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Preface

Whatever the fate of the particulars, one thing is certain. There is no going back
to the view that logic is [standard] first-order logic.
Jon Barwise, Model-Theoretic Logics

When I went to Columbia University to study with Prof. Charles Parsons,
I felt I was given a unique opportunity to work on ‘“foundational” issues
in logic. 1 was interested not so much in the controversies involving
logicism, intuitionism, and formalism as in the ideas behind “core” logic:
first-order Fregean, Russellian, Tarskian logic. | wanted to understand the
philosophical force of logic, and I wanted to approach logic critically.

Philosophical investigations of logic are difficult in that a fruitful point
of view is hard to find. My own explorations started off when Prof.
Parsons pointed out to me that some mathematicians and linguists had
generalized the standard quantifiers. Generalization of quantifiers was
something 1 was looking for since coming upon Quine’s principle of
ontological commitment. If we understood the universal and existential
quantifiers as particular instances of a more general form, perhaps we
would be able to judge whether quantification carries ontological commit-
ment. So the idea of generalized quantifiers had an immediate appeal, and
I sat down to study the literature.

The generalization of quantifiers gives rise to the question, What is logic?
in a new, sharp form. In fact, it raises two questions, mutually stimulat-
ing, mutually dependent. More narrowly, these questions concern quanti-
fiers, but a broader outlook shifts the emphasis: What is it for a rerm to be
logical? What are all the terms of logic? Sometimes in the course of
applying a principle, we acquire our deepest understanding of it, and in
the attempt to extend a theory, we discover what drives it. In this vein I
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Preface X

thought that to determine the full scope of logical terms, we have to
understand the idea of logicality. But the actual expansion of quanti-
fiers gives us hands-on experience that is, in turn, valuable in tackling
“logicality.” Prof. Parsons encouraged me to select this as the topic of my
dissertation, and The Bounds of Logic, a revised version of my thesis,
follows the course of my inquiries.

The idea of logic with “generalized” quantifiers has, in the last decades,
commanded the attention of mathematicians, philosophers, linguists, and
cognitive scientists. My own perspective is less abstract than that of most
mathematicians and less empirical than the viewpoint of linguists and
cognitive scientists. I decided not to address the logical structure of natural
language directly. Instead, I would follow my philosophical line of reason-
ing unmitigatedly and then see how the theory fared in the face of empirical
data. If the reasoning was solid, the theory would have a fair chance of
converging with a sound linguistic theory, but as a philosophical outlook,
it should stand on its own.

The book grew out of three papers I wrote between 1984 and 1987:
“First~-Order Quantifiers and Natural Language” (1984), “Branching
Quantifiers, First-Order Logic, and Natural Language” (1985), and
“Logical Terms: A Semantic Point of View” (1987). These provide the
backbone of chapters 2, 5, and 3. Chapter 1 is based on my thesis proposal,
and the ideas for chapter 4 were formulated soon after the proposal
defense. ‘‘Logical Terms” was rewritten as “A Conception of Tarskian
Logic” and supplied with a new concluding section. This section, with
slight variations, constitutes chapter 6. An abridged version of *“A Concep-
tion of Tarskian Logic™ appeared in Pacific Philosophical Quarterly (1989a).
I would like to thank the publishers for their permission to reproduce
extensive sections of the paper. “Branching Quantifiers” gave way to
“Ways of Branching Quantifiers” and was published in Linguistics and
Philosophy (1990b). I am thankful to the publishers of this journal for
allowing me to include the paper (with minor revisions) here.

At the same time that I was working on my thesis, other philosophers
and semanticists were tackling tangential problems. In general, my guide-
line was to follow only those leads that were directly relevant. A few related
essays appeared too late to affect my inquiry. In the final revision I added
some new references, but for the most part I did not change the text. I felt
that the original conception of the book had the advantage of naturally
leading the reader from the questions and gropings of the early chapters
to the answers in the middle and from there to the formal developments
and the philosophical ending.

A Wa,il;
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There is, however, one essay that I would like to mention here because
itis so close to mine in its spirit and its view on the scope of logic. This is
Dag Westerstihl’s unpublished dissertation, “Some Philosophical Aspects
of Abstract Model Theory” (1976), which I learned of a short time before
the final revision of this book was completed. Had I come upon it in the
early stages of my study, I am sure it would have been a source of
inspiration and an influence upon my work. As it turned out, Westerstahl
relied on a series of “intuitions about logic,” while I set out to investigate
the bounds of logic as a function of its goal, drawing upon Tarski’s early
writings on the foundations of semantics.

Chapter by chapter, I proceed as follows: In chapter 1, I set down the
issues the book attempts to resolve and I give an outline of my philosophical
approach to logic. Chapter 2 analyzes Mostowski’s original generalization
of quantifiers, tracing its roots to Frege’s conception of statements of
number. The question then arises of how to extend Mostowski’s work. I
discuss a proposal by Barwise and Cooper (1981) to create a system
of nonlogical quantifiers for use in linguistic representation. Pointing to
weaknesses in Barwise and Cooper’s approach, I advocate in its place
a straightforward extension of the logical quantifiers, as in Lindstrom
(1966a), and show how this can be naturally applied in natural-language
semantics. It is not clear, however, what the philosophical principle behind
Mostowski's work is. To determine the scope of logical quantifiers in
complete generality, we need to analyze the notion of “logicality.” This
leads to chapter 3.

For a long time I thought I would not be able to answer the questions
posed in this work. I would present the issues in a sharp and, I hoped,
stimulating form, but as for the answers, I had no idea what the guiding
principle should be. How would I know whether a given term, say ‘‘being
a well-ordering relation,” is a logical term or not? What criterion could be
used as an obijective arbiter? The turning point for me was John Etche-
mendy's provocative essay on Tarski. Etchemendy’s charge that Tarski
committed a simple fallacy sent me back to the old papers, and words that
were too familiar to convey a new meaning suddenly came to life. My
answer to the question of logicality has three sides: First, it is an analysis
of the ideas that led Tarski to the construction of the syntactic-semantic
system that has been a paradigm of logic ever since. Second, it is an
argument for the view that the original ideas were not fully realized by the
standard system,; it takes a far broader logical network to bring the Tars-
kian project to true completion. Finally, the very principles that underlie
modern semantics point the way to a simple, straightforward criterion of
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logicality. I spell out this criterion and I discuss the conception of logic
that ensues. As a side note I should say that although chapter 3 was not
written as a defense of the historical Tarski, it contains, I believe, all that
is needed to prove the consistency of Tarski’s approach.

Chapter 4 presents a formal semantics for the “unrestricted” first-order
logic whose boundaries were delineated in chapter 3. The semantic system
is essentially coextensional with Lindstrém’s, but the method of definition
is constructive—a semantics *“from the ground up.” What I try to show,
first informally and later formally, is how we can build the logical terms
over a given universe by starting with individuals and constructing the
relations and predicates that will form the extensions of logical terms over
that universe. Chapter 4 also investigates the enrichment of logical vocab-
ulary as a tool in linguistic semantics, pointing to numerous applications
and showing how increasingly ‘“‘stronger” quantifiers are required for
certain complex constructions.

Chapter 5 was the most difficult chapter to write. Whereas the book in
general investigates the scope and limits of logical *“particles,” this chapter
inquires into new possibilities of combining particles together. My original
intent was to study the new, “branching” structure of quantifiers to deter-
mine whether it belongs to the new conception of logic. But upon reading
the literature I found that in the context of “‘generalized” logic it has never
been determined what the branching structure really is. Jon Barwise’s
pioneer work pointed to several partial answers, but a general semantics
for branching quantifiers had yet to be worked out. M y search for the
branching principle led to a new, broader account than was givenin earlier
writings. I introduce a simple first-order notion of branching, “indepen-
dence”; I universalize the existent definitions due to Barwise; and I point
to a “family” of branching structures that include, in addition to “‘in-
dependent,” Henkin, and Barwise quantifiers, also a whole new array of
logico-linguistic quantifier constructions.

In chapter 6, I draw several philosophical consequences of the view of
logic developed earlier in the book. I discuss the role of mathematics in
logic and the metaphysical underpinning of semantics, I investigate the
impact of the new conception of logic on the logicist thesis and on Quine’s
ontological-commitment thesis, and 1 end with a proof-theoretical out-
look. This chapter is both a summation and, 1 hope, an opening for further
philosophical inquiries.

The bounds of logic, on my view, are the bounds of mathematical
reasoning. Any higher-order mathematical predicate or relation can func-
tion as a logical term, provided it is introduced in the right way into the
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syntactic-semantic apparatus of first-order logic. Logic provides a special
framework for formalizing theories, a framework that draws out their
necessary and formal consequences. Every formal and necessary con-
sequence is identified by some logic, and only necessary and formal con-
sequences pass the test of logicality. This view is accepted in practice by
many logicians working in ‘“‘abstract” first-order logic. My view also
stands in basic agreement with that of natural-language logicians. Ex-
tended logic has made a notable contribution to linguistic analysis. Yet
logical form in linguistics is often constrained by conditions that have no
bearing on philosophy. To my mind, this situation is natural and has no
limiting effect on the scope of logic.

On the other side of the mat stand two approaches to logic: First and
obviously, there is the traditional approach, according to which standard
logic is the whole of logic. No more need be said about this view. But
from another direction some philosophers see in the collapse of traditional
logic a collapse of logic itself as a distinctive discipline. With this view I
adamantly disagree. Logic is broader than traditionally thought, but that
does not mean anything goes. The boundaries of logic are based on a
sharp, natural distinction. This distinction serves an important methodo-
logical function: it enables us to recognize a special type of consequence.
To relinquish this distinction is to give up an important tool for the
construction and criticism of theories. e

The writing of this work was a happy experience, and I am very thankful
to teachers, colleagues, friends, and family who helped me along the way.

1 was very fortunate to work with Charles Parsons throughout my years
at Columbia University. His teaching, his criticism, the opportunity he
always gave me to defend my views, his expectation that I tackle problems
1 was not sure I could solve—all were invaluable not only for this book
but for the development of my philosophical thought. I am most grateful
to him,

My first dissertation committee was especially supportive and enthu-
siastic, and 1 would like to thank Robert May and Wilfried Sieg for this
and for their continuing interest in my work after they left Columbia.
Robert May was actively involved with my book until its completion, and
I am very thankful to him for his constructive remarks and for urging me
to explore the linguistic aspect of logic. Isaac Levi and Shaugan Lavine
joined my dissertation committee at later stages. Levi taught me at Colum-
bia, and his ideas had an impact on my thought. I thank him for this and
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for his conversation and support. Shaughan Lavine contributed numerous
useful comments on my thesis, and I am very thankful to him.

John Etchemendy sent me his works on Tarski. These were most impor-
tant in developing my own views, and 1 am grateful to him.

During the academic year 1987/1988 I was a visiting scholar at MIT,
and I would like to thank the Department of Linguistics and Philosophy
for its hospitality. I had interesting and stimulating conversations with
George Boolos, Jim Higginbotham, Richard Larson, and Noam Chomsky,
and I am particularly thankful to Richard Cartwright for his contribution
to my understanding of Tarski.

While writing the dissertation I was teaching first at Queens College and
later at Barnard College. I would like to thank the members of the two
philosophy departments for the supportive environment. To Alex Oren-
stein, Sue Larson, Hide Ishiguro, Robert Tragesser, and Palle Yourgrau |
am thankful for their conversation and friendliness.

The thesis developed into a book while I was at my present position at
the University of California, San Diego. [ am very grateful to my new
friends and colleagues at UCSD for the stimulating and friendly atmo-
sphere. I am especially indebted to Philip Kitcher for his conversation and
advice. [ am also very thankful to Oron Shagrir for preparation of the
indexes.

Betty Stanton of Bradford Books, The MIT Press, encouraged me to
orient the book to a wider audience than I envisaged earlier. I am very
thankful for her suggestions.

As editor of Linguistics and Philosophy Johan van Benthem commented
on my “Ways of Branching Quantifiers,” and his comments, as well as
those of two anonymous referees, led to improvements that were carried
over to the book. I appreciate these comments. I am also thankful for
comments by referees of The MIT Press.

Hackett Publishing Company allowed me to cite from Tarski’s works.
I am thankful for their permission.

I gave several talks on branching quantifiers, and [ would like to thank
the audiences at the Linguistic Institute (1986), MIT (1987), and the
University of Texas at Austin (1990).

My interest in the philosophy of logic arose when [ was studying philo-
sophy at the Hebrew University of Jerusalem. I am grateful to my teachers
there, especially Eddy Zemach and Dale Gottlieb, whose stimulating dis-
cussions induced my active involvement with issues that eventually led to
my present work.

—————r

Preface XV

1 could not have written this book without the abounding support given
to me by my family. My sons, Itai and Shlomi, were very young \‘avhcn I
started by studies at Columbia University, and they grew up with my
work. | thank you, Itai and Shlomi, for your patience with a busy mother,
for your liveliness and philosophical thoughts, for rooting for me, and for
much much more. My mother took over many of my duties during the last
months of preparing the book. I am most grateful to her for this and for
her support throughout my studies.

It is too late to thank my father, Shlomo Yoffe. He was a staunch
rationalist who believed in straight, honest reasoning. He taught me to
think and enjoy thinking. He respected intellectuals but not academic
titles. His influence, more than anyone else’s, led to my career in
philosophy.

I am dedicating this book to my husband, Peter Sher, with love and
gratitude. He followed my work closely from its beginning, and his sugges-
tions regarding style and presentation of ideas left their marks on every
page of this book. With great generosity he encouraged me to r.esume my
studies in philosophy some time ago, and with great generosity he has
supported me in my work since then.

T T T ST T




01307 Jo spunog a1 L

i

e M

et g e g U




Chapter 1
New Bounds?

“Logic,” Russell said, “consists of two parts. The first part investigates
what propositions are and what forms they may have.. . . The second part
consists of certain supremely general propositions which assert the truth
of all propositions of certain forms. ... The first part ... is the more
difficult, and philosophically the more important; and it is the recent
progress in this part, more than anything else, that has rendered a truly
scientific discussion of many philosophical problems possible.”!

The question underlying this work is, Are generalized quantifiers a case
in question? Do they give rise to new, philosophically significant logical
forms of propositions ‘“‘enlarging our abstract imagination, and providing
... [new] possible hypotheses to be applied in the analysis of any complex
fact”’?* Does the advent of generalized quantifiers mark a genuine break-
through in modern logic? Has logic, in Russell’s turn of expression, given
thought new wings once again?

Generalized quantifiers were first introduced as a “‘natural generaliza-
tion of the logical quantifiers” by A. Mostowski in his 1957 paper “On
a Generalization of Quantifiers”*. Mostowski conceived his generalized
quantifiers semantically as functions from sets of objects in the universe of
a model for first-order logic to the set of truth values, {truth, falsity},
and syntactically as first-order formula-building operators that, like the
existential and universal quantifiers, bind well-formed formulas with in-
dividual variables to form other, more complex well-formed formulas.
Mostowski’s quantifiers acquired the name ‘“‘cardinality quantifiers,” and
some typical examples of these are ‘“‘there are finitely many x such that
..., “most things x are such that ...,” etc.

Mostowski’s paper opened up the discussion of generalized quantifiers
in two contexts. The first and more general context is that of the scope and
subject matter of logic. Although Mostowski declared that at least some
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Chapter 1 2

generalized quantifiers belong in any systematic presentation of symbolic
logic, this aspect, with the foundational issues it raises, was not thoronghly
investigated either by him or by other mathematicians who took up the
subject. The second, more specific context has to do with the properties
of formal first-order systems with generalized quantifiers, particularly in
comparison to “classical” first-order logic and its characteristic properties:
completeness, compactness, the Lowenheim-Skolem property, ete. This

was the main concern of Mostowski’s research, and it became the focus of

the ensuing surge of mathematical interest in the subject.*

In contrast to the extensive and prolific treatment that generalized
quantifiers have received in mathematics, the philosophical yield has been
rather sparse. The philosophical significance of generalized quantifiers was
examined in a small number of contemporary papers by such authors as
L. H. Tharp (1975), C. Peacocke (1976), I Hacking (1979), T. McCarthy
(1981) and G. Boolos (1984b) as part of an attempt to provide a general
characterization of logic and logical constants. The mathematical descrip-
tions of generalized quantifiers and the numerous constructions by mathe-
maticians of first-order systems with new quantifiers prompted the ques-
tion of whether such quantifiers are genuinely logical. Although the dis-
cussions mentioned above are illuminating, they reach no definite or com-
pelling conclusions, and, to the best of my knowledge and judgement,
the question is still open.

To inquire whether “generalized” quantifiers are logical in complete
generality, we have to ascend to a conceptual linguistic scheme that is
independent of, or prior to, the determination of logical constants and,
in particular, logical quantifiers. We will then be able to ask, What
expressions in that lifiguistic scheme are logical quantifiers? What are all
its logical quantifiers? The scheme has to be comprehensive enough, of
course, to suit the general nature of the query.

A conceptual scheme like Frege’s hierarchy of levels naturally suggests
itself. In such a scheme the level of a linguistic expression can be deter-
mined prior to, and independently of, the determination of its status
as a logical or nonlogical expression.® And the principles underlying the
hierarchy—namely the characterization of expressions as complete or
incomplete and the classification of the latter according to the number and
type of expressions that can complete them—-are universally applicable.
From the point of view of Frege’s hierarchy of levels, the system of stan-
dard first-order logic consists of a first-level language plus certain second-
level unary predicates (i.e., the universal and/or existential quantifiers) and

—r——
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a “complete” set of truth-functional connectives. Qur question can now
be formulated with respect to Frege’s linguistic scheme as follows: Which
sccond-level predicates and relations can combine with first-level predi-
cates, relations, functional expressions, proper names and sentential con-
neclives to make up a first-order logic? What makes a second-level pre-
dicate or relation into a first-order logical quantifier? (analogously for
higher-order quantifiers.)

To ask these questions is to investigate various criteria for logical
“quantifierhood”” with respect to their philosophical significance, formal
results, and linguistic plausibility. At the two end points of the spectrum
of possible criteria we find those that allow any second-level predicate and
relation as a logical quantifier (this is possible within Frege's scheme
because of the syntactic structure of second-level expressions) and those
that allow only the universal and existential quantifiers as logical quanti-
fiers. While the former amount to a trivialization of logic, the latter
preclude extension altogether. For that reason, the area in-between is the
most interesting for a critical investigator.

