, then Q A and QA' have the samc cardinality countcrparl. 

Chapter 2, Section 5 

DEFINITION 5 Let A be a set. A 2-place quantifier 011 A is a function 

q: P(A) x P(A) -+ {T, F} 

such that ifm : A -+ A is an automorphism of A. then for every IJ. C s; A, 

q(m(B), m(C» = q(B, C), 

where m(B) and m(C) are the images of Band C under m. 

DEFINITION 6 Let a be a cardinal number. A 4-parlithm (~ra is a quadruple 
({1, y, 0, e) of cardinals such that fl + }' + b + I: = a. 

DEFINITION 7 Let (fl, y, (5, e)a be the class of 4-parlitiolls of ex. A cardinality 
jimction on 4-partitions of ex is a function 

1: (/1, y. b, e)a -+ {T, F}. 

THEOREM 2 (Lindstr61ll 1966.) Let A he a set. Lct:1 bc thc sct ofc:ndinal

ity functions on 4-partitiolls of a = IA I. Let :j, bc the set of 2-placc tillallti

fiers on A. Then there exists a one-to-one function II from ,'1 onto ;?) 

defined as follows: 

For any ( E Y, h(t) = the 2-place quantifier q on A such that for any 

B. C ~ A, q(B, C) = (IBn CI, IB - CI, IC BI, fA (Bu C)I). 


Given a 2-place quantifier on A. Q2. I will call the cardinality function t 


satisfying the above equation the cardinality counterpart (~l Q2 and SYIll

l:>olize it as IQ. 

DEFINITION 8 A 2-place quantifier Q2 is a function that assigns to each 

universe A a 2-place quantifier on A, Q!, and such that if A. A' are 

universes of the same cardinality. then Q~ and Q~, have the same cardinal
ity counterpart. 

Chapter 4, Section 2 

Proofoftheorem 1 The proof is straightforward because we have already 

introduced all the concepts connecting the ordinal structures over which 

a-operators are defined with structures within ~( over which logical terms 
restricted to'll are defined. I will prove 

Appendix 

I. II is a runtioll from (()a into (CI~I. 

2. Ii is onto ((i'j'11. and 

3. h is one-to-one. 

(I.a) First I prove that" is a function. Let Oa be an a-operator of type 

(II' ...• 1,,). Let (s" ... , s,,) be a sequence such that for I ::; i ~ k, Sj E A 
if Ii = 0, and Sj ~ An if 'i = n =f. O. I have to show that [(i(J:l)' ... , ;(s,,»] 
exists and is unique. Existence is obvious. To prove uniqueness, let J, I' be 

two indexings of A bya. Let i(51), ... , ;(s,J and ;'(s.), ... , i'(s,,) be the 

index images 0[.\", ... , SIc under 1and I' respectively. 1'-1 0 J is a permuta

tion of a and (;'(.\',)•... , i'(s,,» is the image of (i(Sl)' ... , ;(s,,» under 

/,-1 0 /. I-Iellce. (i(sd• ... , ;(s,,» and (i'(sd, , ..• i'(s,,» are similar and 

l(;(s,).... , i(s,J)] = l(i'(sd, ... , i'(s,,»]. That is, [(;(S1)"'" ;(.'1,,»] is 

unique. 
( I. b) Next I prove that h is into (61'11. Let 0(1. be an a-operator of type 

(1\, ... , I,). Let Bl x ... X B" be a Cartesian product such that for I ~ 
i ~ /(. B = A if Ii = O. and lJj = p(An) if 'i = n #- O. Let C\ll be a func

j 

tion from /J, x ... X B" into {T, F} such that for every (SI' ... , SIc) E 

1)0111(('.11), C,,,(s\ •...• sd = O(1.[(;(s.), ... , i(s,J)]. where for some indexing 
lor A by a. i(.\j). I sj 5 k, is the index image of Sj under I. By definition 

or It, ('11 /i(o(J;)' (By (I.a) above. C'.II is well del1ned.) 'We have to show 

that C'11 is indeed a logical term restricted to '11. In particular, we have to 

show that C'.II satisfies the restriction of condition (E) of chapter 3. section 

6 to'll. That is, if (SI' ... , s,,) and (s~, ...• s~) are in Dom(C9,) and 

(A, s" .... .'I,,) ~ (A. s~ • ... , s~), then C'1I(Sl"'" SIc) = C'lI(S~, ... , s~). 
Take any indexing 1 of A by ex. For I 5}::; k, let i(sj) be the index image 

of Sj under I. By delinitioll, 

C ~I (.~ ,. . .. , Sk) = () 0: [ ( i (.'11 ), ... , i (Sk ) ) ]. 