The formal scheme whose extension is considered in this book is Fregean-
Russellian mathematical logic with Tarskian semantics. More specifically,
the investigation concerns Tarski’s model-theoretic semantics for first-
order logic. With respect to Tarski’s semantics one may wonder whethe‘r
it makes sense at all to consider its extension to a logic with new quanti-
fiers. To begin with, we can see that the structure of a first-order Tarskian
mode! does allow for a definition of truth (via satisfaction) for a language
richer than that of standard first-order logic. One line of reasoning point-
ing to the naturalness of extension is the following: If Tarskian model-
theoretic semantics is philosophically correct, then a first-order model
offers a faithful and precise mathematical representation of truth (satis-
faction) conditions for a first-order extensional language. The formal
correctness of this semantics ensures that no two distinct (i.e., logically
nonequivalent) sets of sentences have mathematically indistinct classes of
models. But ideally, a scmantic theory would also be nonredundant, in the
sense that no two distinct semantic structures would represent the same
{i.c., logically equivalent) sets of sentences. Standard first-order logic does
not measure up to this ideal, because it is unable to distinguish between
nonisomorphic structures in general. That is, “elementary equivalenc;,"
equivalence as far as first-order theories go, does not coincide with equiv-
alence up to isomorphism, a relation that distinguishes any two non-
isomorphic structures.® This inadequacy can be “blamed”* either on the
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excesses of the model-theoretic semantics or on the scantiness (expressive
“poverty”) of the standard first-order language. Accordingly, we can
either make the semantic apparatus less distinctive or strengthen the
expressive power of the standard language so that the model-theoretic
semantics is put to full use. In any case, it is clear that Tarskian semantics
can serve a richer language.

The study of extensions of logic has philosophical, mathematical, and
linguistic aspects. Philosophically, my goal has been to find out what
distinguishes logical from nonlogical terms, and, on this basis, determine
the scope of (core) logic. Once the philosophical question has been decided,
the next task is to delineate a complete system of first-order logic, in a
sense analogous to that of the expressive completeness of various systems
of truth-functional logic. In the early days of modern logic, truth-
functionality was identified as the characteristic property of the “logical”
sentential connectives, and this led to the semantics of truth tables and to
the correlation of truth-functional connectives with Boolean functions
from finite sequences of truth values to a truth value. That in turn enabled
logicians to answer the question, What are all the truth-functional
sentential connectives? and to determine the completeness (or
incompleteness) of various sets of connectives. We cannot achieve the
same level of effectiveness in the description of quantifiers. But we can try
to characterize the logical quantifiers in a way that will reflect their
structure (meaning), show how to “‘calculate” their value for any set
of predicates (relations) in their domain, and describe the totality of
quantifiers as the totality of functions of a certain kind. This task takes the
form of construction, description, or redefinition, depending on whether
the notion of a logical term that emerges out of the philosophical investi-
gations has been realized by an existing formal system.

A further goal is a solid conceptual basis for the generalizations. In his
Introduction to Mathematical Philosophy (1919) Russell says, “It is a prin-
ciple, in all formal reasoning, to generalize to the utmost, since we thereby
secure that a given process of deduction shall have more widely applicable
results.”” One of the lessons I have learned in the course of studying
extensions of logic is that it is not always clear what the unifying idea
behind a given generalization is or which generalization captures a given
idea. In the case of generalized quantifiers, for example, it is not immedi-
ately clear what generalization expresses the idea of a logical quantifier.
Indeed, the need to choose among alternative generalizations has been one
of the driving forces behind my work.

New Bounds?

Another angle from which I examine new forms of quantification is that
of the ordering of quantifier prefixes: Why should quantifier prefixes be
linearly ordered? Are partially-ordered quantifiers compatible with' the
principles of logical form? In his 1959 paper “Some Remar‘ks on Inﬁm.lely
Long Formulas,” L. Henkin first introduced a new, nonlinear quar?nﬁer
prefix (with standard quantifiers). Henkin interpreted his new quant.lﬁers;
branching or partially-ordered quantifiers, by means of Skolem functions.
An example of a branching quantification is

(Yx)(3y)

n >(D(x, », Z, W),
(Vz)(3w)

which is interpreted, using Skolem functions, as

(2) FHEHx)(V2)Px, f1(x), 2, 8" (2)]-

However, attempts to extend Henkin’s definition to generalized quanti-
fiers came upon great difficulties. Only partial extensions were worked out,
and it became clear that the concept of branching requires clarification.
This is another case of a generalization in need of elucidation, and concep-
tual analysis of the branching structure is attempted in chapter 5. .

The philosophical outlook underlying this work can be described as
follows. Traditionally, logic was thought of as something to be discovered
once and for all. Our thought, language, and reasoning may be improved
in certain respects, but their logical kernel is fixed. Once the logical ker?el
is known, it is known for all times: we cannot change—improve or enrich
—the logic of our language, reasoning, thought. On this view, questions
about the logical structure of human language have definite answers, th’e
same for every language. As the logical structure of human thinking is
unraveled, it is encoded in a formal system, and the logical forms of this
system are all the logical forms there are, the only logical forms. End of
story. .

This approach is in essence characteristic of many traditional phllO'*
sophers, e.g., Kant in Critique of Pure Reason (1781/1787) anfl Logic
(1800). The enterprise of logic, according to the Critique, ¢onsists in mak-
ing an “inventory” of the “‘formal rules of all thought.” These 1:ulcs ar.e
simple, unequivocal, and clearly manifested. There is no questionmg t}'ICll'
content or their necessity for human thought. Because of the limited
nature of its task, logic, according to Kant, ‘‘has not been able to advance
a single step [since Aristotle], and is thus to all appearances a c!osed and
completed body of doctrine.”® That this view of logic is not accidental to
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Kant’s thought is, I think, evident from the use he makes of it in establish-
ing the Table of Categories. The Table of Categories is based on the Table
of the Logical Functions of the Understanding in Judgments, and the
absolute certainty regarding the latter provides, according to Kant, an
“unshakeable” basis for the former. ’

I, for one, do not share this view of logic. Even if there are “eternal”
lf)gical truths, I cannot see why there should be eternal conceptual (or
linguistic) carriers of these truths, why the logical structure of human
thought (language) should be *“fixed once and for all.” I believe that new
logical structures can be constructed. Some of the innovations of modern
logic appear to me more of the nature of invention than of discovery.
Consider, for instance, Frege’s construal of number statements. Was this
a discovery of the form that, unbeknownst to us, we had always used to
express number statements, or was it rather a proposal for a new form that
allowed us to express number statements more fruitfully?

The intellectual challenge posed by man-made natural language is, to
my mind, not only that of systematic description. As with mathematics or
literature, the enterprise of language is first of all that of creating language
and this creative project is (in all three areas) unending. Even in comem:
porary philosophy of logic, most writers seem to disregard this aspect of
language, approaching natural language as a “‘sacred™ traditional institu-
tion. But does not the persistent, intensive engagement of these same
philosophers with ever new alternative logics point beyond a search for
new explanations to a search for new forms?

The view that there is no unique language of logic can also be based on
a more conservative approach to human discourse. Defining the field of
our investigation to be language as we currently use it, we can invoke the
principle of multiformity of language, which is the linguistic counterpart
of what H. T. Hodes called Frege’s principle of the “polymorphous com-
position of thought.””*® Consider the following sentences: !

(3) There are exactly four moons of Jupiter.
(4) The number of moons of Jupiter = 4.

It is crucial for Frege, as Hodes emphasizes, that (3) and (4) express the
same thought. The two sentences “‘differ in the way they display the
composition of that thought, but according to Frege, one thought is not
composed out of a unique set of atomic senses in a unique way.”'?
Linguistically, this means that the sentence

(5) Jupiter has 4 moons,!?

New Bounds?

which can be paraphrased both by (3) and by (4), has both the logical
form

(6) (14x)Ax

and the logical form

(7) (1x)Bx = 4.

I think this principle is correct. Once we accept the multiformity of lan-
guage, change in the “official” classification of logical terms is in principle
licensed.

The logical positivists, unlike the traditional philosophers, made change
in logic possible. Indeed, they made it too easy. Logic, on their view, is
nothing more than a linguistic convention, and convention is something
to be kept or replaced, at best on pragmatic grounds of efficiency (but also
just on whim). I sympathize with Carnap when he says, “This [conven-
tional] view leads to an unprejudiced investigation of the various forms of
new logical systems which differ more or less from the customary form ...,
and it encourages the construction of further new forms. The task is not
to decide which of the different systems is ‘the right logic’ but to examine
their formal properties and the possibilities for their interpretation and
application in science.”'* Furthermore, [ agree that accepting a new logic
is adopting a new linguistic framework and that such “acceptance cannot
be judged as being either true or false because it is not an assertion. It can
only be judged as being more or less expedient, fruitful, conducive to the
aim for which the language is intended.”!® What I cannot agree with is the
insistence on the exclusively practical nature of the enterprise: *‘the intro-
duction of the new ways of speaking does not need any theoretical justifi-
cation ... to be sure, we have to face at this point an important question;
but it is a practical, not a theoretical question.”!®

In my view, revision in logic, as in any field of knowledge, should face
the “trial of reason” on both fronts, practice and theory. The investiga-
tions carried out in this essay concern the theoretical grounds for certain
extensions of logic.

Generalized quantifiers have attracted the attention of linguists, and
some of the most interesting and stimulating works on the subject come
from that field. Quantifiers appear to be the closest formal counterparts of
such natural-language determiners as “most,” “few,” “half,” *“as many
as,”” etc. This linguistic perspective received its first elaborate and systema-
tic treatment in Barwise and Cooper’s 1981 paper “Generalized Quanti-
fiers and Natural Language.” Much current work is devoted to continuing
Barwise and Cooper's enterprise.!” The discovery of branching quantifiers
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in English is credited to J. Hintikka in “Quantifiers vs. Quantification
Theory” (1973). Hintikka’s paper aroused a heated discussion and steps
towards a systematic linguistic analysis of branching quantifiers were
taken by Barwise in **On Branching Quantifiers in English” (1979).

The work on generalized and branching quantifiers in linguistics, though
answering high standards of formal rigor, has a strong empirical orienta-
tion. As a result, study of the “data” is given precedence over ‘‘pure”
conceptual analysis. The task of formulating a cohesive empirical theory
is particularly difficult in the case of branching quantifiers because evi-
dence is so scarce. In fact, while the branching form appears to be gram-
matical, it is arguable whether it has, in actual languages, a clear semantic
content. To me, this grammatical form appears to be “in search of a
content.” In any case, my own work emphasizes the conceptual aspect of
the branching form. The direction of analysis is from philosophy to logic
to natural language. This has the advantage, if the attempt is successful,
that the theory is not piecemeal and the applications follow from a general
conception. On the other hand, since empirical evidence is not given
precedence, the proposals for linguistic applications are presented merely
as theoretical hypotheses, and their empirical value is left for the linguist
to judge.

My search for new logical forms is prompted by interests on several
levels. For one thing, it is a way of asking the general philosophical
questions: What is logic? Why should logic take the form of standard
mathematical logic? For another, it is an attempt to understand more
deeply the fundamental principles of modern logic. Mathematical logic, in
particular first-order logic, has acquired a distinguished, paradigmatic
place in contemporary analytic philosophy. This situation has naturally
led to attempts to extend the range of its applicability, especially to various
intensional contexts. It has also led to attacks on the basic principles of
the standard system and to the consequent construction of alternative
logics. Thus the philosophical scene abounds in modal, inductive, epi-
stemic, deontic, and other extensions of *‘classical” first-order logic, as
well as in intuitionistic, substitutional, free, and other rival logics. How-
ever, few in philosophy have suggested that the very principles underlying
the “core” first-order logic might not be exhausted by the “‘standard”
version. The present work ventures such a philosophical view, inspired
by recent mathematical and linguistic developments. These have not
yet received the attention they warrant in philosophical circles, and the
opportunity they provide for a reexamination of fundamental principles
underlying modern logic has largely passed unnoticed. The realization of

New Bounds?

this opportunity motivates my work. Logic, I believe, is a vehicle of

thought. This work is done with the hope of contributing to the under-

standing of its scope.
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The Initial Generalization

1 Mostowski and Frege

'In the 1957 paper “On a Generalization of Quantifiers,” A Mostowski
introduced linguistic operators of a new kind that, he s;xid ;‘represen; al
na‘tural generalization of the logical quantifiers.”! Syntactic;l]y Mostow-
ski's quaptiﬁers are formula building, variable binding operal;rs similar
to th§ existential and universal quantifiers of standard first-order logic
Tl?at is, if @ is a formula, the operation of quantification by a Most(‘:w:
skian quantifier Q and an individual variable x yields a more complex
formula, (Qx)®, in which x is bound by Q. Semantically, Mostowski’s
operat?rs are functions that assign a truth value to any set of elements in
the universe of a given model in such a way that the value assigned
depem?s on the cardinalities of the set in question and its complement in
the universe and on nothing else. Since the standard existential and uni-
versa! quantifiers can also be defined in that manner, the new operators
constm.xte a generalization of quantifiers in the semantic sense too. There
th.us exist, according to Mostowski, a great many operators on fo.rmulas
with s'yntaclic and semantic features similar to those of the standard
quantifiers. These constitute a genuine extension of the logical quantifiers
'To understand Mostowski’s generalization more deeply, [ will bcgi;l
w;t’h a short regression to Frege. Frege construed the existential and
universal quantifiers as second-level quantitative properties that hold {or
do not' hold) of a first-level property in their range due to the size of its
_extensnon. This characterization of quantifiers is brought out most clearl
in Frege’s analysis of existence as a quantifier property in The Foundalz’ma};
ofAr‘itIzmelic (1884): “Existence is a property of concepts.”? “Aﬂirmatior;
of exlst'e'nce is in fact nothing but denial of the number nought.”* “The
proposition that there exists no rectangular equilateral recli]inear. triangle
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... state[s] a property of the concept ‘rectangular equilateral rectilinear
triangle’; it assigns to it the number nought.””*

Within Frege's hierarchy of levels a (first-order) quantifier is a 1-place
second-level predicate the argument place of which is to be filled by a
I-place first-level predicate (the argument place of which is in turn to be
filled by a singular term). A sentence of the form (3x)®x is true if and only
if (henceforth, “iff”") the extension of the 1-place predicate (or proposi-
tional function) ®¢ is of cardinality larger than 0. And a sentence of the
form (Vx)®x is true iff the extension of ®& is the whole universe, or its
counterextension has cardinality 0.3

This Fregean conception of the standard quantifiers underlies Mostow-
ski's generalization. In Mostowski’s model-theoretic terminology, the
standard quantifiers are interpreted as functions on sets (universes of
models) as follows:

(1) The universal quantifier is a function V such that given a set 4, ¥(4)
is itself a function f': P(4) — {T, F}, where P(A) is the power set of
A and for any subset B of A4,

: T iffA—B|=0
B =
1B {F otherwise.
(2) The existential quantifier is a function 3 such that given a set A4,
3(A) is a function g : P(4) - {T, F}, where for any subset B of 4,

T if|B|>0
B =
&(8) {F otherwise.

On the basis of this definition we can associate with each quantifier Q
(¥ or 3) a function (9 that tells us, given the size of a universe 4, under
what numerical conditions Q gives a subset B of A4 the value “true.” Thus,
the function 19 may be defined as a function on cardinal numbers (sizes of
universes) assigning to each cardinal number a another function 2 that
says how many objects are allowed to fall under a set B and its comple-
ment in a universe of size « in order for Q(B) to be “true.” Since the
“cardinality image” of each set in a universe of size a can be encoded by
a pair of cardinal numbers {f, y>, where fI represents the size of B and y
the size of its complement in the given universe, 12 is defined as a function
from all pairs of cardinal numbers # and y, the sum of which is a, to {T, F}.
So the universal quantifier function, (¥, is defined, for each a, by 1, which
assigns to any given pair {f, y) in its domain a value according to the rule

T ify=0

3) ¢ 1) =
3 12 (B ) {F otherwise.
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The rule for the existential quantifier is
T ifg>0
(4) 2B, y) = { A

F  otherwise.
We can now define the standard quantifiers in terms of their r-functions as
follows: Given a set 4 and a subset B of A4,

(5) Vu(B) = {;’ if15(IBl, 14 — B) = T

otherwise.
Similarly,

(6) 3,(B) = {T if (B, |4 — B)) = T
F

otherwise,

However, V and 3 are not the only quantifiers that can be defined by
cardinality functions like those above. Any function ¢ that assigns to each
cardinal number a a function t, from pairs of cardinal numbers By
such that # +y =« to {T, F} defines a quantifier. Given a set 4 and a
subset B of A, this quantifier is defined on 4 exactly as V and 3 are. For
example, suppose that the cardinality function ¢° is defined, for any car-
dinal number « and pair {f, y) such that g + y = a, by

o
™ z:(ﬁ,y>={T A=

F otherwise.
Then ¢? determines the cardinal quantifier (!0 x): “for exactly & elements x
in the universe.” Similar functions define the quantifiers “for at least §
elements x in the universe” and “for at most é elements x in the universe.”
Cardinality statements in general, **S things have property P,” can thus be
formalized as first-order quantifications

(8) (16x)Px,

which assert that the extension of 2 has § elements. In Frege’s conceptual
scheme, (8) would be a second-level statement that assigns a second-level
numerical property to the extension of the first-level predicate P. But this
is exactly Frege’s own analysis of statements of number: “The content of
a statement of number is an assertion about a concept.... If [ say ‘Venus
has0moons’. .. what happens is that a property is assigned to the concept
‘moon of Venus,” namely that of including nothing under it. If I say ‘the
King's carriage is drawn by four horses,’ then I assign the number four to
the concept ‘horse that draws the King’s carriage.’”’® We see that Mostow-
ski’s generalization is indeed in the spirit of Frege.

Yet numerical quantifiers (finite and infinite) do not exhaust Mostow-
ski's definition. Consider the function ¢ defined (refative to a cardinal
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number « and any pair {f, y) such that § + y = a) as

T iff>y
©) L(h ) = {F otherwise.
This function defines the quantifier (Mx), “most qf the objefts in the
universe are such that ...” (where we take “*‘Most things are B”’ to mean
“There are more Bs than non-B8s’"). Consider also

, T if fisa finite even number
(10) &.(f, ) = F otherwise.

This function defines the quantifier (Ex). “‘an even number of objects in
the universe are such that ... .” Another quantifier is defined

T iff=a
(0 &y = {F otherwise.
This is the Chang or equicardinal quantifier: “‘as many objects as there are
elements in the universe are such that ....”” And so on. ' .
Among the totality of cardinality functions ¢ are func?tlor}s t’!rat assign
to different cardinals « different functions ¢,. Such a “vacillating” function

¢ might be defined for two distinct cardinal numbers a, and «, by

T iff=m T
(12) 1, (B y) = F otherwise,

T iff=n
(13) £, (8,1 = F otherwise,
where m # n. The function r expresses cardinality properties of se,ts rela-
tive to the size of the universe: “m out of a;, n out .of az,' oo Sorr'xe
vacillating functions are reducible to “simple” functions like the ratio
function ““1/2,” which is fixed for all universes. (Thus, 1/2 = 1 ou‘t of 2,2
out of 4, 3 out of 6, etc., where some conventional rule is glven' for
universes with an odd number of elements.) Other vacillating fu?cuons
represent irregular ratios (2 out of 3, 3 out of 6, 19 out of 19, ...”), and

i “manifold” cardinality functions.
these are genuinely “manifold” car ncti
According to Mostowski, any formula-binding opera.tor deﬁned.by

some cardinality function (simple or vacillating) as described above is a
generalized quantifier.

2 A Criterion For Logical Quantifiers

Are Mostowski’s quantifiers logical quantifiers? Are they all the lf)g!cal
quantifiers? From a Fregean point of view, standard first-order logic is a
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constant any expression which . . . allows us to express a quantifier condition which
could not be expressed by means of ... [the universal and existential] quantifiers

and the sentential operators alone.'?

Now it is a metatheoretical fact about first-order models that given a
model 21 with a universe 4 and a 1-place second-level property &, #
satisfics (LQ2) with respect to the elements of A4 iff 22 is a cardinality
property. And this explains why Mostowski identifies logical quantifiers
with cardinality quantifiers. (A theorem establishing the one-to-one corre-
spondence between quantifiers satisfying (LQ2) and cardinality quantifiers
was proved by Mostowski. See the appendix.)

To sum up, syntactically, a quantifier is an operator binding a formula
by means of an individual variable. Semantically, it is a function that
assigns to every universe 4 an A-quantifier (or a quantifier on A), Q,. Q, is
itself a function from subsets of 4 into {T, F}. We will call the cardinality
function ¢ associated with a given 4-quantifier Q , the cardinality counter-
part of Q, and symbolize it by (¢ (or sometimes simply by f). Quantifiers
satisfying (LQ!) and (LQ2) are Mostowskian quantifiers. More precisely,
a Mostowskian quantifier is a quantifier Q satisfying (LQ1) and such that
for every set A, Q, satisfies (LQ2), and if 4,, A4, are sets of the same
cardinality, then Q,, and Q,, have the same cardinality counterpart. For
exact definitions, see the appendix.

It is worthwhile to note that Mostowski’s system of generalized quanti-
fiers exhausts the 1-place second-level predicates that satisfy (LQ2) only
relative to the standard semantics for first-order logic. Disregarding the
particular features of this semantics, we can say that any second-level
predicate embodying some measure of sets and insensitive to the identity
of their members satisfies this condition. Mostowski’s quantifiers express

measures of a particular kind, namely measures that have to do with the
cardinality of sets, and as we have seen, these are all the second-level
I-place “measure predicates™ satisfying (LQ2) relative to standard model
theory. But these are not the only second-level measures conforming to
(LQ2). Other quantifier measures of first-level extensions have been devel-
oped involving more elaborate model structures. Barwise and Cooper
(1981) describe two such cases. The first is a quantifier Q, studied by Sgro
(1977), where “(Qx)®x” says that the extension of ®x contains a non-
empty open set. This quantifier requires that models be enriched by some
measure of distance (topology). The second has to do with measures of
infinite sets: “Measures have been developed in which (a) and (b) make

perfectly good sense.
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« The definition of a model for first-order logic with Mostowskian gener-
alized quantifiers is the same as that for standard first-order logic. A model
for the extended logic does not contain any new “‘entities” not found in
models for standard logic. The only difference is in the computation of
truth values for quantified formulas, given a model and an assignment of
objects in the universe to the variables of the language.

An important difference between Mostowski's system and standard
first-order logic is that the former is not in general complete. Thus, for
example, Mostowski proved that if the quantifiers of a generalized first-
order logic include the existential or universal quantifier and at least one
quantifier Q satisfying condition () below, then the logic is incom-
plete: not all logically true sentences of this system are provable, or,
the set of sentences true in all models for the logic is not _recursively

enumecrable.

CONDITION (x) The cardinality function r? associated with Q assigns
to X, a function 1@ such that both {n:rd (n,Ro)= F} and
{m: 13 (m, R) = T} are denumerable.'*

An example of a quantifier satisfying condition (x) is Q, where, given a
denumerable universe, “(Qx)®x” means *“The number of ®x’s is even.”

On the other hand some generalized logics are complete. For example,
H. J. Keisler (1970) proved that the logic obtained from standard first-
order logic with identity by adding the quantifier “there are uncountably
many” and a modest set of axiom schemas is complete.

Referring to the incompleteness of first-order logic with generalized
quantifiers in general, Mostowski says, “‘In spite of this negative result we
believe that some at least of the generalized quantifiers deserve a closer
study and some deserve even to be included into systematic expositions of
symbolic logic. This belief is based on the conviction that the construction

of formal calculi is not the unique and even not the most important goal

of symbolic logic.”"*

One goal for which completeness appears to be immaterial is the charac-
terization of the logical structure of natural language.

3  Generalized Quantifiers and Natural Language

In their seminal paper “Generalized Quantifiers and Natural Language”
J. Barwise and R. Cooper examined Mostowski’s theory from a linguistic
perspective. Mostowski's logic, Barwise and Cooper observe, is superior
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to standard first-order logic in its account of natural-language quantifica-
tion. “The quantifiers of standard first-order logic are inadequate for
treating the quantified sentences of natural languages” in part because
“there are sentences which simply cannot be symbolized in a logic which
is restricted to ... V and 3.”'® Mostowski’s method, on the other hand,
allows us to encode the structure of such sentences as defy the standard
analysis. Let me give a few examples:

(14) There are only a finite number of stars.

(15) No one’s heart will beat an infinite number of times.!’
(16) There is an even number of letters in the English alphabet.
(17) The number of rows in a (full) truth table is a power of 2.
(18) There are 2™ reals between any two nonidentical integers.

The formal structure of (14) to (18) is analyzed in Mostowski’s logic as
follows:

(19) (Finite x) star x,
where for each model 2 with universe 4, #{"*(a, ) = T iff & < N,;
(20) ~(3@x)3Ay)[yis a heart of x & (Inf z) z is a beat of 3],

where 1 (a, f) = Tiffa > N;
(21) (Even x) x is a letter in the English alphabet,

where 15" is defined by (10) above;
(22) (Yy)[y is a (full) truth table — (Power-of-2 x) x is a row in ¥l
where £§°%*02(q, B) = Tiff a is a power of 2;

(23) (Yx)(Vy)[xisaninteger & yisan integer & x 3 y — (2%z)(zis a real
number & z is between x and y)],

where 12(a, f) = T iff & = 2%,
What about (24) to (29)?

(24) More than one third of the population of the world suffers from
hunger.

(25) 94% of all Americans believe in God.

(26) Some recipients of a Nobel prize are known to most people in the
world.

(27) Most people are not hostile to most people.
(28) As many Israelis are liberals as are not.

(29) ¥, natural numbers are prime, and the same number are not prime.
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Do these resist a first-order symbolization? No, say Barwise and Cooper.
By inserting nonlogical, ‘“domain-fixing” axioms of the form (Vx)®x, by
introducing many-sorted variables, or by limiting consideration to partic-
ular models, one can use Mostowski’s quantifiers to analyze natural-
language sentences like (24) to (29). Thus we might formalize (24) to 29)
as follows:

(30) (More-than-1/3 x) x is suffering from hunger,
where (porean13(q By =T iff @ > 1/3( + B), both a and f are finite,
and the range of x is the set of all people in the world (at the present, say).
(31) (94% x) x believes in God,
where 19*%(a, ) = Tiffa = 94% (o + B), o, f are finite, and the range of
x is the set of all American people (at the present).
(32) (3x)[x is a recipient of a Nobel prize & (Most y) x is known to y]
Here 17°% is defined by (9) above. The range of x is as in (30).
(33) a. ~(Most x)(Most y) x is hostile to y

b. (Most x) ~ (Most y) x is hostile to y

¢. (Most x){Most y) ~ (x is hostile to y)
whether the analysis is (a), (b), or (c) depends on how you read the
negation in (27). Both (7°* and the range of x are as above.'®
(34) (As-many-as-not x) x is a liberal,
where (3mevasnoy By = T iff « > f, and the range of x is the set of
Israelis.
(35) (Mo/¥p X) x is prime,
where 1}o/®o(q, ) = T iff x = f = N,, and the range of x is the set of

natural numbers.

Clearly, the natural-language “most,” “almost all,” “few,” “a few,”
“many,” etc. can be construed as Mostowskian quantifiers only to the
extent that they can be given absolute cardinality values (or ranges of
values). Under such a construal, we read “most” as “‘(cardinalitywise)
more than a half,” just as in standard logic we read “some” as *‘at least
one.”

What are the limitations of Mostowski’s system from the point of view
of the logical structure of natural language? Consider the following

sentences:
(36) Most of John’s arrows hit the targe
(37) 60% of the female students in my class are A-students.

t‘l‘)
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(38) The majority of children who do not communicate with anyone
during the first two years of their lives are autistic.

(39) Most of the students in most colleges are not exempt from tuition
fees.

Delimiting the range of the bound variables, which enabled us to analyze
(24) to (29), is inadequate for the formalization of (36) to (39). Restricted
or sorted domains are useful up to the point where they become utterly
artificial, as they would if they were used to analyze (36) to (39) with
Mostowski’s quantifiers. Mostowski’s system is rich enough to analyze
sentences of the form

(40) Such and such a quantity of all the objects that there are, are B,
but in general is inadequate for the analysis of sentences of the form
(41) Such and such a quantity of all As are Bs.

This verdict was reached both by Barwise and Cooper and by N. Rescher
in “Plurality-Quantification” (1962) and elsewhere.2° Clearly, statements
of type (41) cannot be symbolized as

(42) (Qx)(A4x — Bx),

as can be seen by the following counterexample: Suppose that only one
third of the things that satisfy Ax in a given model 9 satisfy Bx in 9.
Suppose also that most of the things in the universe of 9 do not satisfy
Ax. Then (Mx)(Ax — Bx) will come out true in 21 (most things in A satisfy
“Ax — Bx” by falsifying the antecedent), although it is plainly false that
most of the Asin A are Bs.

In general, a statement of the form (41) cannot be formalized by a
formula of the form

(43) (Qx)Dx.

(A theorem to the effect that “more than half of the As” cannot be defined
in terms of “more than half of all things that there are” using the apparatus
of standard first-order logic was proved by Barwisc and Cooper for finite
universes and by D. Kaplan for the infinite case.?') Rescher concludes,

Textbooks often charge that traditional logic is “inadequate™ because it cannot
accommodate patently valid arguments like (1) [All A’s are 8's - All parts of A's
are parts of B’s]. But this holds cqually true of modern quantificational logic itsclf,
which cannot accommodate (2) [Most things are A4’s; Most things are B’s |- Some
A’s are B’s] until supplemented by something like our plurality-quantification
[Mostowski’s “most”]. And even such expanded machinery cannot accommodate
(3)[Most C’s are A’s; Most C’s are B’s |- Some A’s are 8’s). Powerful tool though
it is, quantificational logic is unequal to certain childishly simple valid argu-
ments, 22
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ooper’s strategy in the face of the alleged inexpediency of

Barwise and C quantifiers altogether. The idea

uantificational logic is to give up logical ! :
:nderlying this move seems to be the follownlg: There 'S[-:']o ?nti,ss:::j
meaning to such expressions as “more than half.” The quan”l ies olved
in “more than half the natural numbers between 0 and 10" are di oren
from those involved in “‘more than half the natural numbers betwetl:n fatn:1
100.” Hence “more than half’’ cannot be interpn:eted md.epc:qe_pfti y oa e
interpretation of the set expression attached to it. Thus in the schem

{44) More than half the 4s are Bs, '

“‘more than half’ is not acting like a quantifier, but'l‘lke ?zgitifermme.r. It

combines with a set expression to produce a quantifier. ' Qz{am:ﬁe{s
] »24 The quantifier in (44) is

correspond to noun-phrases, not 1o determiners. . . rin

the whole noun phrase *‘more than half the As,” and (44) is rendere

5

{45) (More-than-half-4 x)Bx.? A X

In this way the indeterminacy inherent in delcrmmt;rs !s resolvgd by(;. e
set expressions attached to them, and the difficulty indicated a ov‘(‘e 1s(—i
n half the natural numbers between 0 and 10‘ ?n
“;more than half the natural numbers between 0 and 100" are twc?rdlsstl:cr:;
quantifiers, each with its own meaning. And in ggneral,.quang,lzr ¢
pairs, <D, S), of a determiner D and a set expression S. If S, eno

iffer ¢ ! ifferent quantifiers.

different sets, DS and DS’ are di i .

What about “every” and ‘‘some™? According to Barwise and Cooper,
the situation is indeed different in the case of “every.” The schema
(46) Every Ais B
can be expressed
interpretation of 4:
47y (Every x)(Ax — BXx). ’ o
However, they say, the syntactic dissimilarity of (46) ’z}rj‘d (47):9(11;3.?::
that even in this case the *“true” quantifier is “,e‘v.er.y A. .Evle:iyl nrsmi::er
determiner, although, unlike *‘more than half,” it is a logical dete :
Sentence (46), then, is to be symbolized not as (47) but rather as

appears: “more tha

in terms of the quantifier “every” independently of the

(48) (Every-A x)Bx.

4 Nonlogical Quantifiers .

. . , . identl
As a theory of quantification, Barwise and Cooper’s tht?or)‘/‘ li evndenoz
very bloated. “‘Every man,” “every woman,” “‘every child,” “every s
€ .

i ifi * men,” ‘“‘most
of mine,” etc. are all different quantifiers. So are “most ,
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women,” “most children,” and so on, Two questions present themselves:
Is such an excessive theory of quantifiers necessary to account for the
diverse patterns of quantification in natural-language discourse? Is what
this theory explains quantification?

Barwise and Cooper address the following questions:

* What is the role of quantifiers and how are they interpreted in a
model? According to Barwise and Cooper, we use quantifiers to
attribute properties to sets. “Ixe(x)” asserts that the set of things
satisfying ¢(x) is not empty. “Vxg(x)” says that the set of ®s contains
all the objects in the universe of discourse. “Finite x@(x)” states that this
set is finite. And so on. Model-theoretically, a quantifier partitions the
“family” of all subsets of the universe of a given model into those that
satisfy it and those that do not, When combined with the former, it
yields the value T, when combined with the latter, the value F. Thus a
quantifier can be identified with the family of all sets to which it gives
the value T. (Note that according to this account af/ properties of sets
are quantifier properties.)

* What is the syntactic category of the natural-language expressions
that function as quantifiers? Barwise and Cooper observe that noun
phrases in general behave like quantifiers. Given a noun phrase, some
verb phrases will combine with it to produce true sentences, and others
to produce false sentences. Semantically, this means that each noun
phrase divides the family of verb-phrase denotations in a given model
into two groups: those that satisfy it and those that do not. Therefore,
Barwise and Cooper conclude, “the noun phrases of a language are all
and only the quantifiers over the domain of discourse.” 2% To make their
treatment of noun phrases uniform, Barwise and Cooper have to show
that proper names can also be treated as quantifiers. But this is
not difficult to show. We can treat a proper name like “Harry” as
partitioning all the sets in the universe into those that contain Harry and
those that do not. Thus “Harry” can be semantically identified with the
family of all sets that include Harry as a member. “In our logic,”
Barwise and Cooper say, “‘(a) may be translated as (b), or rather,

something like (b) in structure.

(a) Harry knew he had a cold.

(b) Harry £[x knew x had a cold].”??

In sum, “Proper names and other noun-phrases are natural language
quantifiers.”’*8

The linguistic logic developed by Barwise and Cooper and based on the
above principles differs from standard first-order logic and its Mostowskian
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extension in several substantive ways. We can outline its main features as
rog()):ts;;ctically, the logic excludes logical quantifiers altogethen:. Instead,
it includes logical and nonlogical determiner symbols'(the logical det‘t‘:r—
miners include “‘some,” “every,” “no,” “both,” “1”’ (m‘fhe ser:,se otj at
least 17), ©2, “3,7 ..., “11” (“exactly one’’), ““12,” s ”ttl‘e i, oo the
nonlogical determiners include “most,” “many,” ‘few, a few, )
Quantifiers are nonlogical complex terms representing r:?un phraseslm
general: “John,” “Jerusalem,” “most people,” “five bo?/s, etc. F?rma ly,
quantifiers are defined terms of the form D(n), where Disa determmcrfnd
n is a (first-level) predicate with a marked argument. place callefi a se(;
term.” A quantified formula is of the form Q(q), Q.bemg a quantlﬁ‘erlan 1
1 a set term. The language also includes the distinguished 1-place first-leve
icate (set term) “thing.”
prcS(ej:lt;:uflicully, a t:mdel (gE for the logic provides, in additior‘l to the stan-
dard universe of objects, interpretations 3 for thft truth‘func‘:tlonal“con.nec':
tives, “thing,”” and the logical as well as nonlogical dett.:nnmers. Thlingl
is interpreted as the universe of the model, E; each (logical or nonlqglcz:‘)
determiner is interpreted as a function that assigns to every set in the
model a family of sets in the model. 3('n) = !n: P(E) —» P(P(E)) such.
that for each 4 € E, In(4) = {X < E: |4 n X| = n}; I(Most) = most :
P(E)— P(P(E)) such that for each A E, m?st(A)= {XE E: |/:in X}th>
| 4 — X|}; etc. The truth-functional connectives alje mterpre'te m“ €
usual way (although Barwise and Cooper favor a'lrwalem logx’c to allow
for determiners denoting partial functions). Quantlﬁers? (nonloglca! termsg
—D(n) for some determiner D and set term n—are mtcrpreted' in ez:ﬁc
model as the family of sets assigned in this model by the denotation o D
to the denotation of 5. For example, 3(In(man)) = {X < E:|{x:x |sla
man} N X| = n} and 3(John) = {X = E:John’? X}. I_f (1 .and ¥ are |-
place predicate symbols (set terms), “(D®)[W]” is true in€ |ﬂ’th'e denota-
tion of ¥ in € is a member of the family of sets assigned t(? DO in €.
Barwise and Cooper posit a universal semantic constraint on nat}lral-
language determiners: “It is a universal sgmantnc.feature of deten‘mners
that they assign to any set 4 a quantifier (i.e. famtl){ of sets) that I;;'es zn
A,’where Q lives on A iff for any set X, XeQ iff AnXeQ.?? The
following equivalences illustrate this notion:

Many men run « Many men are men who run
Few women sneeze «+» Few women are women who sneeze

John loves Mary > John is John and loves Mary *° . ...
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“The quantifiers represented by the subjects of the sentences,” Barwise
and Cooper explain, “live on the set of men, women and the singleton set
containing John, respectively.”*! And they conclude, “When we turn to
non-logical determiners, [the living on constraint} is the only condition we
impose as part of the /ogic.”*? This condition on determiners is ipso facto
a condition on quantifiers.

Is what Barwise and Cooper’s theory explains quantification? To resolve
this issue, let us consider several intermediate questions: In what sense is
Barwise and Cooper’s logic a first-order system, given that quantifiers are
nonlogical second-level predicates? Quantifiers, in Barwise and Cooper’s
system, are l-place predicates. Is being I-placed an essential property of
quantifiers? If so, why? How does Barwise and Cooper’s criterion for
“quantifierhood” compare with Mostowski’s? Does their theory account
for all natural-language quantifiers intuitively satisfying Mostowski’s
principles? Does it account only for such quantifiers?