C\l\(s;, ... , s~) = oo:[ (;(s;), ... , ;(s~ »1· 
It sullkes to show that l(;(s,)•... , ;(sd)l = l(;(s'.), ...• i(s~»l· Let f 
he an isomorphism of (A. ,\'\ •...• ,\'k) onto (A,,\'~, ...• s~). Thus.r is a 

permutation or A. Define a permutation m of a as follows: for all 

/1 E a, 

m(/I) )' ilfI(op) = lly. 

('Ieady. (;(J~)•...• i(s~» is the image of (;(SI)' ... , i(Sk» under the per

mutation induced hy m. llence. (;(SI)' ... , ;(Sk» and (i(s;), ... , i(5~» are 

similar. Therefore, l(i(sd..... ;(Sk»] = l(i(s;), ...• i(s~»l· 
(2) The next step is to prove that h is onto (efl~l. Take any C~ll E rei'll· 

The claim is that there is an 0a E (()a such that 11(0(1) C'1t· Let the type of 

http:1)0111(('.11
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C'11 be </1"'" t,). Consider the totality of a arguments R(IX) <r1 (IX), 

... , rlc(a» of the same mark. Let 19l(a)] be the set of all equivalence classes 
of R(a)'s under the relation of similarity. Define 

(}a : [9l(a)] -+ {T, F} 

as follows: Let I be some indexing of A by IX. For any [<'1 (a), ... , rk(a»] E 

Dom(oa), 0a[<r l (a), ... , rlc(a»] = T iff for some structure <A, sI' ... , '~k) 
such that s;, 1 $; i .:s; k, is of mark t i , (I) and (2) below hold: 

(I) rj(a) i(sj), where I .:s;j .:s; k, and i(sj) is the index image of Sj under I 

(2) C91 (S" ••• , Sic) = T 

I have to show that 0a is a well-defined a-operator. Let <r l (a) • ... , r/«a» 

and <r~ (a), ... , r~(a» be two similar a-arguments of mark <111 1 , ••• , I1I k ). 

Let the corresponding structures within VI be <.'II' ... , .'I,) and <J~, .... .{jk) 

respectively. It suffices to show that Cyl(SI •... , S,r> = Cy,(s;, ... , s.). 
But this follows from the fact that C'11 is a logical term (restricted to 'II) 
and the fact that the structures (A, .'II' ... , s/<) and (A, s;, ...• ."k) are 
isomorphic. (That the structures <A, SI' ... , s/<) and <A, s~, ... , sk) are 
isomorphic is obvious: By definition of similarity. there is a permutation 

m of a such that <a. r l (a), ... , r/«a» ;; <a, r; (a), ...• r~(a». where for 
I .:s;j $; k, rl(a) is the image of rj(a) under m. Letfbe the corresponding 
permutation of A. That is, under the given im.lexingf(ap ) = {i}, iff m(//) 

y. Now <A, .'II' ••• , Sic) ;; <a, r l (a), "', rlc(a», and <A, s~, ... , Jk) ;; 
<a, r; (a), ... , r~(a». Therefore, <A, SI' ••. , Sic) ~ <A, .'I;, ... , sk).) 

(3) Finally, I prove that h is one-to-one. Let 0 la :f= 02a • Then for some 

R(a), ola[R(a)J ::/; 02a[R(a)J. Say olaIR(a)] = T, 02a[R(a)J = F. Suppose 

"(ola) = CI \/" II(02a) C2<]1' We have to show that C).~I ::/; e2 yl . Let I be 
an indexing of A by a and let S be the structure within VI determined by 

R(a) through I. Then by definition of fl, CI <lI(S) = T, C2 yl (s) = F. llence, 

el Yl ::/; e2 y,. Q.E.D. 

Chapter 4, Section 4 

Binary relational quantifiers satisfying the invariance condition (b. I) 

DEFINITION II Let a be a cardinal number, identified with the least ordinal 

of cardinality a and defined as the set of all smaller ordinals (as in section 

2). Let (fl, Y)a be the set of 2-cardinal-partitions of ex, i.e., the set of all pairs 

of cardinals (P, y) such that p + Y = ex ( + being cardinal addition). Con
sider the functions 
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I: a -+ (/1, 

and Ict .'F he the set of sllch functions. For any'/; I' E ff, the functions f 
and/' arc similor ifl' there is an automorphism 111 of a such that for every 

() E a, 

) = I' (111«) 

DEFINITION 12 Let a be a cardinal number. Consider the functions f 
defined above. Let [:~] be the set of equivalence classes [f] under the 

relation of similarity defined above. Then a hinary cardinality function on 

ex is a function 

k'J : [,'17] -+ {T, F}. 