Obviously, Barwise and Cooper’s requirements on quantifiers are al-
together different from those of Mostowski (and Dummett). In particular,
Barwise and Cooper’s quantifiers do not satisfy the semantic condition
(LQ2). These quantifiers do in general distinguish elements in the universe
of a model for their system. Consider the following two pairs of sentences:

(49) a. Einstein X[x is among the ten grealest physicists of all time]
b. Einstein X[x is among the ten greatest novelists of all time]
(50) a. Most (natural numbers between 1 and 10) £ [x < 7]
b. Most (natural numbers between | and 10) £ [9 < x < 17].

Although the extension of “x is among the ten greatest physicists of all
time” can be obtained from that of *“x is among the ten greatest novelists
of all time” by a permutation of the universe of discourse, the quantifier
“Einstein” assigns the two sets different truth values. Similarly, “Most
natural numbers between 1 and 10" assigns different truth values to the
extensions of “x < 7” and *'9 < x < 17" in spite of the fact that the one
extension can be obtained from the other by some permutation of the
(intended) universe.

.M(?rcover, not all quantity properties, properties that satisfy Mostowski's
criterion, are quantifiers (or constituents of quantifiers, i.e., determiners)
on Barwise and Cooper’s view. Thus the requirement that quantifiers ““live
on” the sets in their domain excludes some linguistic constructions that we
would expect to be analyzed by means of cardinality quantifiers:

(51) Mostly women have been elected to Congress.
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(52) Only human beings have brains.

(53) Not only men are allowed in the club.

Sentence (51) cannot be formalized as

(54) Mostly (women) £ [x has been elected to Congress],

since (54), unlike (51), comes out true in the intended model: the require-
ment of “living on” implies that for any set X, “‘Mostly (women)” is true
of Xifitis true of {x: xisa woman} n X. But clearly, “Mostly women are
women elected to Congress” is true. Similar problems occur if we want to
formalize (52) as

(55) Only (human beings) % [x has a brain],

or(53) as

(56) Not only (men) £ [x is allowed in the club].

The requirement of “living on” determines that (55) is true and (56) is
false, while (52) is clearly false, and (53) is sometimes true. Barwise and
Cooper can get over the difficulty by rephrasing (51) to (53) with deter-
miners other than “mostly,” “only,” and ‘“‘not only,” respectively, but
only at the expense of giving up the desideratum of transparent analysis
of linguistic structures. .

The requirement that only noun phrases be construed as quantifiers also
blocks “natural” candidates for natural-language quantifiers. Consider
the following sentences involving quantitative comparison of extensions,
which, by Dummett’s and Mostowski’s criterion, have a good claim to
being analyzed as statements of quantification:

(57) There are fewer men than women.

(58) More people die of heart disease than die of cancer.

(59) They are outnumbered by us.

(60) The same percentage of boys and girls who took the test received a
perfect score.

Clearly, the operation of quantification in (57) to (60) is not carried out by

noun phrases.

To sum up, Barwise and Cooper’s theory is clearly not based on
Mostowski’s ideas of the nature of quantifiers. In particular, Mostowski’s
semantic condition, (LQ2), is violated by Barwise and Cooper. Their
theory also does not offer an alternative principle to (LQ2) of the same
general import as Mostowski’s. In my opinion, Barwise and Cooper’s
analysis explains some linguistic regularities, but what it explains is not the
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structure of quantifiers. Their account is at once too particular to explain
the notion of quantification in all its generality —witness (51) to (53) and
(57) to (60)—and too general to focus on the unique features of quantifiers
—see (49) and (50).3

5 Logical Quantifiers

Can we increase the expressive power of Mostowski’s logical system so
that it is no longer subject to Barwise and Cooper’s criticism, without
betraying its underlying principles?

I'think the “inadequacy” of Mostowski’s system can be analyzed along
lines different from those taken by Barwise and Cooper. The problem is
neither with the “logicality” of Mostowski’s quantifiers nor with his crite-
rion for second-level predicates expressing quantifier properties (a crite-
rion shared, as we have seen, by Dummett). The problem is that Mostowski
explicitly considered only /-piace second-level predicates as candidates for
quantifiers. Progress in logic was made after the indispensability of rela-
tions was acknowledged. Frege’s revolution was in part in recognizing
relations for what they are: irreducibly many-place predicates. Mostowski’s
requirements on quantifiers—that they turn propositional functions into
propositions and that they do not distinguish elements in a model for the
language—contain nothing to exclude many-place second-level predicates
from being first-order quantifiers. On the contrary, the failure of Mostow-
ski’s theory to display the quantificational structure of sentences such as
(36) to (39) is testimony only to the “incompleteness” of that theory.
Mostowski’s theory of cardinality quantifiers includes all the **predica-
tive” quantifiers that express cardinality measures, but none of the “rela-
tional”” quantifiers that express such measures. And there is no reason to
believe that Mostowski would have rejected many-place quantifiers.

With this observation the solution to Barwise and Cooper’s problem
becomes very simple: Both *“most” in “‘most things are 4™ and “most” in
“most As are Bs” are quantifiers, although, as was proved by Barwise and
Cooper, the second is not reducible to the first. The first is a I-place
quantifier, M', i.e., a property of first-level properties (or a I-place func-
tion from first-level properties to truth values). It appears in formulas of
the form

(M x)bx,

and for any given model A with universe 4 it is defined by the funtion ¢}"
as in (9) above. That is, for all pairs of cardinals a, # whose sum is | 4],

p—
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M, f)=Tifa> f.

The second “most” is a 2-place quantifier, M2, ie., a 2-place relation
between first-level properties (or a 2-place function from pairs of first-level
properties to truth values). It appears in formulas of the form

(M3x)(dx, Px),
and for any given model 2 with universe 4 it is definable by a function 1%,

which | will presently characterize. .

What kind of relation is M2? It is a relation that in any given universe
4 holds between two subsets B, B of A (in that order) iff [BnB'| >
|B — B'|. M2 is defined by the function  from quadruples of cardinals a,

B, v, 8 such thata + B +y + & = |A| to {T, F} as follows:

Ma, By, 0)=Tiff x> f,

where, intuitively, « = |Bn B'|, f = |B— B,y = |8 - B|, énd =14 —
(Bu B')|. Using a Venn diagram, we can form a visual image of the
relation between the cardinal numbers a, f3, v, & and parts of the universe

A asin figure 2.1. ‘ .
It is easy to see that whereas M2 is not definable in terms of M*, M* is

definable in terms of M2. Thus,
(M!x)®x iff (M2x)(x = x, ®x).

Our analysis provides a rationale for extending Mosto‘wski’? original
system in a way that was first proposed by Per Lindstrém in “FII'S.I order
Predicate Logic with Generalized Quantifiers” (1966). This extension h'as
been widely adopted by logicians and mathematicians, includin.g Barwise
in his purely logical writings. (Barwise later also expressed misgiymﬁs al?out
{reating proper names as quantifiers in natural-language analysis.>*) Lind-

Figure 2.1
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strom did not discuss the reasons underlying his extension of Mostowski’s
system, but as we have just seen, philosophico-linguistic considerations
support his approach. In accordance with Lindstrém’s proposal we add to
Mostowski’s original quantifiers all second-level 2-place relations of first-
level 1-place predicates satisfying (LQ2). The one-to-one correlation be-
tween Mostowski’s quantifiers and cardinality functions is preserved under
the new extension. (See the appendix.)

The syntax and the semantics of first-order logic with I- and 2-place
generalized quantifiers is a natural extension of the syntax and the seman-
tics of section 2 above. Again, a model for a language of this logic is the
same as a model for a language of standard first-order logic: the “enrich-
ment’ is expressed by the rules for computing the truth values of formulas
in a model (relative to an assignment of elements in the universe to the
individual variables of the language).

I will now present a formal description of the extended logic.

First-Order Logic with 1- and 2-Place Generalized Quantifiers

Syntax

Logical symbols 1n addition to the logical symbols of standard first-

order logic (but with the possible omission of V and/or 3) the language

includes 1- and 2-place quantifier symbols: Q! ..., QLand Qf, ..., Q2

for some positive integers m and n. (If ¥ and/or 3 belong in the language

they fall under the category of I-place quantifiers, and we add to them

the superscript ““1.”)

Punctuation  The usual punctuation symbols for first-order logic plus

the symbol*,”.

Nonlogical symbols The same as in standard first-order logic.

Terms The same as in standard first-order logic.

Formulas  The same definition as for standard first-order logic, but the

definition of quantified formulas is replaced by the following:

(I) If ®is a formula and Q' is a I-place quantifier symbol, then (Q'x)d
is a formula.

’

(ID) If ®, ¥ are formulas and Q2 is a 2-place quantifier symbol, then
(Q*x)(®, W) is a formula.

Semantics
The semantics is the same as that for standard first-order logic, but the
definition of satisfaction of quantified formulas in a model A with a

o
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universe A relative to an assignment g for the variables of the language is
changed to the following: o
i ‘ i - ifier symbol,
A) If @ is a formula and Q' is a I-place quanti
™ A |= (Q'x)®[g] iff for some cardinal numbers o and such that
a+ f§ =|A] and (¥'(a, B) = T, there are exactly « elements a € 4
such that 21 = ®[g(x/a)] and exactly f elements b € 4 such that
A ~P[g(x/b)]. ‘
(B) If @, ¥ are formulas and Q? is a 2-place quantifier symbol,
A = (Q2x) (b, ¥)[g] iff for some cardinal numbers a, B, y, é such
_ Q? 5) =T,
thata + f+ 7y + 6 = |A| and ¥ (o, B, 7,
« there are exactly a elements a € A such that ¥ = (¢ & ¥)[g(x/a)],
« there are exactly felements b € 4 such that ¥ = (P & ~'¥) [g(x/b)],
« there are exactly y elements ¢ € 4 such that A = (~® & W)[g(x/o)],
« there are exactly é elements d € A such that
Wk (~0 & ~¥)[g(x/d)].

Applications _ .
Within the system defined above we can easily analyze the logical structure

of sentences that eluded Mostowski’s original de.vi'ces,.lik? (36) to2 (3:)
above. We choose a language that includes, in addmon. to 3! and 1\;: ,t ;
2-place quantifier “*60%,” defined by (o, B, 7, ) = T ifa+ f < o an
a = 60%(a + f#). We then symbolize (36) to (39) as given below:
(61) (M2x)(x is an arrow of John’s, x hits the target)
(62) (60%?2x)(x is a female student in my class, x is a.n A stud‘cnt)
(63) (M2x)[x is a child & ~ (3'y)(x communicates with y during the first
two years of x’s life), x is autistic] '
(64) (M2x)[x is a college, (M2y)(y is a student at x, ~(y is exempt from
tuition fees at x)]
By adding to the language the 2-place quantifiers
S2, defined by 1(e, f,7,0) = TilTa >y,
02, delined by #(a, 8,7,0)=Tilly =0,
N2, defined by t(a, f,7,8) =Tifly #0,
I°2, defined by 1(a, f,7,8) = Tiff f <y, and
R2, defined by t(a, f,y,8) =Tifl >,
we can encode the logical structure of sentences (51) to (53) and (57) to
(59), which were problematic for Barwise and Cooper:

(65) (S2x)(x is a woman, x has been elected to Congress)
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(66) (O*x)(x is a human being, x has a brain)

(67) a. ~(O%x)(x is a man, x is allowed in the club)
b. (N2x)(x is a man, x is allowed in the club)

(68) (F?x)(x is a man, x is a woman)

(69) (R2x)(x is a person & x dies of heart disease, x is a person & x dies
of cancer)

(70) (F2x)(x is one of them, x is one of us)

Within the new system we can also represent the logical structure of (50.a)
and (50.b) without violating (LQ2):

(7H Mix)(1<x < 10,x < 7),
(72) M’x)(1 <x < 10,9 < x < 17).

We have seen an example of nested 2-place generalized quantifiers
in (64). A more concise example is
(73) Most men love most women,
symbolized as
(74) (M2x)[x is a man, (M2y)(y is a woman, x loves »l

To formalize (60), we need to include 3-place quantifiers in the system.
The reason is that (60) involves comparison between (subsets of) three
sets: the set of all boys who took the test, the set of all girls who took the
test, and the set of all those who received a perfect score in the test. We
have not defined 3-place quantifiers for our formal system, but it is easy
to see how this would-be done.

A 3-place quantifier is a function that assigns to each universe 4 a
3-place quantifier on 4, Q3. Q3 is defined by a cardinality function 7, that
takes into account all the “atoms” of Boolean combinations (intersec-
tions, unions, and complements) of triples, <8, C, D), of subsets of A.
Since there are eight such atoms: B~ C D, (BNnC)—D,(CnD)— B,
(DNB)~C,B—(CuD),C~(BuD),D—(BuC),and A4 — (BuCu
D), tQ is a function from 8-tuples, <a, f,7, 8, &, {, 5, 0D, of cardinal num-
bers whose sum is |4 to {T, F}. We need to decide on the order in which
a, B, 9, 6,¢ (, n, 0 represent (sizewise) the atoms generated by B, C, and
Din 4.1 use a Venn diagram to fix a correlation (figure 2.2).

We can now formalize (60) as

(75) (8°x)(x is a boy who took the test, x is a girl who took the test,
x received a perfect score in the test),

where S? is defined by a function f such that when | 4] is finite,
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Figure ‘2.2

.. o+ 6 a+y
o, By, 0,6,4,n.0)="1 ]ﬂ‘[iq- 46 e = iy S d
The present theory enables us to explain the syntactic differences be-
tween logical and linguistic quantifications, e.g., the linguistic

Every A is B
and the logical
(Every x)(Ax — Bx),

by conjecturing that natural language frequently employs quantiﬁerszthat,

from a purely logical perspective, are redundant. Thus, whereas V% (de-

fined by: 1(a, 8,7, 8) = T iff # = 0) is logically superfluous, it may very

well be the quantifier used in natural language in sentences of the form

(46). The logical form of (46) is, on this conjecture,

(76) (Every? x)(Ax, Bx). e
Likewise, we obtain a structure similar to that of

(77) Fewer men than women live to be 80

by employing a 3-place quantifier, F?, rather than the 2-place quantifier

12, Sentence (77) is then rendered

(78) (F3x)(xis a man, x is a woman, x lives to be 80)

instead of the logically simpler

(79) (F2x)(xisaman & x lives to be 80, x is a woman & x lives to be 80).

F? is defined, t(x, B, 7,6, ¢ (, n,0) =T ifl  <y. Logic with' redundant
many-place quantifiers can be seen as a bridge between the logical and the
grammatical analysis of language. ' ‘
The linguistic merits of the logical, as opposed to nonlogzcal. quantifier
approach have been noted by linguists working in Logical Form (LF)
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research. An anonymous referee for this book indicates that the category
of logical quantifiers (without the “living on” constraint) is significant not
only semantically but also syntactically. Extensive research on LF has
shown that “there are systematic syntactic differences between NPs de-
pending upon whether they are logical or non-logical terms.”” Thus trans-
parency between syntax and semantics favors logical, as opposed to non-
logical, quantifiers. Among linguists whose work exemplifies the logical-
quantifier approach are Higginbotham and May (1981) and May (1989,
1990). In addition, May (1991) cites reasons pertaining to language learn-
ability for identifying quantifiers with cardinality operators and cate-
gorizing all quantifiers as logical terms. May writes,
In distinguishing the logical elements in the way that we have, we arec making
cleavage between ogical items whose meanings arc formally, and presumably
exhaustively, determined by UG [Universal Grammar)--the logical terms-- and
those whose meanings are underdetermined by UG~ -the non-logical, or content,
words. This makes sense, for to specify the meaning of quantifiers, all that is
needed, formally, is pure arithmetic calculation on cardinalitics, and there is no
reason to think that such mathematical properties are not universal. For other
expressions, learning their lexical meanings is determined causally, and will be
effected by experience, perception, knowledge, common-sense, ctc. But none of
these factors is relevant to the meaning of quantifiers. The child has to learn the
content of the lexical entries for the non-logical terms, but this is not necessary for
the entries for the logical terms, for they are given innately.?*

The considerations adduced by May open a way to empirically ground not
only the notion of quantifier developed so far but also the philosophical
demarcation of logic in general as presented in this book.

A few words about the limitations of Mostowskian quantifiers. Some
predicates of natural language are such that a proper representation of
their extension is not possible in standard first-order model theory. Quan-
tifier expressions do attach to such predicates, however. Here are two
examples:

(80) Most of the water in the lake has evaporated.
(81) More arms than we have are needed to win this war.

“Water in the lake” and *‘arms needed to win this war” do not sort the
objects in a universe into those that fall, and those that do not fall under
them. Hence the present theory, which does not change the standard
structure of first-order models, cannot account for their logical form.

In addition to predicates that defy first-order symbolization, we also
find in natural language a use of quantifiers that exceeds the resources of
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Mostowski’s logic. This is the collective, as opposed to the usual, distribu-
tive use of quantifiers. Thus the sentence

(82) Five children ate the whole cake

cannot be formalized by

(83) (!5x)(x is a child, x ate the whole cake),

which says that there are exactly five children each of which ate the }h'hol.e
cake. Collective and nonsortal quantifications will not be dwelt on in this
book.

6 From Predicative to Relational Quantifiers

The generalized logic with 1- and 2-place quantifiers defined in the last
section can easily be extended to a logic with n-place quantifiers for any
positive integer n (Lindstrom, 1966). With each n-place quantifier 9" we
associale a family of cardinality functions 1", which, given a t':ardmal a,
assigns a truth value to each 2"-tuple of cardinals whose sum is «. Then,
given a model ¥ with a universe 4 and a sequence of n subsets of A
(B,,..., B, the value of Q%(8,, ..., B,) depends on whether the atomic
Boolcan algebra generated by By, ..., B,in A is such that

By B =T,
where fi,, ..., By~ are the cardinalities of all the atoms of this Boolea.n
algebra ordered in some canonical manner. I will call the n-plac.:e quanti-
fiers described above predicative quantifiers because such quantifiers con-
stitute n-place relations among first-level (1-place) predicates. '
The next step is to consider quantifiers on relations, or relational quntz-
fiers. Syntactically, a 1-place relational quantifier is an operator that bznfis
'a formula by a sequence of n bound variables, (x, ..., x,», for éome ﬁmt‘e
n > 1. If we change the symbolization of I-and 2-place predicative quanti-
fiers to Q' and Q"' respectively, we will naturally symbolize 1-place
relational quantifiers in n variables by Q". Thus if

O(x, y)
is a formula with x and y free, then
(Q%x, »)O(x, y)

is also a formula, generated from ®(x, y) by binding the free variablz?s x
and y with Q2. (The superscript *2” indicates that Q is a I-place quantifier
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over 2-place first-level relations. For 2-place relational quantifiers over
n- and m-place relations, in that order, we will use the superscript *“*n, n.")