TIIEOREM 2 (Higginbotham and May 1981.) Let A be a set. Let f be the 

set of binary cardinality functions ka on a = 1A I. Let!l be the set of I-place 
quantifiers on binary relations over A satisfying the invariance condition 
(h. I ) (p. XX). Then there exists a one-to-one function It from J{ onto !l 

defined thus: 

For every ka E .~', h(ka) the quantifier qA E !l such that for any 

R ~ ;12, l/A(R) ka([./~])' where.l~: a -+ (P, Y)a is defined, relative 
to somc one-to-onc and onto indexing i of A by a, as foll'ows: for every 

() E a, t~({» (1:, (> ifl' 1-: 1{a: <1I~, a) E R}I and ( = I{a: <a~, a) ¢ R}I. 
2 

I say that.l~ represenls the cardi1lalilies of R ill A (relative to i).

LEMMA I Let A be a set. Let m be a I-automorphism of A2, and let In t be 

an automorphism of A such that for all a, hE A, mea, h) = (ml (a), hi) for 

some h' E A. Let R, R' be two binary relations on A such that R' = meR). 

Then for cvery a E A, 
E A: <1111 (a), hi) E R'}I,(I) l{hEA:<lI,h)ER}I= 

E A: <ml(a), h') ¢ R'}I·(2) IlhEA:<a,h)r{:R}I=1 

Proof' Take any a E A. 
(I) Let {h E A: <ll, h) E R} IJ, {Ii E A: <ml(a), h') E R'} = B'. I want 

10 prove that 181 IBl Let C = {c E A : for some hE B, m(a, h) = 
(lIld a ). c)}. Then 181 1CI because 111 is a I-automorphism based on 111 1 • 

Thc claim is that /J' = C. This follows from the fact that R' m(R). As a 

result. 1JJI = IB'I· 
(2) The proof is similar to (I). Q.E.D. 

Pr(}({ ollhl'orem 2 Let the members of A be ordered with indices in a. 

(The index map;: a -+ A is onc-to-one and onto.) I will prove that 
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I. It is a well-defined function from f into fl, 
2. II is onto !£, 
3. h is one-to-one. 

(I.a) First I show that h is a well-dell ned fUllction. Let kll be any binary 
cardinality function on a. 

(l.a.i) h(kaJ exists. Let R be any binary relation included in A 2. Then R 

is represented by some function IR : a -+ «(I, }')a' Since ka(LI~ J) exists for 
every R, so does h(ka.). 

(I.a.ii) h(ka.) is unique. Let R be any binary relation as above. Theil R is 

uniquely represented by j~ under the given indexing. So (ll(ka) )(R) is 

unique under the given indexing. Let IR' j~ be the representations of R 
under two indexings of A by a. Then clearly IR andj~ are similar. That is, 
[j~] = [/~l· Hence, (h(ka.»(R) is unique. 

(I.b) Next I show that h is into.!!2. Let ka' R, and/~ be as above. Let R' 
be any bimlfY relation on A such that for sOllie I-automorphism III of A 2, 

R' = I11(R). Letj~, be the function representing Ihe cardinalities or It ill A. 
I will show that (h(ka»)(R) = (h(ka»)(R'). It sullices to show thatj~ and/~. 
are similar. Since m is a I-automorphism, there is all autOillol phislll 1111 or 
A such that for all b, '1 E a, m(a", a,,) = (m 1 (0,,), a",) for some It' E (1. Let" 
be an automorphism of (11hat simulates "'1' I.e., for all () E ct., fI«(» = the 

() E a such that m 1 (a,d = ao. To show thal./Rand./R, are similar, it sullkcs 

to show that for every a" E A, the number of elements to which a" stands 

in the relation R is the same as the number of elements to which m I «(I,d 
stands in the relation R', and similarly, the number of elements to which 

a" does not stand in the relation R is the same as the number of elements 

to which 1111 (a,,) does not stand in the relation R'. This is proved in lemma 

I. As a result, (h(ka»(R) = ka.([f~]) = ka.([.I~']) = (h(ka»(R'). 

(2) Let qA E!£, and let 9t = {R £; A2 : qA(R) = T}. Define a binary car
dinality function on a, k la., as follows: 

k la([I]) = T iff for some R E 9t,1 represents R in A (under the given 
indexing). 