Semantically, however, the characterization of logical relational quanti-
fiers is an involved matter. The question is how to interpret the semantic
condition (LQ2) with respect to these quantifiers. Recall that (LQ2) stipu-
lates that quantifiers should not distinguish the identity of particular
individuals in the universe of a given model. Mostowski construed this
condition as requiring that quantifiers be invariant under permutations of
the universe. But Mostowski dealt with predicative quantifiers, which
serantically are functions on subsets of the universe, and the quantifiers
we are dealing with now are relational quantifiers, i.e., functions on subsets
of Cartesian products of the universe. If, following Mostowski, we again
interpret (LQ2) as invariance under permutations, the question arises,
invariance under permutations of what? Should relational quantifiers over
a universe 4, say l-place quantifiers over binary relations on A, be in-
variant under permutations of 4?7 Permutations of 4 x 4? Permutations
of 4 x A induced in some specified manner by permutations of 4? Or
should we not interpret (LQ2) in terms of permutations of the universe at
all when it comes to relational quantifiers? This question was raised by
Higginbotham and May in “Questions, Quantifiers, and Crossing’ (1981).
From another angle Higginbotham and May ask what is implied by the
requirement that quantifiers should not distinguish the identity of elements
in the universe of discourse.

Yet another question is the relationship between logicality and cardinal-
ity. When I earlier discussed Mostowski’s generalization, I said that this
question could be avoided because on a very natural interpretation of
(LQ2), the requirement that logical quantifiers not distinguish the identity
of elements in the universe coincides with the requirement that logical
quantifiers be definable by cardinality functions. Since (LQ2) is a natural
condition on logical quantifiers, the identification of logical-predicative
quantifiers with cardinality quantifiers appeared to be justified. However,
now that the interpretation of (LQ2) is no longer straightforward, the
question of cardinality and logicality has to be tackled directly.

But the question we have to confront first concerns (LQ2) itself. Why
should (LQ2) be the semantic condition on logical quantifiers? Neither
Mostowski nor Dummett (nor, as I have already indicated, Lindstrém)
have justified their “choice” of invariance under permutations as the
characteristic trait of logical quantifiers. So far 1 too have uncritically
accepted their criterion. But in view of the questions we are now facing
and in light of the general inquiry we have undertaken in this work, it is
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now time to rethink the issue of logicality. Without a clear answer to the
question of what makes a term logical, 1 doubt that we will~ be able to
resolve the uncertainty regarding the correct definition of relational quan-
tifiers. Moreover, a critical analysis of logicality will enable us to eva.luate
Mostowski’s claim—most central to our query—that symbolic logic is not
exhausted by standard mathematical first-order logic.




Chapter 3
To Be a Logical Term

Since the discovery of generalized quantifiers by A. Mostowski (1957), the
question “What is a logical term?” has taken on a significance it did' not
hfave pefore. Are Mostowski’s quantifiers “logical” quantifiers? Do they
differ in any significant way from the standard existential and universal
quantifiers? What logical operators, if any, has he left out? What, in
all, are the first- and second-level predicates and relations that c:m' be
construed as logical?

One way in which I do not want to ask the question is, “What, in the
nature of things, makes a property or a relation logical?” On this road lie
the controversies regarding necessity and apriority, and these, I believe
should be left aside. Although some understanding of the modalities i:;
essential for our enterprise, only their most general features come into
play. A detailed study of complex and intricate modal and epistemic issues
would just divert our attention and is of little use here. But if “the nature
of things” is not our measure, what is? What should our starting point be?
What strategy shall we decide upon? ‘

'A promising approach is suggested by L. Tharp in “Which Logic Is the
Right Logic?” (1975). Tharp poses the question, What properties should a
system of logic have? In particular, is standard first-order logic the “right”
logic? To answer questions of this kind, he observes, it is crucial to have a
clear idea about “the role logic is expected to play.” ' Tharp’s point is
worth taking, and it provides the clue we are searching for. If we identify
a cen?ral role of logic and, relative to that role, ask what expressions can
funct{on as logical terms, we will have found a perspective that makes our
question answerable, and significantly answerable at that.

The mf)sl suggestive discussion of the logical enterprise that I know of
appea-rs in A. Tarski’s early papers on the foundations of semantics
Tarski’s papers reveal the forces at work during the inception ofmodern.
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logic; at the same time, the principles developed by Tarski in the 1930s are
still the principles underlying logic in the early 1990s. My interest in Tarski
is, ncedless to say, not historical. I am interested in the modern conception
of logic as it evolved out of Tarski’s early work in semantics.

1 The Task of Logic and the Origins of Semantics

In “The Concept of Truth in Formalized Languages” (1933), “On the
Concept of Logical Consequence” (1936a), and “The Establishment of
Scientific Semantics™ (1936b), Tarski describes the semantic project as

comprising two tasks:

. Definition of the general concept of truth for formalized languages
2. Dctinition of the logical concepts of truth, consequence, consistency,
ete.

The main purpose of (1) is to secure metalogic against semantic para-
doxes. Tarski worried lest the uncritical use of semantic concepts prior to
his work concealed an inconsistency: a hidden fallacy would undermine
the entire venture. He therefore sought precise, materially, as well as
formally, correct definitions of *“truth” and related notions to serve as a
hedge against paradox. This aspect of Tarski’s work is well known, In
“Model Theory before 1945 R. Vaught (1974) puts Tarski’s enterprise in
a slightly different light:

[During the late 1920s] Tarski had become dissatisfied with the notion of truth as
it was being used. Since the notion “a is true in 2" is highly intuitive (and perfectly
clear for any definite g), it had been possible to go even as far as the completeness
theorcm by treating truth (consciously or unconsciously) essentially as an unde-
fined notion-—one with many obvious properties. ... But no one had made an
analysis of truth, not even of exactly what is involved in treating it in the way just
mentioned. At a time when it was quite well understood that ‘all of mathematics’
could be done, say, in ZF, with only the primitive notion €, this meant that the
theory of models (and hence much of metalogic) was indeed not part of mathe-
matics. 1t scems clear that this whole state of aftairs was bound to cause a lack of
sure-footedness in metafogic. ... [Tarski’s] major contribution was to show that
the notion “a is true in " can simply be defined inside of ordinary mathematics,

for example, in ZF.2

On both accounts the motivation for (1) has to do with the adequacy of
the system designed to carry out the logical project, not with the logical
project itself. The goal of logic is not the mathematical definition of “true
sentence,” and (1) is therefore a secondary, albeit crucially important, task
of Tarskian logic. (2), on the other hand, does reflect Tarski’s vision of the

et g




Chapter 3 ®

role of logic. In paper after paper throughout the early 1930s Tarski
described the logical project as follows:? The goal is to develop and study
deductive systems. Given a formal system ¥ with language L and a
definition of “meaningful,” i.e., “well-formed,” sentence for 1, a (closed)
deductive system in & is the sct of all logical consequences of some set X
of meaningful sentences of L. *Logical consequence” was defined proof-
theoretically in terms of logical axioms and rules of inference: if .o/ and A4
are the sets of logical axioms and rules of inference of &, respectively, the
set of logical consequences of X in & is the smallest set of well-formed
sentences of L that includes X and .o/ and is closed under the rules in
. In contemporary terminology, a deductive system is a formal theory
within a logical framework .#. (Note that the logical framework itself can
be viewed as a deductive system, namely by taking X to be the set of logical
axioms.) The task of logic, in this picture, is performed in two steps: (a)
the construction of a logical framework for forma! (formalized) theories;
(b) the investigation of the logical properties - consistency, completeness,
axiomatizability, etc.—of formal theorics relative to the logical frame-
work constructed in step (a). The concept of logical consequence (together
with that of a well-formed formula) is the key concept of Tarskian logic.
Once the definition of “logical consequence” is given, we can ecasily
obtain not only the notion of a deductive system but also those of a
logically true sentence; logically equivalent sets of sentences; an axiom
system of a set of sentences; and axiomatizability, completeness, and con-
sistency of a set of sentences. The study of the conditions under which
various formal theories possess these properties forms the subject matter
of metalogic.

Whence semantics? Prior to Tarski’s ““On the Concept of Logical Con-
sequence” the definitions of the logical concepts were proof-theoretical.
The need for semantic definitions of the same concepts arose when Tarski
realized that there was a serious gap between the proof-theoretic defini-
tions and the intuitive concepts they were intended to capture: many
intuitive consequences of deductive systems could not be detected by the
standard system of proof. Thus the sentence “For every natural number
n, Pn” seems to follow, in some important sense, from the set of sentences
“Pn,” where n is a natural number, but there is no way to express this fact
by the proof method for standard first-order logic. This situation, Tarski
said, shows that proof theory by itself cannot fully accomplish the task of
logic. One might contemplate extending the system by adding new rules of
inference, but to no avail. Gédel’s discovery of the incompleteness of the
deductive system of Peano arithmetic showed,
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In every deductive theory (apart from certain thec?rics ofa partlcpl?rly clen;en:‘aerz
nature), however much we supplement the ordinary rules of ?nhc;etslce )i/n ow
purely structural rules, it is possible to construct sentf:nces whic! 1o owl,mOl be
usual sense, from the theorems of this theory, but whlch.neverthe Sss ca

proved in this theory on the basis of the accepted rules of inference.

sion was that proof theory provides only a p'fmial acl~
lled for that will permit
itive content of these

Tarski’s conclu ‘
count of the logical concepts. A new method is f:a
a more comprehensive systematization of the intu

concepts.

The intuitions underlying our informal notion of logical consequence

(and derivative concepts) are anchored, according to Tarski, m' certa:fn
relationships between linguistic items and objects 1n (cor'lﬁg?u'atfons ? 3
the world. The discipline that studies relationships of this kind is calle

semantics. .
We . .. understand by semantics the totality of considcrglions concerning thos:
concepts which, roughly speaking, express certain connex!(?ns bctwegn thc;cx{a‘::se
sions of a language and the objects and states of affairs referred to by
expressions.® '
The precise formulation of the intuitive content of.(he logical co;:ceplls |sr
therefore a job for semantics. (Although the relation be’t'ween the set o
» and the universal quantification “(¥x)Px,” where x ranges
stands for a name of a natural num-
ill be able to characterize it ac-
in terms of @

sentences “ P’
over the natural numbers and “n”
ber. is not logical consequence, we W .
curately within the framework of Tarskian semantics, €.g.,

completeness.)

2 The Semantic Definition of “Logical Consequence” and the Emergence

of Models

M 1
Tarski describes the intuitive content of the concept “logical consequence
as follows: . .
an intuitive nature will form our starting-point. Consndgr
e Y which follows from the sentences of this
cluss. From an intuitive standpoint it can never h'appen that both the cis:sa:
consists only of truc sentences and the sentence X is false. Morcover,d. ;fms  are
concerned here with the coneept of logical, i.e. formal, consequence, an hus wiih
a relation which is to be uniquely determined t?y t!xc form of the sentences Aween
which it holds. ... Thetwo circurnstances just indicated ... scem to be very ¢
teristic and essential for the proper concept of conscquence.

Certain considerations of
any class K of sentences and a sentenc

We can express the two conditions set by Tarski on a correct definition

of “"logical consequence” by (C1) and (C2) below:
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CONDITION C1 lf‘X 1s a logical consequence of K, then X is a necessary
consequence of K in the following intuitive sense: it is impossible that all
the sentences of K are true and X is false.

lc()r?iDl]TI()N C2 Not all necessary consequences fall under the concept of
ogical consequence, only those in which the consequence relation between
a 4 . ~, H p

set of sentences K and a sentence X is based on formal relationships
between the sentences of K and X do. |

To provide a formal definition of “logical consequence™ based on (G D]
a?d (C2), Tarski introduces the notion of model. In current terminolog
glvc?n a fqrmal system . with a language L, an Z-model, or a model i))/r
Z,1s a pair, W = (A, D), where 4 is a set and D is a function that 'wsi"n‘
to the nonlogical primitive constants of L,t,,1,, ... elements ((;:j cﬁnf
struct§ of elements) in 4: if f; is an individua) constant, D(t;) is 1 member
F)f A5 if 1 is an n-place first-level predicate, D(r;) is an nfpluce relation
mcludeq in A" etc. We will say that the function D assigns to r t‘
denota}lons in 4. Any pair of a set 4 and g dcnolutﬁm f‘lllll(:‘ll‘(il‘l'))-
determines a model for %. Given a theory Tin a formal system ¢ with a
language L, we say that a model 91 for £ isa model of 7 iﬂ"cvcry' ﬂcnlcnc“
'ofﬂ' is true in U (Similarly, 91 is a model of a scnlcn.lcc Yol Lifr ‘\' is tr L
}n ‘)F.) 'ﬁ?c definition of *“the sentence X of Listruein a mod;l ‘)l' f'oAr ‘Jl"‘t‘
is given in terms of satisfaction: X is true in 9 ifr every ussigmnem. of
c?lerr'lem.s In A4 to the variables of L satisfies X in 91 The notion of satis-
laf:uon is based on Tarski 1933. T assume that the reader is famili; ‘1'\
i 5 © amiliar with

The formal definition of “logical consequence” in terms of model
proposed by Tarski is: i

D;F.FINITI‘ON LC  The sentence X follows logically from the sentences of the
class K ifT every model of the class X is also a model of the sentence Y.’

The definition of “logical truth™ immediately follows:

DEFINITION LTR  The sentence X is logically true ifv every model is a
model of X. (

To be more precise, (LC) and (LTR) should be relativized o a logical
system #. “Sentence” would then be replaced by “3’~sc:1lc11cc“;:' ‘
“model” by “ #-model.” e

(A blstorical remark is in place here. Some philosophers claim that
Tarski’s 1936 definition of a model is essentially different from the m‘lc
currently used because in 1936 Tarski did not require that models vary
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with respect to their universes. This issue does not really concern us here,
since we are interested in the legacy of Tarski, not this or that historical
stage in the development of his thought. For the intuitive ideas we go to
the carly writings, where they are most explicit, while the formal construc-
tions are those that appear in his mature work.

Notwithstanding the above, it seems to me highly unlikely that in 1936
Tarski intended all models to share the same universe. This is because such
a notion of model is incompatible with the most important model-theoretic
results obtained by logicians, including Tarski himself, before that time.
Thus, the Lowenheim-Skolem-Tarski theorem (1915-1928) says that if a
first-order theory has a model with an infinite universe A4, it has a model
with a universe of cardinality o for every infinite «. Obviously, this theorem
does not hold if one universe is common to all models. Similarly, Godel’s
1930 completeness theorem fails: if all models share the same universe,
then for every positive integer n, one of the two first-order statements
“There are more than »# things” and “There are at most » things™ is true
in alt models, and hence, according to (LTR), it is logically true. But no
such statement is provable from the logical axioms of standard first-order

logic.® Be that as it may, the Tarskian concept of model discussed here
does include the requirement that any nonempty set is the universe of some
model for the given language.)

Does (LC) satisfy the intuitive requirements on a correct definition of
“logical consequence” given by (C1) and (C2) above? According to Tarski

it does:
It scems to me that everyone who understands the content of the above definition
must admit that it agrees quite well with common usage. ... It can be proved, on

the basis of this definition, that every consequence of true sentences must be true,
and also that the consequence relation which holds between given sentences is
completely independent of the sense of the extra-logical constants which occur in
these sentences.’

In what way does (L.C) satisfy (C1)? Tarski mentions the existence of a
proof but does not provide a reference. There is a very simple argument

that, 1 believe, is in the spirit of Tarski:'®

Proof  Assume X is a logical consequence of K i.e., X'is true in all models
in which all the members of K are true. Suppose that X is not a necessary
consequence of K. Then it is possible that all the members of K are true
and Y is false. But in that case there is a model in which all the members
of K come out true and X comes out false. Contradiction.

The argument is simple. However, it is based on a crucial assumption:
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ASSUMPTION AS  If K'is a set of sentences and X is a sentence (of a formal
language L of #) such that it is intuitively possible that all the members of
K are true while X is false, then there is a model (for &) in which all the
members of K come out true and X comes out false.

'Assumption (AS) is equivalent to the requircment that, given a logic %
with a formal language L, every possible state of affairs relative (o lh‘e
expressive power of L be represented by some model for ¥, (Note that
(AS) does not entail that every state of affairs represented by a model for
<& is possible. This accords with Tarski’s view that the notion of logical
possibility is weaker than, and hence different from, the general m;tion
of possibility [see (C2)].) Is (AS) fulfilled by Tarski's model-theoretic
semantics?

We can show that (AS) holds at least for standard first-order logic. Let
& be a standard first-order system, L the language of %, K a set of
sentences of L, and X a sentence of L. Suppose it is intuitively possible that
all lhe members of K are true and X s false. Then, if we presume lh"il
the rules of inference of standard first-order logic are necessarily lrull‘l-
preserving, K'u {~ X} isintuitively consistent in the proof-theoretic sense:
for no first-order sentence Y are both ¥ and ~ Y provable from K u { ~ Xl}-
It follows from the completeness theorem for first-order logic that (hcr4c i;
a model for .& in which all the sentences of K are true and X is false.

As for (C2), Tarski characterizes the formality requirement as follows:
Since we are concerm?d here Awilh the concept of logical, i.c., formal consequence
and thus with a relation which is to be uniquely determined by the form of tho.:
senlt':r{ces between which it holds, this relation cannot be influenced in any way b
empirical knowledge, and in particular by knowledge of the objects to whichythz
sentence X or the sentences of the class K refer. The consequence relation cannot

be affected by re_placing the designations of the objects referred to in these sen-
tences by the designations of any other objects. !

The condition of formality, (C2), has several aspects. First, logical
conscqueqces, according to Tarski, are based on the logical form of the
scn}ences involved. The logical form of sentences is in turn determined by
their logical terms (see Tarski’s notion of a well-formed formula in “The
Concept of Truth in Formalized Languages”). Therefore, logical con-
sequences are based on the logical terms of the language. Second, logical
conseqfxences are not empirical. This means that logical terms, which
determine logical consequences, are not empirical either. Finally, logical
cor.lsequences “cannot be affected by replacing the designations of the
objects.... by other objects.” In “The Concept of Logical Consequence”
Tarski first attempted a substitutional interpretation of the last require-
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ment. This led to a substitutional definition of “logical consequence.”
According to this definition, consequences preserved under all (uniform,
type preserving) substitutions of the nonlogical terms of the language are
logical. However, Tarski soon realized that the substitutional definition
did not capture the notion of logical consequence in all its generality.'?
The substitutional test depends on the expressive power of the language in
question. In particular, languages with a meager vocabulary of singular
terms let intuitively nonlogical consequences pass for genuinely logical
ones. Tarski’s reaction to the shortcomings of the substitutional test was
to drop the idea of substitutivity altogether. Instead, Tarski turned to
semantics, a new discipline devoted to studying the relation between lan-
guage and the world, whose basic notions are “satisfaction” and “model.”
On the basis of these concepts Tarski proposed the model-theoretic defini-
tion of logical consequence, (LC). Although Tarski did not explain what
“indifTerence of the consequence relation to replacement of objects” meant
semantically, 1 think we can offer the following analysis inspired by Mos-
towski. There are terms that take the identity of objects into account and
terms that do not. Terms underlying logical consequences must be of the
second kind. That is to say, logical terms should not distinguish the
identity of objects in the universe of any model. (By “identity of an object™
[ here mean the features that make an object what it is, the properties that
single it out.)