Claim: k 112 is well dellned. I have to show that iffR ,.I~, are similar functions 
representing Rand R' respectivcly, thcn R E 91 ill' R' E 91. I will show 

that if J~, JR, are similar, there is a I-automorphism m of Ax A such 

that m(R) = R'. Let jJ be an automorphism of (1 such that for every 

bE (1, j~(b) = IR'(p«»), Let m l be thc automorphism of A induced hy fl 

(through the given indexing of A). I will define m as follows: Take allY 

a E A. Let 1111 (a) = a', Then sincejR,j~· are similar and.l~,j~, represent I?, 
R'respeetively, 

Appelldix 

IBI IIf! and I.R! = 18'1, 

where IJ = {h: (a, ") E R}, H' = {hi: (a', h') E R'}, and 8, 8' are the com

plements of /J, If (in A) respectively. Let m' be any one-to-one function 


from B onto 1J' and mil any one-to-one function from jj onto 8'. Let b be 


any member of A. I define the value of m for (a, h) as follows: 


(a', m'(h» if hE H 
m(o, M= { (a', mf/(h» otherwise 

(I assume the axiom of choice.) The reader can check that m is a well

defined I-automorphism of A x A. I have shown that k ta. is well defined. 

(,Iarly, h(kl<J) = qA' 
(3) Suppose that for two distinct binary cardinality functions on a, k Ia. 

ami k2'1' I1(kl(%) = h(k2a) qA' Since kla =1= k2a, for some j: klor([/]) =1= 

k2,,(\F]). Let R be a binary relation on A whose cardinalities are repre
sl'lIll'd hy I (It is easy to describe thc construction of R. For each alJ E A, 

I construct the set Ro,,::-:-: {a: (O.l' a) E R} as follows: Let I«» = (e, O· 
There are two cases: (a) (; " (h) l: < , or , < l:. Case (a): Construct RalJ 

hy alternating (/0 EO UlI", 0 1 q: Ro." ... , a/ ERa", 1I/+ 1 rj: RlI", .... (If 11 is 
a lilllit ordinal, let all ERa".} Case (b). Suppose f. < ,. Take the least 

ordinal e equipollent to (;. Denne, for all a, E A, a, ERa" iff I < e· If 
, <: I:. define the complement of Ro" ill thc samc way.) Suppose (i) that 

k 1(%<1 In = T and (ii) that k2a.UID = F. Then by definition of qA' (i) 
implics that qA(R) = T, while (ii) implies that qA(R) = F. But this is 

impossihle, since qA is a function. Q.E.D. 
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2. Frege 1884, p. 65. 
I, 3. Frege 1884, p. 65. 
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open sentences "show the places where the completing sign has to be inserted"fli

Iii (Frege 1904, p. 114). 
ill:, 
I',I 6. Frege 1884. p. 59. 

7. 	 See, e.g., Slomson 1976, pp. 249-250.
11 

I!' 8. Mostowski 1957, p. 13. 

9. 	 Mostowski 1957, p. 13. The following constraints arc to be taken for granted~ll1 
in the context of Mostowski's work: the second-level predicates in question arc!:il

H defined over all first-level I-place predicates of the language, and they are exten
!!\' 

sional." ;:1.

-II 10. Dummett 1973, p. 22, n. 
rp 

4f:; II. Barwise and Cooper 1981. p. 163. Sentences relabeled.,!; 
I 12. Sec Keisler 1977 and 1985. 

13. For an extensive discussion of generalized quantifiers in the setting of non
standard models and infinitistic languages, see Barwise and Feferm<ln 1985. 

14. 	See Mostowski 1957, p. 17. 

15. 	 Mostowski 1957. p. 12. 

16. 	 Barwise and Cooper 1981, p. 159. 

17. 	 Sentences (14) and (15) are (I.a) and (I .b) of Barwise and Cooper 1981, p. 160. 

18. Here we have a formula with embedded genemlized quantifiers. The definition 
of truth for such formulas is straightforward. Informally. if \)( is a model with a 
finite universe A, then (MxHMy)<l>xy is true in \!I in'there are more things x in A 
satisfying (My)<l>xy than things x in A not satisfying (My)$.\y. That is, the number 
ofa's in A that stand in the relation $ to more than half the objects in the universe 
is larger than the number of a's in A for which this does not hold. Formally, if g is 
an assignment of clements in A to the individual variables of the language, then 
\!l F (MxHMy)$(x, y)[gJ iff there are more clements a E A for which (i) holds 
than elements b E A for which (ii) holds: 

(i) 	There are more elements C E A for which \)( F III (x. y)\g(x/a)(y/c») than 
elements dE A for which \PI F .-,tl)(x, y)(g(x/a) 

(ii) 	There arc at least as many dE A for which \PI F ~(I)(x, Y)[R(x/hHy/d)j 
as C E A for which'll F tl>(x, y)[g(x/b)(y/c)j. 