Now clearly Tarskian consequences of standard first-order logic satisfy
the formality condition. First, only entirely trivial consequences (X follows
logically from K just in case X € K) obtain without logical terms. There-
fore, logical consequences are due to logical terms of the language.
Second, the truth-functional connectives, identity, and the universal and
existential quantifiers are nonempirical functions that do not distinguish
the objects in any given model. The substitution test, which is still neces-
sary (though not sufficient), is also passed by standard logic.

We see that (C2), the condition of formality, sets a limit on (Cl), the
condition of necessity: necessity does not suffice for logicality. While all
logical consequences are necessary, only necessary consequences that are
also formal count as genuinely logical. An example of a necessary con-
sequence that fails to satisfy the condition of formality is,

(1) bis red all over; therefore b is not blue all over.

This consequence is not logical according to Tarski’s criterion, because
it hangs on particular features of color properties that depend on the
identity of objects in the universe of discourse. (Try to replace “blue” with
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“smooth,” a -replacement that has no bearing on the formal relations
between premise and conclusion, and see what happens.) Later we wi‘!l als k
see that (C1) sets a restriction on the application of (('2) o
I think conditions (Cl) and (C2) on the key concept of logical co
sequence delineate the scope as well as the limit of Tarski’s cnlef)r(isc-ulllll:
development of a conceptual system in which the concept of l(,)g'ica‘vl ;m:
sequenf:e ranges. ovc?r. all formally necessary consequences and nothing
else. Since our intuitions leave some consequences undetermined with
respect to formal necessity, the boundary of the enterprise is somewhat
vague. But the extent of vagueness is limited. Formal ncccxsil): isar ‘f’d
tively l.n'}problemalic notion, and the persistent contr(wcrsicx: invn!h "‘ ’le:
modalities are not centered around the formal. | et
We have St?en that at least in one application, namely, in stand: d
first-order logic, Tarski’s definition of logical consequence s’umd; ;h g l(“(
of (Cl) and (¢2): all the standard consequences that fall undcr‘'l"a:‘;kﬁ'f’;t
definition are indeed formal and necessary. We now ask, Does qm‘n ‘I' lj
first-order logic yield a/l the formally necessary L‘()nsequc;lcc% wtil~h"| ; ‘"‘ It(
level (extensional) vocabulary? Could not the standard syslcn; be cx; : “; ;
:‘;o l!}:?t Tarski's definition encompasses new consequences satisfyi ’*‘,“ Iu'
n?tumve conditions but undetected within the standard ;;yls‘tc'ln‘il"l]‘% IBZL
himself all but asked the same question. He ended “On t‘h;* C v‘ ‘~(”h l’
Logical Consequence” with the following note: et o
(:?::Lesglg/:fnﬁ]:)olli,:il;z:c;ﬁ;lslrw':!i'on'is thc‘ d.ivis.io_n.of all terms of the language
bitray. If, for example, we were 1 ncluc smeen - oY 101 duite ar-
. ; . A e extra-logjc: H >
L?S:;:a‘:;?:;esifglj&rlg;z1:niversal qua.nliﬁcr, }hcn oufdclin?t):([:n‘ o(;%;::”u?:ﬁt:ﬂ[:lv‘;
ihe ther hand 1o objectiv grounds e g v i Ty Usige On
' € which permit usg AW
Zt:lorﬁgblcg;g:{{c::::::;éh;j:;z?, irr(zups f){"llerms. It seems m.bfpossihlc ::: i:illc‘::dz
without rommine s comsequens 1::;.:;:'y rf.:gardf:d by logicians as extra-logical
1 stand in sharp contrast (o ordinary

W:he'quesuo.n, “Wha‘l is the full scope of logic?” I will ask in the form:
! al;i:he* widest notion of a logical term for which the Tarskian dcﬁni-'
lon of “logical consequence™ gives resulls compatible with (C1) and (c2y

3 Logical and Extralogical Terms: An Unfounded Distinction?
What is the widest definition of “logical term” compatible with Tarski's

2 .
Il(!)lef)r);. In 1936 Tdr.s’kI‘ did not know how to handle the problem of new
gical terms. Tarski's interest was not in extending the scope of “logical
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consequence” but in defining this concept successfully for standard logic.
From this point of view, the relativization of “logical consequence” to
collections of logical terms was disquieting. While Tarski’s definition pro-
duced the right results when applied to standard first-order logic, there
was no guarantee that it would continue to do so in the context of wider
“logics.” A standard for logical terms could solve the problem, but Tarski
had no assurance that such a standard was to be found. The view that
Tarski’s notion of logical consequence is inevitably tied up with arbitrary
choices of logical terms was advanced by J. Etchemendy (1983, 1990).
Etchemendy was quick to point out that this arbitrary relativity under-
mines Tarski's theory. T will not discuss Etchemendy’s interpretation of
Tarski here, but  would like to examine the issue in the context of my own
analysis. Is the distinction between logical and extralogical terms founded?
If itis, what is it founded on? Which term falls under which category?
Tarski did not see where to draw the line. In 1936 he went as far as
saying that “in the extreme case we could regard all terms of the language
as logical. The concept of formal consequence would then coincide with
that of material consequence.” '* Unlike “logical consequence,” the con-
cept of material consequence is defined without reference to models:

DEFINTHON MO The sentence X is a material consequence of the sentences

of the class K ifl at least one sentence of K is falsc or X is true.'®

Tarski's statement first seemed to me clear and obvious. However, on
second thought 1 found it somewhat puzzling. How could al/l material
consequences of a hypothetical first-order logic % become logical con-
sequences? Suppose ¥ is a logic in which “all terms are regarded as
logical.” Then evidently the standard logical constants are also regarded

as logical in %, Consider the #-sentence:

(2) There is exactly one thing,

or, formally,

(3) A)(Vy)y =y

This sentence is {alse in the real world, hence -

(4) There are exactly two things

follows materially lrom it (in .¢7). But Tarski’s semantics demands that for
cach cardinality «, there be a model for . with a universe of cardinality
a. (This much comes from his requirement that any arbitrary set of objects

constitute the universe of some model for .#). Thus in particular & has a
model with exactly one individual. It is therefore not true that in every
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model in which (2) is true, (4) is true too. Hence, according to Tarski’s
definition, (4) is not a logical consequence of (2).

So Tarski conceded too much: no addition of new logical terms would
trivialize his definition altogether. Tarski underestimated the viability of
his system. His model-theoretic semantics has a built-in barrier that pre-
vents a total collapse of logical into material consequence. To turn all
material consequences of a given formal system .¥ into logical conse-
quences requires limiting the totality of sets in which ¢ is to be inter-
preted. But the requirement that no such limit be set is intrinsic to Tarski’s
notion of a model.

It appears, then, that what Tarski had to worry about was not total but
partial collapse of logical into material consequence. However, it is still
not clear what ““regarding all the terms of the language as logical”” meant.
Surely Tarski did not intend to say that if all the constant terms of a logic
& are logical, the distinction between formal and material consequence
for & collapses. The language of pure identity is a conspicuous counter-
example. All the constant terms of that language are logical, yet the defi-
nition of “‘logical consequence” yields a set of consequences different (in
the right way) from the set of material consequences.

We should also remember that Tarski’s definition of “logical conse-
quence” and the definition of “‘satisfaction™ on which it is based are
applicable only to formalized languages whose vocabulary is essentially
restricted. Therefore, Tarski could not have said that if we regard all terms
of natural language as logical, the definition of “logical consequence” will
coincide with that of “material consequence”. A circumstance concerning
natural language in its totality could not have any effect on the Tarskian
concept of logical consequence.

Even with respect to single constants it is not altogether clear what
treating them as logical might mean. Take, for instance, the term “‘red.”
How do you construe “red” as a logical constant? To answer this question
we have to find out what makes a term logical (extralogical) in Tarski’s
system. Only then will we be able to determine whether any term what-
soever can be regarded as logical in Tarski’s logic.

4 The Roles of Logical and Extralogical Terms

What makes a term logical or extralogical in Tarski's system? Considering
the question from the “functional” point of view I have opted for, I ask:
How does the dual system of a formal language and its model-theoretic
semantics accomplish the task of logic? In particular, what is the role
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of logical and extralogical constants in determining logical truths and

consequences?

Extralogical constants
Consider the statement

(5) Some horses are white,
formalized in standard first-order logic by

(6) (A)(J1x & Wx). .
How does Tarski succeed in giving this statement truth condi.tlons‘that,
in accordance with our clear pretheoretical intuitions, rendt?r it loglca!iy
indeterminate (i.e., neither logically true nor logica!ly‘ falf:e)?jl‘he.cr’?cxal
point is that the common noun “horse” and t'he' adjectw'e ‘whlte are
interpreted within models in such a way that their intersection 1S empty in
some models and not empty in others. Similarly, for any natural number
n, the sentence
(7) Therecaren white horses )
is logically indeterminate because in some bu.t not all fnodcls “hqrs:f: ‘ and
“white” are so interpreted as to make their mlersecl.lm} of g:ardmahtx n.
Were “finitely many” expressible in the logic, a similar configuration
would make
(8) Finitely many horses are white
ically indeterminate as well. o
‘08]'1: ;lh)(()rt. what is special to extralogical terms like “horse” anfi white
in Tarskian logic is their strong semantic variability. Exlral.og‘lcal tem‘\s
have no independent meaning: they are interpreted only within models.
Their meaning in a given model is nothing more than the value that the
denotation function D) assigns to them in that model. We cz{nnot' speak
about the meaning of an extralogical term: being extralogical lm’phes that
nothing is ruled out with respect to such a term. E.very dcnolafton of l}.le
extralogical terms that accords with their syntactic category appears m1
some model. Hence the totality of interpretations of any given extralogica
term in the class of all models for the formal system is e)factly the same as
that of any other extralogical term of the same syntactic catc?gory. Smcc;
every set of objects is the universe of some Tnodel, any pos'SIble slafc o
affairs  any possible configuration of individuals, propértles, relatrc.)ns,
and functions via-a-vis the extralogical terms of.a glVfﬁn formalm;d
language (possible, that is, with respect to their meaning prior to formali-
zation) is represented by some model.
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Formally, we can define Tarskian extralogical terms as follows:

DEFINI'TION ET {e,,e,,...}is the set of primitive extralogical terms of a
Tarskian logic . iff for every set A4 and every function D that assigns to
e, €. denotations in 4 (in accordance with their syntactic categories)
there is a model A for % such that 9 = (A, D>. -

It follows from (ET) that primitive extralogical terms are semanticall
unrelated to one another. As a result, complex extralogical terms pro)j
duced by intersections, unions, etc. of primitive extralogical lerms’(e y
“horse and white”) are strongly variable as well. &
Note that it is essential to take into account the strong variability of
extralogical terms in order to understand the meaning of various claims of
logicality. Consider, for instance, the statement \

(9) (3x)x = Jean-Paul Sartre,

which is logically true in a Tarskian logic with “Jean-Paul Sartre” as an
extralogical individual constant. Does the claim that (9) is logically tr‘uc
mean that the existence (unspecified with respect to time) of the deceased
French philosopher is a matter of logic? Obviously not. The logical ll‘;llh
of (9) reflects the principle that if a term is used in a language (0 name
objects, then in every model for the language some object is named by that
term.' Bu}rzince “Jean-Paul Sartre” is a strongly variable term, what )
says i1s “There is a Jean-Paul §; ” “ i

Yo paut oo 5 @ Jea I Sartre,” not “The (French philosopher)

Logical constants
It has been said that to be a logical constant in a Tarskian logic is to have
the same interpretation in all models. Thus for “red” to be a logical
constant in logic %, it has to have a constant interpretation in all the
models for . I think this characterization is faulty because it is vague
How (‘10 you interpret “red” in the same way in all models? “In the samc;
way™ in what sense? Do you require that in every model there be the same
number'ofobjects falling under “red’*? But for every number largcr‘than
I there is a model that cannot satisfy this requirement simply because it
_does not have enough elements. So at least in one way, cardinalitywise, the
interpretation of “red” must vary from model to model. ’
The same thing holds for the standard logical constants of Tarskian
logic. Take the universal quantifier. In every model for a first-order logic
the universal quantifier is interpreted as a singleton set (i.e., the set of the
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universe).'® But in a model with 10 elements it is a set of a set with 10
clements, whereas in a model with 9 elements it is a set of a set with 9 ele-
ments. Are these interpretations the same?!’

I think that what distinguishes logical constants in Tarski’s semantics is
not the fact that their interpretation does not vary from model to model
(it does!) but the fact that they are interpreted outside the system of
models.'® The meaning of a logical constant is not given by the definitions’
of particular models but is part of the same metatheoretical machinery
used to define the entire network of models. The meaning of logical
constants is given by rules external to the system, and it is due to the
existence of such rules that Tarski could give his recursive definition of
truth (satisfaction) for well-formed formulas of any given language of the
logic. Syntactically, the logical constants are “‘fixed parameters’ in the
inductive definition of the set of well-formed formulas; semantically, the
rules for the logical constants are the functions on which the definition of
satisfaction by recursion (on the inductive structure of the set of well-
formed formulas) is based.

How would diflerent choices of logical terms affect the extension of
“logical consequence”? Well, if we contract the standard set of logical
terms, some intuitively formal and necessary consequences (i.e., certain
logical consequences of standard first-order logic) will turn nonlogical. If,
on the other hand, we take any term whatsoever as logical, we will end up
with new “logical” consequences that are intuitively not formally neces-
sary. The first case does not require much elaboration: if “and” were
interpreted as “or,” X would not be a logical consequence of “X and Y.”
As for the second case, let us take an extreme example. Consider the
natural-language terms “Jean-Paul Sartre” and ““accepted the Nobel Prize
in literature,” and suppose we use them as logical terms in a Tarskian logic
by keeping their usual denotation “fixed.” That is, the semantic counter-
part of “‘Jean-Paul Sartre™ will be the existentialist French philosopher
Jean-Paul Sartre, and the semantic counterpart of “‘accepted the Nobel
Prize in literature” will be the set of all actual persons up to the present
who (were awarded and) accepted the Nobel Prize in literature. Then

(10) Jean-Paul Sartre accepted the Nobel Prize in literature

will come out false, according to Tarski’s rules of truth (satisfaction), no
matter what model we are considering. This is because, when determining
the truth of (10) in any given model 2% for the logic, we do not have to look
in N at all. Instead, we examine two fixed entities outside the apparatus of
models and determine whether the one is a member of the other. This
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renders (10) logically false, and according to Tarski's definition. an $
tence o{“ the language we are considering follows logicall l‘r‘om){t\ ef"
contradiction with the pretheoretical conditions (Cl)and (C);) o
) The above example violates two principles of Tarskian s‘.cn;'mliu' ]
Je:an~Paul Sartre” and “accepted the Nobel Prize in liicr;.llur;:” (]:.l( )
satisfy the requirement of formality. (2) The truth conditions for ;Zl
bypas:c, the very device that serves in Tarskian semantics 1o disti v(' l)
material from logical consequence, namely the apparatus of m ) i '!l]%mS]
wond‘er the definition of “logical consequence” fails! » e o
TalrtSklli CSS?( t.o_ see that each violation by itself suflices to undermine
- Nosbele ;’r::;:or:n Iathe case of (1), “Jean-Paul Sartre” and “accepted
iterature™ are empiric: ¢ istingui
betwe(?n different objects in the universepl)rtl"tdlilsctsg:;j: (/I\hs”ﬁ;lro(;;mmgmm
we dehn.e logical terms in accordance with (C2) but ;)vithnul rct”‘s?p‘pvuse
tht:- totality of models. Say we interpret the universal quantifier fo(’r‘uu"L tI0
}fn:verse, that of the natural numbers. In that case “for every” ;)‘l ‘Smg .
for every natural number,” and the statement v

(11) Every object is different from at least three other objects

tur . L .
\ ns ogt»logtcall):‘truc, in violation of the intuition embedded in (C1)

y regumng that “every” be defined over all models, we circumve -
undesirable result.

We can no arski’ i
i w see how Tarski’s method allows us to identify
(12) Everything is identical with itself

as the logical truth that jt intuitively is.
Intuitive meanings of “‘is identical with”

nt the

a scntence

The crucial point is that the
and “everything” are captured by

rules si airs ¢ )
objec':ts that share certain formal features \Svlsl::ﬁlfl::ur:o?‘\:r:r M:"d o
posstle state of affairs to another. Thus in all models (repr::qe);n:;)'m 0"‘;
po‘ssnt?le slu‘les of-g{Tairs), the set of self-identical objects is u;liVC‘ -'”l)ntq 0

C().lllCldCS with the universe), and in cach model the uﬁivl @ I f“ o
thing” for that particular model. T ey

5 [he D‘St"lc“ t n [40 ralo lca! l erm
on l)e wee g'ca! and Ext l
g S:

The di . I .
he discussion of logical and extralogical terms enables us (o

! . . answer the
questrons posed in section 3. We understand what it means (

o regard all
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terms of the language as logical. Within the scheme of Tarski’s logic it
means to allow any rule whatsoever to be the semantic definition of a
logical constant. In particular, the intuitive interpretation of any term
becomes its semantic rule qua a logical term. Our investigation clearly
demonstrated that not every interpretation of logical terms is compatible
with Tarski’s vision of the task of logic.

We can now turn to the main question of section 3. Is the distinction
between logical and extralogical terms founded? Of course it is! The dis-
tinction between logical and extralogical terms is founded on our pre-
theoretical intuition that logical consequences are distinguished from
material consequences in being necessary and formal. To reject this in-
tuition is to drop the foundation of Tarski’s logic. To accept it is to pro-
vide a ground for the division of terms into logical and extralogical.

But what is the boundary between logical and extralogical terms?
Should we simply say that a constant is logical if adding it to the standard
system would not conflict with (C1) and (C2)? This criterion is correct but
not very informative. It appears that consequences like

(13) Exactly one French philosopher refused the Nobel Prize in
literature; therefore, finitely many French philosophers did
are formal and necessary in Tarski’s sense. Therefore “finitely many™ is a
reasonable candidate for logical constanthood. But can we be sure that
“finitely many” will never lead to a conflict with (C1) and (C2)? And will
our intuitions guide us in each particular case? By themselves, (C1) and
(C2) do not provide a usable criterion. Let us see if their analysis in the
context of Tarski’s systent will not lead us to the desired criterion.