Notes to Pages 19-39 

19. 	 This is example (3.a) of Barwise and Cooper 1981, p. 160. 

20. See, for example. Rescher 1968, pp. 171-172. 

21. See Barwise and Cooper 1981. pp. 214-216. 

22. 	 Rescher 1962, p. 374. 

23. 	 Barwise and Cooper 1981, p. 162. 

24. 	 Barwise and Cooper 1981, p. 161. 
25. 	 I am using a slightly different notation from that of Barwise and Cooper. 

26. 	 Barwise and Cooper 1981, p. 177, 
27. 	 Barwise and Cooper 1981, pp. 165-166. Sentences relabeled. 

28. 	 Barwise and Cooper 1981, p. 164. 
29. 	 Barwise and Cooper 1981, p. 170. In later literature the property of living on 

is often called "conservativity," after Keenan and Stavi (1986). 

30. 	 Barwise and Cooper 1981, pp. 178-179. 

3\. 	Barwise and Cooper 1981, p. 179. 

.n. 	Barwise and Cooper 1981, p. 170. 
33. The limitations of living on are also discussed by such authors as Thijsse (1983, 
pp, 2226), van Benthem (1983a, p. 452), and Westerstahl (1989, pp. 28-37). These 
authors do accept the living-on constraint, though on grounds extraneouS to the 
logico-philosophical principles that guide me here. In conversation Richard Larson 
sl1~~ested to me that IidllK 011 is criterial for the class of deler:miners (identified by 
their distributional behavior in NPs). while p('rmutation is criterial for the class of 
qrumti[iers. This suggestion is reflected in my remark that Barwise and Cooper may 
ha ve identified a linguistically significant category of expressions, but this category 
is not that of qUllllt!fiers. Indeed, Keenan and Stavi (1986), who were co-originators 
of the conservativity universal, directed their attention to "determiners" rather 
than "quantifiers:' As for the identification of quantifiers with noun phrases, this 
has not been widely accepted. Thus van Benthem (1983a) and Westerstahl (1989), 
for example. treat determiners rather than noun phrases as representing quantifiers 
in natural language. Furthermore, both Keenan (1987) and van Benthem (1989) 
allow new, more complex types of natural-language quantifiers that do not coin

cide either with noun phrases or with determiners. (See also chapter 4 below.) 

34. See "NOlin Phrases, Generalized Quantifters, and Anaphora" (1987). Barwise's 
reasons for rejecting the analysis of proper names as quantifiers have to do with 
the nature of proper names, though, rather than with the nature of quantifiers. 

35, 	 May 1991. p. 353. 

('haptcr 3 

I. Tharp 1975, p. 5. The italics arc mine. 

2, Vall!!ht 1974, p. 161. 

J, Sec artidcs J 6, RIO, 12, and 14 in Tarski 1983, especially pp. 30,36-37, 


3R 	 40. 60 63. 69 -72. 166. 281, 285. 298. and 342. 

4. 	 Tarski 193(1:l. pp. 412 41.3. 
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5. Tarski 1936b, p.401. 

6. Tarski 1936a, pp. 414-415. 

7. Tarski 1936a, p. 417. 

R. In "Truth in a Structure" W. lIodges speculates that Tarski did not talk 
explicitly about variability of universes in "On the Concept of Logical Conse
quence," because this paper was intended for a philosophical audience. which. 
Tarski thought, might not appreciate the point. See Hodges 1986. p. HR. 

9. Tarski 1936a, p. 417. 

10. This proof is superficially similar to another "proof" of Tarski's claim sug
gested by Etchemendy (1990, chap. 6). However, the proof proposed hy Etche
mcndy Icads to a faJ/acy. I criticize Etchemendy's reconstruction of Tarski's proof 
in "Did Tarski Commit 'Tarski's Fallacy'?" (1991). 

II. Tarski 1936a, pp. 414-415. 

12. See Tarski 1936a, pp. 415-416. 

13. Tarski 1936a, pp. 418-419. 

14. Tarski I 936a, p. 419. 

15. This is a reformulation of Tarski's definition in 1936a, p. 419, n. 1 

16. This definition is different in stylc from the one proposed in chapter 2. There 
the universal quantifier was construed as a function rather than a sct of sets. 
However, the two definitions are equivalent. In chapter 2, I construcd a (I-place 
predicative) quantifier Q as a function from suhsets of the universe to {T. F}. lIere 
J idcntify Q with the set of all subsets to which the above fUllction gives the v;l/ue T. 

17. Westerstahl (1976, p. 57) points to another case in which a given logical term 
has different denotations in different models. This is the case of two models with 
disjoint universes. Thus, in the case of the existential quantifier. its denotation in 
a model with a universe of dogs is different from its denotation in a model with a 
univcrse of donkeys. 

18. Westerstahl (1976, p. 57) proposes a similar characteri7<lIion. saying that the 
interpretation of logical constants in a given model is "fixed in advance." 

19. Let me add a note on the relation between structures and models, A structure 
is a model in the most general sense, i.e., not a model for a particular language hut 
a sequence of a set (thought of as a unil'erse), and a series of individuals. subsets, 
and relations based on this set. More precisely, a structure is a seqllence \II = 

(A, VI' ... , Vn), where VI' "., Vn are individuals in A, suhsets of A. relations 011 

A, and/or functions on A. (If ~f is a model for a /aI1KUllKl', then V" ... , J" 

correspond to primitive symbols of the language (of the right typel.) Now. given a 
logical term C-say a I-place, second-level predicate over first-level predicates 
(Le., a Mostowskian quantifier)-and a model \1( with universe A. the semantic 
definition of C specifics with respect to every suhset B of A whether it satisflcs C 
in \11 or not (formally, whether it is a memher of C Y1 or not), So in constraining the 
definition of C, we have to take into accollnt all structures of the Iype (:I, /I). 
where A is the universe of some model for the langu<lge and JJ is a suhset of A. This 
kind of structure is considered in condition (E). 

Notes to Pages 61 IOU 

20. Lindenhaum and Turski 1934-1935, p. 385. The formal theorem is, "Every 

sentence of the form 

, " , " , " x'.y', z' •...(\ . \ ,.r. I' • : , z •. , .• R):. R ;, "" .:::>: x ,), ,z , ... 

a(x'.y'. ::', ",), .O'(.\''',y'',z'', ... ) 

is logically provable," where 

R';,~~ ::::,~ ~::. ".... 
expresses "the fact that the relation R maps the class of all individuals onto itself 
in PI)('-onc fashion. so that the individuals, classes, relations etc., x', y', z', ,., are 
mapped 011 x", yU, z" • ...• respectively and "o-(x. y, z, ... )" is a general scheme of 
a sentential function with no extralogical constants and with the variables x, y, z, 

. . , free (p. 385). 

21. Mautner 1946. p. 345. The citation has italics removed. 

22. Sec Mostowski 1957. p. 13.11,3. 
23. For Lindstrom's theorems, see Lindstrom 1969 or 1974. A textbook presenta

tion appears in Ehbinghaus, Flul11, and Thomas 1984. 


24. Tarski 1986, p. 149. 

25. See McCarthy 1981, sections 3 to 5. 

Chapter 4 
I. As jn the appendix, when discussing Jligginhotham and May'S work, I follow 
their use of "autol11orphislll (of sets)" where J usually lise "permutation:' 1should 
add that in the context or their investigations Higginbotham and May regard (b.t) 

as the limit of "true" qU<lntiliers. 

2. May 1989. p. 397. 
J, I will explain the context very hriefly. In "Questions, Quantifiers, and Crossing" 
(19~ I). lIigginhothalll ami May explained crossing co reference (as in (98», using 
ahsorptioll as follows: IfQ, and Qz are two 2-place predicHtive quantifiers, A is a 
set. :tnd R. S arc relations included in A 2 , then Q\ and Q 2 can be absorbed by the 

relational quantifier Q \ /Q2 of type O. 2), defined (IS 

«(),/Q2)1(R. S) Till 

() , ( {a E A : II t- DoIII ( R) }. Itl E A : () 2 ( {l1 E A : tl R b }, {/J E A : a.s'/J }) T}) = T. 