The view that logic is an instrument for identifying formal and necessary
consequences leads to two initial requirements (based on (CI) and (C2)):
(1) that every possible state of affairs vis-a-vis a given language be
represented by some model for the language, and (2) that logical terms
represent formal features of possible states of affairs, i.e., formal prop-
erties of (relations among) constituents of states of affairs. To satisfy these
requirements the Tarskian logician constructs a dual system, each part of
which is itself a complex, syntactic-semantic structure. One constituent
includes the extralogical vocabulary (syntax) and the apparatus of models
(semantics). [ will call it the base of the logic. (Note that only extralogi-
cal terms, not logical terms, play a role in constructing models.) In a
first-order logic the base is strictly first-level: syntactically, the extralog-
ical vocabulary includes only singular terms and terms whose argu-

ey e s een e

s
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::f:,ls are snr?gu!ar; scméntically, in any given model (he extralogical
indiv?da:;:smgned only individuals or sets, relations, and functions of
. The second part consists of the logical terms and their semantic definj
l}ox\s. Its task is to introduce formal structure into the sysl;m S( \ ""f‘
tlcally,‘ logical terms are formula-building operators; scmanlica'l! )’“:""‘
are assngned pre-fixed functions on models that expre;s formal m}’- [ ]ey
of,’ relations among, and functions of “elements of models™ (Ob;'Sclspiinlllu?
universe and constructs of these). Since logical terms are mcalﬁ tor ]-L
lsen‘t 'f(l)rmal properties f)f elements of models corresponding to the ci?rr::
t:i:: ,]Y;)S:?:lsz:;);,dg:zrﬁlevcl is gener'all.y hig'hcr than that of nonlogical
o Thus. : rst-order l'oglc, 1der?t)ty is the only first-level log-
. - Ihe universal and existential quantifiers are sccond level, sem;
tically as well %15 syntactically, and the logical connectives oo are (;l:l i r;"‘]-
Fev;l. As for-smgular terms, these can never be construed as ‘Iogicalln't;‘ll\‘;;-
;sm::i:zléf::ns;gi:irs t;;:?,s, ’repre'si:nl atomic components of models, and
Wil s onent ,S ’g, alo‘mn.,.have no structure (formal or informal).
. ystem of logical terms constitutes a superstructure
for the log.c. Persiruciyre
ap:::a‘\:iu;!e tsg'stem is ?ioug'ht togelher»by superimposing the logical
‘ n the nonlogical base. Syntactically, this is done by rules fo
formm'g well-formed formulas by means of the logical operators, : A
semantically, by rules for determining truth (satisfaction) in apmod rlsb -
on the formal denotations of the logical vocabulary. (Note that s?nc af;:d
§ystems we are considering are extensional, “interpretation” has th Cj .
Import as “denotation.”) e
. No;w, to satisfy the conditions (Cl) and (C2), it is essential that no
abgl;c?‘ro:]rr:n;estr;f:n(:ﬁ rF'r.opcrly or a relation that is intuitively vari-
ot oo o affairs u? lunotillcr. Furthermore, it is important
g erms be formal entitjes. Finally, the denotations of logical
::T;S I;‘ee?f 1.0 bf’ defined over models, all models, so that every posi’l?lc
v s} ] « N . M i ~
Consequ;czgs 1s taken into account in determining logical truths and
SiVLtI;ZESerh;hUaSItife\;veszinﬁsze;ify a ser{es or conditions that are excly-
ey and ex y Lisfie ‘ )'flernlsiglﬁlllngllle requircments above,

! ‘ su?cefade(l in defining “logical term” in accordance witl
Tarski’s basic principles. In particular, the Tarskian definition of “Jogic, ;
consequence” (and the other metalogical concepts) will give correct ol
all the correct results, in agreement with (C1) and (C2) et resules
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6 A Criterion for Logical Terms

My central idea is this. Logical terms are formal in a sense that was
specified in section 2. There we already interpreted the requirement of
formality in the spirit of Mostowski as “‘not distinguishing the identity of
objects in a given universe.” Why don’t we take another step in the same
direction and follow Mostowski’s construal of “not distinguishing the
identity of objects” as invariance under permutations (see chapter 2).
Generalizing Mostowski, we arrive at the notion of a logical term as
formal in the following sense: being formal is, semantically, being in-
variant under all nonstructural variations of models. That is to say, being
formal is being invariant under isomorphic structures. In short, logical
terms are formal in the sense of being essentially mathematical. Since,
intuitively, the mathematical parameters of reality do not vary from one
possible state of affairs to another, the claim that logical consequences are
intnitively necessary is in principle satisfied by logics that allow mathe-
matical terms as logical terms. My thesis, therefore, is this: all and only
formal lerms, terms invariant under isomorphic structures, can serve as
logical terms in a logic based on Tarski’s ideas. 1 must, however, add
the proviso that new terms be incorporated in the logical system “‘in the
right way.”

I will now proceed to set down in detail the criterion for logical terms.
But first let me make a few preliminary remarks. My analysis of Tarski’s
syntactic-semantic system did not depend on the particulars of the meta-
theoretic language in which the syntax and the semantics are embedded.
In standard mathematical logic the metalanguage consists of a fragment
of natural language augmented by first-order set theory or higher-order
logic. In particular, models are set-theoretic constructs, and the definition
of “satisfaction in a model” is accordingly set-theoretical. This feature of
contemporary metalogic is, however, not inherent in the nature of the
logical enterprise, and one could contemplate a background language
different from the one currently used. Without committing myself to any
particular metatheoretical mathematics, I will nevertheless use the ter-
minology of standard first-order set theory in the formal entries of the
criterion for logical terms, as this will contribute to precision and clarity.

For transparency 1 will not include sentential connectives in the cri-
terion. While it is technically easy to construe the connectives as quan-
tifiers (see Lindstrom 1966), the syntactic-semantic apparatus of Tarskian
logic is superfluous for analyzing their scope. The standard framework
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of sentential logic is perfectly adequate, and relative to this framework
the problem of identifying all the logical connectives that there arc h: ’
already been solved. The solution clearly satisfics Tarski’s rec uirc‘:m lds‘
the §tandard logic of sentential connectives has a bznsé that ul)neisi .
tactlf:ally of extralogical sentential letters and semantically of a iisls :‘ynli
posgble' asFigflmcnts of truth values to these letters. Any possi;ﬂc gtiziej)f
affairs st-aows the sentential language is represented by some assignme
Thf: logical s_upers(ructurc includes the truth-functional conng:g:tibves ‘ ”;
their s§mant1c definitions. The connectives are both syntacticall ‘(md
Zetga.n'tlcaHy of a higher level than the sentential letters. Their s‘cn):a;ll?ic
wemin:!m:;-?re pre-ﬁxed: logical connectives are semantically identified
ru unc%nonal operators, and the latter are delined by formal
(Boolean) functions whose values and arguments, i.e., truth V’l);ll(:‘; 'md
sequences of truth values, represent possible states ot"uf‘Tairs Th‘is er;e o
that truths and consequences that hold in all “models".'lre fc ~"‘r‘35
necessary in Tarski’s sense. ‘ ormally
. As for modal operators, they too are outside the scope of this investig:
tion, though for different reasons. First, iy criterion for lugic"al tcr‘n:‘%‘i‘-
based on analysis of the Tarskian framework, which is insuflicient lt‘):
Fnodals. Second, we cannot take it for granted that the task of modal lo :i :
is the same as that of symbolic logic proper. To determine the s;o cELf
fnodal logic and characterize its operators, we would have to set u ) 'O
independent inquiry into its underlying goals and principles e

Conditions on logical constants in first-order logics
The criterion for logical terms based on the Tarskian conception of formal
first-order logic will be formulated in a series of individually ne '; ‘r‘"m
a.nd collectively sufficient conditions. These conditions will syccifL 55;"”’
snmple' and/or complex terms from an initial pool of cons!an?s c't: ::“”
as logical constants in a first-order logic. In stating these cond‘iti » ”T
place a higher value on clarity of ideas than on ecconomy. As a r*‘(lns‘l
conditions are not mutually independent. . ot
A A logllcal constant C is syntactically an n-place predicate or functor
(funct.mnal expression) of level 1 or 2, n being a positive integer
B. A loglcal constant C is defined by a single extensional function ;ind i
identified with its extension. )
C. A !f)gi(,jal constant C is defined over models. In each model N over
Wthh.lt is defined, C is assigned a construct of elements of A corre-
sponding to its syntactic category. Specifically, I require that C be
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defined by a function £, such that given a model 2 (with universe 4)

in its domain:
a. If Cis a first-level n-place predicate, then £(21) is a subset of A"

b. If Cis a first-level n-place functor, then f() is a function from

A" into A.
¢. If Cis a second-level n-place predicate, then f,(2) is a subset of

B, x --- x B,, where forl <i<gn,
{A if i(C)is an individual

B, =
P(A™) ifi(C)isan m-place predicate

{(i(C') being the ith argument of C).
d. 1f C is a second-level n-place functor, then f,(N) isa function

from B, x -+* x B,into By, where for | <i<n+1,Bis

defined as in (c).

¢

D. A logical constant C'is defined over all models (for the logic).

A logical constant € is defined by a function f, which is invariant

under isomorphic structures. That is, the following conditions hold:

4. 16 Cis a first-tevel n-place predicate, % and 9N’ are models with
universes A and A’ respectively, (hy, ... by €A by, by e
A", and the structures (AL, by and (A", (by, ..., by are
isomorphic, then {hyo..ns b,y € fAW) T LbY, ooy by e f().

b. If Cis a second-level n-place predicate, 2 and 2’ are models with
universes A4 and A’ respectively, {Dy, -+ -» DyeB x X B,,
Dy, ... Dye By x X B, (where for 1 <i<mn, B; and B;

as in (C.c)), and the structures CA, Dy - Dads
.., D)y e f(A)iff

are
A, Dy, ..., Dy are isomorphic, then (D, .
(D, DYy e L)

¢. Analogously for functors.

Some explanations are in order. Condition (A) reflects the perception of
logical terms as structural components of the language. In particular, it
rules out individual constants as logical terms. Note, however, that al-
though an individual by itself cannot be represented by a logical term
(since it lacks “inner” structure), it can combine with functions, sets, or
structure representable by a logical term. Thus, below
1 deline a logical constant that represents the structure of the natural
numbers with their ordering relation and zero (taken as an individual).
‘The upper timit on the level of logical terms is 2, since the logic we are
considering is a logic for first-level languages, and a first-level language
can only provide its logical terms with arguments of level 0 or 1.

relations to form a
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Condition (B) ensures that logical terms are rigid. Each logical term has
a pre-fixed meaning in the metalanguage. This meaning is unchangeable
and is completely exhausted by its semantic definition. That is to say, from
the point of view of Tarskiun logic, there are no *'possible worlds™ of log-
ical terims. Thus, qua logical terms, the expressions “the number of planets”
and *9” are indistinguishable. If you want to express the intuition that
the number of planets changes from one possible “world” to another, you
have to construe it as an extralogical term. If, on the other hand, you
choose to use it as a logical term (or in the definition of a logical term),
only its extension counts, and this is the same as the extension of *9.”

Condition (C) provides the tie between logical terms and the apparatus
of models. By requiring that logical terms be defined by fixed functions
from models to structures within models, it allows logical terms to repre-
sent ““fixed”” parameters of changeable states of affairs. By requiring that
logical terms be defined for each model by clements of this model, it
ensures that the apparatus of models is not bypassed when logical truths
and consequences are determined. Condition (C) also takes care of the
correspondence in categories between the syntax and the semantics.

The point of (D) is to ensure that aff possible states of affairs are taken
into account in determining logical truths and consequences. Thus truth-
in-all-models is necessary truth and consequence-in-all-models is necessary
consequence. Conditions (B) to (D) together express the requirement that
logical terms are semantically superimposed on the apparatus of models.

With (E) I provide a general characterization of formality: to be formal
is not to distinguish between (to be invariant under) isomorphic structures.
This criterion is almost universally accepted as capturing the intuitive
(semantic) idea of formality. I will trace the origins of condition (E) and
discuss its significance separately in section 7 below. It follows from (E)
that if 9, and 9, are models with the same universe A4, then for cvery
logical term C, f(A,) = f(A,). Therefore, we can treat logical terms as
functions on universes (sets) rather than models, i.e., use f.(4) instead of
(). T will do so in chapter 4, using C, and Cy, as abbreviations.'®

I can now give a semantic definition of (Tarskian) logical terms:

DEFINITION LT  Cis a (Tarskian) logical term fl Cis a truth-functional
connective or C satisfies conditions (A) to (E) above on logical constants.

I will call logical terms of the types (C.a) and (C.b) above logical
predicates and logical funciors respectively. Logical terms of type (C.¢) |
will call logical quantifiers, and logical terms of type (C.d) logical quantifier
Junctors.
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what kind of expressions satisfy (LT)? Clearly, all the logical Cf.)nstams
of standard first-order logic do. Identity and the standard qtfanuﬁers Zri
defined by total functions f;, fv, and f3 on models such that, given a modae

91 with universe A,
(14) /(W) = {Ca, by a,be A & a=bh},

(15 f,(M) = {B:B= A}, o
(16) _/;(x?l):{lfzngA&Baé@‘}. '

nitions of the truth-functional connectives remain un
ard terms satisfying (LT) are all Mostowskian quan-
r 2, these are n-place predicative quantifiers,
(where # is a positive integer,
ong these are the following,

The defi changed.
Among the nonstand
lifiers. As explained in chapte
i.c., quantifiers over n-tuples of predicates
and a 1-tuple of predicates is a predicate). Am
redetined in the style of conditions (A) to (E).

(17) Yhe I-place scardinal” quantifiers, defined, for any cardinal a by

L) ={B:BS A&|Bl=a} )
(18) The l-place quantitiers “finitely many” and “uncountably many,
defined by
My ={B:8c A4 & | Bl < Ny}
’;lllct)\llllﬂh}y nmny(qn = {B B & A & IB! > NO}
(19) The I-place quantifier “‘as many as not,” defined by
. ) _B

jz\smanyasnnl(‘gl) = {B B < A & lB! 2 1A ‘}
(20) The I-place quantifier “most,” defined by

fin(@) = {B:B< A &|B| >4~ B}
(21) The 2-place quantifier “‘most,” defined by

frpra () = (B, C) B,CcA&|BNC|>|B— Cl}
‘ sfying (LT). One of these is,
-place quantifier over 2-place
A? & R is a strict linear
) has a minimal

./(.ini(c

We also have relational quantifiers sati

(22) The «well-ordering” quantifier (a ]
relations), defined by fwo(20) = {R:R<
ordering such that every nonempty subset of FId{(R
clement in R}.

1 will call the logical terms below “ret

23) The second-level set-membership relation (a ‘2~place quantifier over
pairs of a singular tcrm and a predicate), defined by

{<a, B>:aeA&BgA&aeB}

ational quantifiers” as well:

. Y —
A/mcmhel.ﬁhip( *)‘)
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(24) The q}lantiﬁer “ordering of the natural numbers with 0 (a 2-place
quantifier over pairs of a 2-place relation and a singular tcrm)I ‘
defined by £, o) = {(R,a): RS A& ac 4 &and (A4, R a!) isa
structure of the natural numbers with s ‘

their ordering relation ;
zero} g relation and

Among functors and quantifier functors we have the following:

(25) Th'e n-place “first” functors (over n-tuples of singular terms)
defined, for any n, bY fries (A1) = the function &: A" - A such that for
any n-tuple {a,, ..., a,> e A", glay, ..., a,) =aq,

(26) The Al—place “complement” quantifier functor (over I-place
predicates), defined bY foompiement () = the function
g: P(A)— P(A) such that for anyBc A, g(B)=A4 - B

Examples of constants that do not satisfy (LT):

(27) The 1-place predicate “identical with a™ (a is a singular term of the
language), defined by £ (91) = {b:beAd&b=a") where a™js
the denotation of a in 9N ’

(28) The 1-place (predicative) quantifier “pebbles in the Red Sea.™
defined !JYfpcbhnes,..(Q() ={B:BS A& Bisa nonempty sct of
pebbles in the Red Sea)

(29) The first-level—membership relation (a 2-place first-level relation

whose arguments are singular terms), defi :
) » defined by £ () = b
beAd&bisaset &aisa member of b} {<a bz,

‘The c?eﬁnitions of these constants violate condition (E). To see wh (29
fails, think of two models, 9 and 91’ with universes {0, {0 1}} and {);c'm)
Paul Sartre, Albert Camus} respectively. While the first—(‘)rdcr slruc‘(u‘rc;
<{0, {0, 1}}, <0, {0, 1} and ({Jean-Paul Sartre, Albert Camus}, (Jea A
F’aul Sartre, Albert Camus) are isomorphic (when taken as tirs,t-a ;]]
1.e., when the first elements are treated as sets of atomic ob';:cls) ‘0“ 0
1}) € (W) but Jean-Paul Sartre, Albert Camus) ¢ £, () : Ak

Another term that is not logical under (LT)is lhéedcﬁnhilc-dcscri i
operator u. If we define 1 (a quantifier functor) by a function / that lv'v(:"
fl model U with a universe A, assigns to U 3 partial function Alz fr:m; &1”1’(:“
into A, l.hen condition (C.d) is violated. If we make & universal using so A )
?onventlon to define the value of / for subsets of A that are no’t sin flact )”‘L
it has to be shown that the convention does not violate (li)h V%/c :_:]:
however, construct a 2-place predicative logical quantifier “tll‘c " wh‘i ~l’
expresses Russell’s contextual definition of the description operut'or‘ -

G0 fne) = {<B,CY: B Cc 4 & Bis a singleton set}

To Be a Logical Term 59

7 A New Conception of Logic

The definition of logical terms in section 6 gives new meaning to ‘‘first-
order logic™ based on Tarski’s ideas. “First-order logic” is now a
schematic title for any system of logic with a complete collection of truth-
functional connectives and a nonempty set of logical constants. It is open
to us, the users, to choose which particular set of constants satisfying (LT)
we want to include in our first-order system. The logic itself is an open
framework: any term may be plugged in as a logical constant, provided
this is done in accordance with conditions (A) to (E). Any first- or second-
level formal term is acceptable, so long as it is incorporated into the
system “in the right way.” The general framework of logic based on this
conception | will call Unrestricted Logic or UL. I will also refer to it as
Tarskian Logic, since it is based on Tarski’s conception of the task and
structure of logic. A particular system of Tarskian logic is simply a logic.
Both syntactically and semantically the new logic preserves the form of
definition characteristic of standard mathematical logic: syntactically, the
Jogical constants serve as “formula-building operators™ on the basis of
which the set of well-formed formulas is defined by induction; seman-
tically, the logical constants are associated with pre-fixed rules, to be used
in the recursive definition of satisfaction in a model. Thus, for example,
the syntactic definition of the 2-place quantifier “‘most™ is given by the
following clause:

o Ifdand ¥ are well-formed formulas, then (Most''! x)(®, ¥)is a well-
formed formula.

The rule associated with “‘most’ is expressed in the corresponding seman-
tic clause:

o b and W are well-formed formulas, %1 is a model with a universe A4,
and g is an assignment of individuals in A4 to the variables of the
language, then

N k= (Most'! x) (b, ¥)|g] ifT

ae A W= dlg(x/a)]}, lae AU = W[g(x/a)]}D € fura (2N).