Whcn applicd to (95) and (98). this rille yields respectively 

(i) (V/3 xr)(Mx & "'y. L\y) 


and 

(ii) (V/3 .\TH(Px & Sxr) & (M.l' & C),x), IIx),}, 
whcre Vll is intcrpreted according to the definition ahove. Clark and Keenan 
(19R(i) sllo\\'. with a t:ollntcrcx<lmple, that the Hnalysis of (95) hy means of 0) is 
inconl'c\. Take a 1l0llcm pty universc A consisting only of men. Intuitively, (95) is 
false ill A But the relation" Mx & IVy" is empty in A (there is no pair (a, b) such 
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that a is a man and b is a woman), and hence (i) comes out true. Clark and Keenan 
proceed to investigate several other possibilities of absorption schelllHs. While their 
operator (described in the main body of the chapter) is adequate for (95). it fails for 
(98). On the other hand. a <2,2.2) ahsorption operator that Ihey propose works 
for (98) but not for (95). As I have shown in the present chapter, the absorption 
operator has to be of type < I, 2, 2). and the absorption operator J propose 
accurately represents both (95) and (98). For further discussion of this issue, sec 
May 1990. 

4. Clark and Keenan (1986) take the following to be a natural paraphrase of(98); 
"Every pilot who shot at some Mig that chased him hit some Mig that chased him 
that he shot at." 

5. This sentence is (4.c) in Keenan 1987, p. 110. 

6. Boolos 1981, p. 466. 

Chapter 5 

I. Henkin 1959, pp.179-180. 

2. For simplicity I assume that (I) has no free variables. 1 make similar assump
tions throughout the chapter. I speak of "truth in a model" mther than of "satis
faction hy an assignment in a model," and I formulate the definitions as if I were 
dealing only with sentences. It is easy to extend these formulations to formulas 
with free variables. 

3. For the Skolem normal form theorem, sec, for example, Enderton 1972. p. 275. 

4. Henkin 1959, p. 181. 

5. Walkoe 1970, p. 538. 

6. Hintikka 1973, p. 344, sentence (37). 

7. Hintikka 1973, p. 344. 

8. Hintikka 1973, p. 345, sentence (39). 

9. Fauconnier 1975, p. 560, sentence (10). 

10. Dummett 1973, pp. 8f. 

II. An alternative reading is, ql a's in A are such that for each one of thellllq2 h's 
in A are such that for each one of them [qJ c's in A are such that for each one of 
them "R3 (a. b, c)" is true in 2(]J. 

12. I wish to thank Robert May for this example. 

13. See van Benthem 1989. 

14. We can show that (a) through (d) present four distinct notions by descrihing 
situations that distinguish between them: 

• 	 A ~ Dom(R), B f:; Ran(R), and A and B are properly included in the universe. 
When q I q2 = "all," (a), (c), and (d) are true, while (b) is false. Hence (a) -;f (h). 
(c) ¥ (b), (d) ¥ (b). 

• A c: Dom(R), B c: Ran(R), where c: means "is a proper suhset." When (/. 
qz "only," (a) and (d) are false, while (c) is true. Hence (a) -;f (e), (d) -;f (c, 
When q I = "all" and q2 "only," (a) is false and (d) is true. Hence (a) -;f (d). 
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15. I would like to thank an anonymous referee of Linguistics and Philosophy for 
suggesting (34) as an example of independent quantification that, unlike (28) to 

(JO). cannot he analyzed as (23). 

16. However. to analyze "Mostly women were elected to the vacant seats in 
Congress" we have to define independent quantification of tYlxqe): 

(Qix) If'1 x, 
<l)xy =df (Q~ x)['f' I x, (3y)('f' 2Y & tllxy)] & (Qiy)['f'2Y' (3x)<1>xy]. 

(Q 2.2r) I If' 2.I', 


We get the intended reading of "Mostly women ... " when we construe "mostly"

2 

and the plural "the" as 2-place Mostowskian quantifiers defined as follows: "(The 
x)(Plx. P2 X )" is true in a model ~(ifftheextension of"Ptx" in 21 is not empty and 
the extension of"PI x & '" P2 x" in 2( is empty. "(mostly2 x)(PI x, P2 x)" is true in 
\II iff the extension of"PI x & P2x" in 21 is larger than the extension of" ...... PI X & 
P x" in !l}1. (For a definition of "mostly" by a Mostowskian cardinality function t,

2 

see chapter 2, section 5.) 

17. .Iohan van Benthem suggested to me in correspondence that we characterize 

independent quantifiers as "scope-free," defined as follows: "QI As stand in the 

relation R to Q2 8s" is scope-free iff it satisfies (I) invariance under passive 

transrormations ("Q I As stand in the relation R to Q2 Bs" is logically equivalent 

to "Q] Bs stand in the relation R to QI As," where R is the converse of R) and (2) 

domain/range invariance (if S is a relation such that Dom(R) = Dom(S) and 

Rall( R) Ran(S), then "QI As stand in the relation R to '.02 Bs" is logically 

equivalent to "QI As stand in the relation S to Q2 Bs"). This definition applies to 

independent quantifiers of types (a) to (c). Van Benthem suggests that if we have 

evidence that a natural language sentence of the above form satisfies the two 

invariance conditions (I) and (2), its logical form is that of independent quantifica

tion. See van Benthem 1989. 


I R. A quantifier Q is monotone-increasing iff (Qx)tllx and (Vx)(tllx -+ 'f'x) imply 


(Qx)\f'x. 


19. Barwise 1979, p. 63. 


20. Barwise 1979, p. 60, sentences (21) and (22). 


21. () is monotone-decreasing iff (Qx)tllx and (Vx)(If'x --) <1>x) imply (Qx)'Px. Q is 

nOIl-lllonotone iff it is neither monotone-increasing nor monotone-decreasing. 


22. Banvise 1979, p. 64. 


23. Barwise 1979, pp. 65- 66. Labels changed. 

24. Barwise 1979, pp. 62 -64. 

25. Thus the structure of a maximal consistent set of formulas gives us enough 
information to construct a syntactic model as in I-Jenkin's proof of the completeness 
pI' standard first-order logic. (I wish to thank Charles Parsons for this example.) 
For the importance of maximality, note, for example, Zorn's lemma and its 

IlUIlIC'I'OliS uses. 

26. My italics. 

27. Ban.vise 1979, p. 62. sentence (23). See also (25). My italics. 
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28. Barwise 1979. My italics. 

29. To see that linear quantification is a particular instance of Henkin-Barwise 
complex quantification, we have to express the conception of branching embedded 
in (49) more generally so that it applies to any partially ordered quantifier 
prefix. I will not discuss the nature of such a definition here, but in the case of 
"(Ql X)(Q2y)(J)XY" the definition I have in mind will yield the following second-
order counterpart: 

(3X)(3R)[(Q I x) Xx & X is a maximal set such that 

(V'x)(Xx -+ (Q2Y)Rxy) & 

R is a maximal relation such that (V'x)(V'y)(Rxy -+ (J)xy)J. 

30. The quantifiers over which fl2 ranges are higher-order Mostowskian quanti
~fiers that treat pairs as single elements. 

31. This example was made up before glasnost. 

32. Another conjecture expressible in terms of the general definition schema was '" '.'<1 
~ fsuggested by an anonymous referee of Linguistics and Philosophy. Compare the 

following: 

(i) In the class, most of the boys and most of the girls all like each other; 

(ii) In the class, most of the boys and most of the girls likc each other. 

The conjecture is that the difference betwecn (i) and (ii) is in the intended inner 
quantifier-condition. The presence of the explicit "all" in (i) indicates that the inner 
quantifier-condition is each all. However, the absence of "all" in (ii) signifies that 
there the inner quantifier-condition is weaker. The revicwer suggcsts that this 
condition is, however, stronger than each-some/some-each (independence). Each
most appears appropriate. 

33. I did, however, discuss Westerstahl's definition in "Two Approaches to Branch
ing Quantification" (1990a). 

34. Westerstahl 1987. p. 274. 

Chapter 6 

l. Putnam 1966, p. 106. 

2. Putnam 1966, p. 106. 

3. Russell 1919. pp. 201-202. 

4. See Putnam 1967. p. 16. 

5. Some of the themes developed in this section regarding the interplay between 
logic and ontology appear in Charles Parsons "Ontology and Mathematics" (1971 a) 
and UA Plea for Substitutional Quantification" (I971b). The observation that by 
augmenting one's logic, one can sa ve on ontology was made earlier by Hartry Field 
in Science without Numbers: A Defense ofNominalism (1980), preface and chapter 9 

6. See Etchemendy 1983 and 1990. Although I accept Etchcmendy's account alit' 
criticism of interpretational semantics, my view of the relation between Tarski' 
semantics and interpretational semantics differs radically from his. 

7. See Quine 1970. p. 91. 

Notes to Pages 141~145 

Appendix 
I. I formulate the definitions and the theorems in terms taken from Higginbotham 
and May 1981. In particular, I follow their use of "(set) automorphism," where 

before I used "permutation." 
2. Higginbotham and May do not include a description of the function h in their 
formulation of the theorem (nor do they present a proof). I believe my fonnulation 

of the theorem is consistent with their intentions. 
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most as a 2-place quantifier, 57, chaps. 3,4 


a quantifier on the universe A, 15, 141 


a determiner, 21 


a formal system, 38 


a theory of a formal system, 40 
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