I will give a precise account of UL in chapter 4. In the meantime, |

proposce this provisional definition:

pEFINIION UL % is a logic in UL iff ¢ is a Tarskian first-order system
with (1) a complete set of truth-functional connectives and (2) a nonempty
set of logical terms, other than those in (1), satisfying (LT).
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I will now show (what should be clear from the foregoing discussion)
}hat _UL satisfies the pretheoretical requirements (C1) and (C2). Namel
if & is a first-order system in UL, then the Tarskian definition of“logic?\ll’
cong:quence” for ¥ gives results in agreement with (C1) and (C2) ‘

F'nrst the case for (Cl). It suffices to show that the ussmnplioﬁ (/.\S) (of
section 2) holds for UL. Let ¥ be any system of UL with new logical
constants, let € be the logical vocabulary of &, and let L be its extralo ic;l
vocabulary. The claim is that if @ s a well-formed formula of & c%er
possible extension of @ relative to the vocabulary of . is rcprcsen,tcd by
some model for & (where the extension of a sentence is taken to be a lrully
value, T or F). ‘ l

I will sketch an outline of a proof. Suppose that ® is an atomic formula
oft?le form “Px,” where Pis an extralogical constant. The strong scm'mli;
vanz?blhty of P and the other primitive terms in L ensures that ;ver

possible state of affairs relative to these terms is represented by sor .

model A for #. So the claim holds for @, Now let @& be of lh)é ll':)r]::

“(Qx)¥x,” where Qis a quantifier and “Wx" is (for the sake of simplicity)
a ljormula with one free variable x. Assume the claim holds for *“yx.» (§

being .a member of €, is semantically rigid. Furthermore, its rigid- i.ntcr-‘
pretation is formal. But formal properties and relations intuitively do not
change from one possible state of affairs to another. That is, while the
number of, say, red things does vary among possible states of;ﬂ'airs the
secopd-level formal property “having n objects in X’s extension™ docs’nm

Having »n objects in a property’s extension is always the same thing no.
matter what property and what state of affairs we are considering 'I‘h’cre-
fore, the variability of situations with respect to “(Qx)W¥x” is ;cduccd
to the variability of situations with respect to “Wx.” [t isA possible that
“(Qx)f}’x” has the extension T/F iff it is possible that “yy» has ':11
extension representable by a subset B of the universe of some model “II
such' that B € fo(A)/B ¢ /o(U). But by (the inductive) assumption, ever
possible extension of “Wx” (relative to the vocabulary of %) is’re rc)-,
sented. by some model for £ So if it is possible for “Wx> o ]mvcp’m
extension as required, there is a model that realizes this possibility. In tI;iq
model Vthe extension of “(Qx)Wx” is T/F. We can carry on this in'ductivé
reasoning with respect to any type of logical terms under (LT).

. The (Ease for (C2) is straightforward. Condition (E) expresses an inlui-
.uve notion of formality: to be formal is, intuitively, to take only structure
into ?CCOUHL Within the scheme of model-theoretic semantics, to be for-
mal is to be invariant under isomorphic structures. Now in'UL as i
standard logic, logical consequences depend on the logical vocabul,a‘ry ol]"
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the language. The formality of logical terms ensures that logical con-
sequences do not rest on empirical evidence and do not distinguish the
identity of objects in any given universe. Hence logical consequences of
UL arc formal in Tarski’s sense.

Logics equivalent or similar to UL are often called in the literature
“generalized logics,” ‘‘extended logics,” “‘abstract logics,” or “model-
theoretic logics.” These labels may, however, convey the wrong message.
Driving a wedge between ““core” logic and its new ‘‘extensions,” they seem
to intimate that the “tight” and “lean” standard system is still the true
logic. Such an interpretation of UL would, however, be wrongheaded. UL
is not an abstract generalization of real logic. UL is real logic, full-fledged.
As we have seen earlier in this chapter, the basic semantic principles of
“core” logic (formulated by Tarski in the mid 1930s) are not fully mate-
rialized in the “standard” system. This system fails to produce all the
formally necessary, i.c., “‘logical,” consequences with a first-level vocabul-
ary. it takes the full spectrum of UL logics to carry out the original
program.

I have answered the question posed at the end of section 2. The broadest
notion of logical term compatible with the intuitive concept of “logical
consequence’ is that of (LT). (LT) redefines the boundaries of logic,
leading to the unrestricted system of UL. Condition (E) is especially
important in determining the full scope of logic. It is worthwhile to trace
the origins of this condition.

8 Invariance under Isomorphic Structures

The condition of invariance under isomorphic structures first appeared, as
a characterization of logicality, in Lindenbaum and Tarski 1934-1935.
Referring to a simple Russellian type-theoretic logic, Lindenbaum and
Tarski proved a theorem that informally says, “Every relation between
objects (individuals, classes, relations) which can be expressed by purely
logical means [i.e., without using extralogical terms] is invariant with
respect to every one-one mapping of the ‘world’ (i.e., the class of all
individuals) onto itself.”2°

Now the metalanguage from which we draw the pool of logical terms is
roughly equivalent to a subsystem of “pure” higher-order logic with Rus-
sellian simple types. For this language, Lindenbaum and Tarski’s theorem
shows that all definable notions satisfy the isomorphism condition with
respect to “the world” (a “‘universal” model, in our terminology). The
Lindenbaum-Tarski theorem appears to assume a notion of logicality that

e e, ot .
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depend§ on the classification of the standard logical operators of a simple
Russellian type theory as *‘purely logical.”” However, it follows l"r();nl tlrl)is
very theorcm that the standard operators themselves are invariuant under
xs?morphlc substructures, i.e., given any mode! 9 (a sitbmodel relative 1o
‘[:mdenbe’x’ulm and 'Tarslt(i’s “universal” model) and a I-place ﬁmn:nla hx
Q((ﬁ:)d;: .IS true in A ifl fon:‘zmy I-place formula Wx whose extension 1n
2 o :f,lr?ed from that of “®x” by some permutation of the universe
(Vx)¥x” is true in N, and similarly for the other Russellian ()per'|t<);s’
So the theorem shows (relative to a simple type-theoretic language 'n: t ‘
standard rules of logical proof) that Russellian logical terms ‘ll;(?‘l;l l(" ”
lh.’fll cafl be defined from them are “purely logical.” S
F!le idea that logical notions are distinguished by their invariance pro-
perties next appeared in Mautner’s “An Extension of Klein's Frl'nll rer
Program: .Logx_c,as.Inwriaanheory”( 1946). Inspired by Kicin’s )lm"rf
of classifying geometrical notions in terms of invariance condilioni Ni' .
nerA showed that standard mathematical logic can be cunstrucd ’aq (l:]r:
valt:an't-?heory of the symmetric group...of all permutations of the d~ ai
of individual variables,” 2! "
In his pﬁloneering 1957 paper “On a Generalization of Quantifiers.”
Mos%owskl use‘d the invariance property, for the first time, to !iccxm;.'n
genume extension of standard first-order logic by adding new lo ;iC'x‘l
tgrms. Mostowski’s condition technically was invariance under Cl‘lll&l’lt't
tions of sets induced by permutations of the universe (of a givenpmo 1 ’Id-
lnforrpally, it was to be construed as the claim, (LQ2) of chapter 2 (tltr)t.
qu?nllﬁcrs do not take into account the identity of individuals :n IIT*
universe of discourse. Mostowski’s criterion included rct’crcncc; to tlt
aforementioned papers of Lindenbaum and Tarski (1934 ]9%‘5 : |
Mautner (1946).22 » )
l‘n 1966 Per Lindstrém generalized Mostowski’s condition to full in
variance t.mder isomorphic (relational) structures, augmenting Mos(owsk"-
system with many-place predicative and relational quantifiers ol'tu; 'I'S
fe.rred l? as “Lindstrém quantifiers.” There is a4 minor dil]‘crcncjc hclwc‘c‘:
ljmdstrom’s definition and (E) above: Lindstrom’s structures are rel; ‘
tional, and 0-place relations are not individuals but truth valucs( T )Cld
Thus mathematical structures involving indvividuals cannol he, dir('l'll'
rf:presented by logical terms, as in (24). Lindstrém, unlike Mostowski N Y
S|l‘enl regard'ing the philosophical significance of his gcncrzll;Y;llit;nz ‘(\;Iz‘:t
might say his remarkable theorems solidify the distinguishe;i sta[‘us 0?'
stlandard first-order logic, but here again, it is unclear whether Lindstro
himself considers compactness and the Lowenheim-Skolem property looll;;
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essential ingredients of logicality or mere mathematically interesting fea-
tures of one among many genuinely logical systems. This philosophical
disengagement is characteristic of the abundant literature on *‘abstract
logic™ that has followed Lindstréom’s work.?3
[ often wondered what Tarski would have thought about the conception
of Tarskian logic proposed in this book. After the early versions of the
present chapter had been completed, I came upon a 1966 lecture by
Tarski, first published in 1986, that delighted me in its conclusion. In the
lecture “What are Logical Notions?” Tarski proposed a definition of
“togical term™ that is coextensional with condition (E):
Consider the class of all one-onc transformations of the space, or universe of
discourse, or “world™ onto itself. What will be the science which deals with the
notions invariant under this widest class of transformations? Here we will have ...

notions, all of a very general character. I suggest that they are the logical notions,
thiat we call a notion “logical” if #t is invariant under all possible one-one trans-

formations ol the world onto itself.2*

The difference between Tarski’s 1966 lecture and the earlier Linden-
baum and Tarski paper is that here Tarski explicitly talks about the scope
of logical terms for a first-order framework. (Indeed, in his introduction
to the posthumously published lecture, J. Corcoran suggests that we see it
as a sequel to Tarski’s 1936 ““On the Concept of Logical Consequence,” in
which the scope of logical terms was left as an open question.) It follows
from the above definition, Tarski now says, that no term designating an
individual is a logical term; the truth-functional connectives, standard
quantificrs, and identity are logical terms; Mostowski’s cardinality quan-
tificrs are logical, and in general, all predicates definable in standard
higher-order logic are logical. Tarski emphasizes that according to his
definition, any mathematical property can be seen as logical when con-
strued as higher-order. Thus, as a science of individuals, mathematics is
different from logic, but as a science of higher-order structures, mathe-
matics is logic.

The analysis that led to the extension of “logical term™ in Tarski’s
lecture is, however, different from that proposed here. Tarski, like Maut-
ner, introduced his conception as a generalization of Klein’s classification
of geometrical disciplines according to the transformations of space under
which the geometrical concepts are invariant. Abstracting from Klein,
Tarski characterized logic as the science of all notions invariant under
one-to-one transformations of the universe of discourse (“space” in a
generalized sense). My own conclusions, on the other hand, are based on
analysis of Tarski’s early work on the philosophical foundations of logic.


http:1946).22
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;l;i};:slsp:z;(r)::zo;eihgt, ‘lehke in lﬁe later Tarski, the criterion for logical
be & legtort e € mt. udes, but is r.mt exhausted by, condition (E). To
o be oo & ir:,ofjtft to be a hrgher-lcvcl, mathematical term: it js
Ao neorporated 'd L.crta‘u‘l synmcl.nc—scmunlic system in a way that

: s to identify ali Intuttively logical consequences b rans ol ¢
given rule, e.g., Tarski’s (LC). Y e ofa

lo:;::;:;nfotg;?,':;o(rg)(fari,kl s 1966 lecture remained unknown for a
on f(;, oon (E) 138 been treated by mathematical logicians as a
oo for ¢ [}]ereof Oé;ncal terms. In the last decade condition (E), and
oy anants U mera,t eganfto appear dS a L:rilerion of logicality in the

o semantic %lre, Ao .ten In combination with other criteria, like

ativity. rruy analysis is correct, conservativity and other linguistic
pr%)lemes constraining (E) have nothing to do witl logicality neste
knoweO(;n;);)pt::rl;o;JngthhlIo'sophxczll discussion of condition () that |

Losteal Coappears in, r\1dm(()‘t hy Mc(?arthy’s 1981 paper “The Idea of a

Tt [].w gmutl:]d.:rgl‘y rgects (E) as a suflicient condition for

ot e mlt it does not prevent the definition of

y means of “contingent” expressions. To illustrate Me-

y p y ConSldel t“e qu ""” Cr th numbe )
Calth S oint lCt us l < I l(, ll]lbr (‘ pI

ancts,”

Jihe number of planes (W) = {B:Bc 4 & |B] = the number of plancts}.

Clearly, the quantifier “the number of planets™ satisfies (E). Now
(31) The number of planets = 9 |

is conti i ¢ Le, i

“possn;gg(:vnotrllg”t?’e m;t.dl:nguage. L.e, 1ts extension changes from one
In-which we interpret the : age

Coridet e tin p metalanguage) to another.

(32) (The number of planets x)(Px & ~ Px)

3:": 'semence is logically false as a matter of fact, McCarthy would sa
Zefo.lsr,{s\sv:v:'ati::rt:f the fact that thg mm‘rber of planets is larger lh‘a):;
oesliten oy , ]dc counterfaclpal situation in which our sun had no
l > | >) would turn out logically true. Therefore, “the numb
planets x” will not do as a logical quantifier. ot
MccCarthy’s objection, however, does not affect my criterion

meta .. .
nm:ﬂ;heorfy the def?nmons of logical terms are rigid. Qua quantifiers “the
oo ;rto p}dnets and “9” are indistinguishable. Their {actual) c;xlen
o c - M )
ermine one and the same formal function over models and this

To Be a Logical Term 65

function is a legitimate logical operator. In another world another descrip-

tion (and possibly another symbol) may designate this function. But that

has no bearing on the issue in question. Inscription (32) may stand for
different statements in different worlds. But the logical statement (32) is
the same, and false, in all worlds. For that reason logic— Unrestricted

Logic or any logic-- is invariant across worlds. From the point of view of
logic presented here, McCarthy’s demand that the meaning of logical
terms be known a priori is impertinent. The question is not how we come
to know the meaning of a given linguistic expression, but how we set out
to use it. If we set it up as a rigid designator of some formal property in
accordance with conditions (A) to (E), it will work well as a logical constant
in any Tarskian system of logic. Set differently, it might not. Switching
perspectives, we may say that the only way to understand the meaning of
a term used as a logical constant is to read it rigidly and formally, i.e., to
identify it with the mathematical function that semantically defines it.

9 Conclusion

We have arrived at a general theory of the scope and nature of logical
termis based on analysis of the function of logic and the philosophical
guidelines at the basis of modern semantics. Given the breadth of the
logical enterprise, we discovered that the standard terms alone do not
provide an adequate superstructure. Yet in view of its goal, not every term
can be used as a constant in Tarskian logic. There exists a clear, unequi-
vocal criterion for eligible terms, and the terms satisfying this criterion far
exceed those of “standard” logic.

We can now answer the questions posed at the end of chapter 2. Mos-
towski's claim that standard mathematical logic does not exhaust the
scope of first-order logic has been vindicated. His semantic criterion on
quantifiers, namely, “not distinguishing the identity of individuals in the
universe,” is most naturally interpreted as not discerning the difference
between isomorphic structures. As for logicality and cardinality, the in-
variance condition implies that the two coincide in the case of predicative
quantifiers, but in general, these notions are not essentially connected.

The next task is to outline a complete system of first-order logic with
logical terms satisfying (LT). The series of conditions proposed in the
present chapter constitute a definition of logical terms “from above”: one
can understand the conditions without thereby knowing how to construct
all constants possessing the required properties. In the next chapter I will
give a constructive definition of logical constants, inspired by Mostowski.

T S e e—
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Mostowski’ ati i i
wski’s correlation of quantifiers with cardinality functions did 1o

Bzroccl:;(;a:Lvih ?ener?llzed lo.gic v'vhat the association of connectives with
poolean| u' unctions earlier did to sententjal logic. It provided a highly
“Whataa;ve c'llnswer to t.hf: guestions,‘ “‘What is a predicative quantifier?”
ey ea tlhe' predlcaluYe quantifiers?” Following Mostowski, I will
Presen kamcdo;r)e;:;)r:h:f;(l)?f;sz;l(::;‘Ln:c:\.zith mfuhematica! functions of 4
! on ine i
loglca.f terms and each function will embez“ll:::t(ff:ilne:]r]l::tci;::i‘t()I‘M‘hl‘y "
structing one logical term from the total list. e

Chapter 4

Semantics {rom the Ground Up

Our philosophical analysis in the last chapter has led to the conclusion that
any second-level mathematical predicate can be construed as a logical
quantifier under a semantic definition satisfying the metatheoretical con-
ditions (A) to (E). Since the predicative quantifiers defined in chapter 2
satisfy these conditions, they are genuine logical quantifiers, and Mos-
towski's claim that they belong in a systematic presentation of symbolic
logic is justificd. Our analysis also provides an answer to the question
“Which second-level predicates on relations are logical quantifiers?” Rela-
tional quantifiers are simply logical terms of a particular type: second-level
predicates or relations whose arguments include at least one first-level
relation (many-place predicate).

On my analysis, Mostowski’s semantic condition on predicative quan-
tifiers, (LQ2), the requirement that quantifiers should not distinguish
the identity of elements in the universe of a given model, corresponds
to Tarski’s (C2), the requirement that logical terms (and hence logical
quantificrs) be formal. Like Mostowski, I interpret (C2) as an invariance
condition, and this condition, when applied to predicative quantifiers,
coincides with his. More accurately, Mostowski’s rendering of (L.Q2) as
invariance under permutations of sets induced by permutations of the
universe is generalized to condition (E), which says that logical terms
in general are invariant under isomorphic structures. In terms of Mos-
towski's definition of quantifiers as functions from sets to truth values, |
say that a logical term over universe A4 is a function ¢ from sequences of
relations (predicates, individuals) of the right type to truth valtues, T or F,
such that if s is a sequence in Dom(g) and m is a permutation of 4,

gisy =T ilf gim(s)) =T,

where m(s) is the image of s under m.
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The characterization of logical constants in terms of invariance under
permutations of the universe is still not very informative, however. T the
case of predicative quantificrs, Mostowski was able to establish a one-to-
one correspondence between quantifiers satisfying (LQ2) and cardinality
functions of a specified kind, and this resulted in a highly informative
characterization of predicative quantifiers: predicative quantifiers attri-
bute cardinality properties (relative to the cardinality of a given universe)
to the extensions of l-place first-level predicates in their scope; the func-
tions 7 associated with predicative quantifiers constitute “rules™ for con-
structing predicative quantifiers over a universe A. Although cardinality
functions can be extended to logical terms other than predicative quan-
tifiers, they evidently will not cover all the logical terms over a universe A.
The latter express structural properties of sets, relations, and individuals
in general, not just cardinality propertics.

My main goal in the present chapter is to develop a semantic defini-
tion of logical terms that captures the idea of formal structure in a way
analogous to that in which Mostowski’s definition captures the idea of
cardinality. Mostowski's definition distinguishes sets according to their
size relative to the size of a given universe. | want to characterize all formal
patterns of individuals standing in relations within an arbitrary universe
A and then distinguish relations according to the formal patterns they
exhibit. This will be the basis for my “constructive” definition of logical
terms over A. But first I will examine the original characterization of
logical terms satisfying (E), due to Per Lindstrom.

1 Lindstrom’s Definition of “Generalized Quantifiers”

In “First Order Predicate Logic with Generalized Quantifiers” Lindstrom
(1966a) associates generalized quantifiers with classes of structures
(models) closed under isomorphism. More precisely, his semantic defini-
tion goes as follows:

DEFINITION LQ A quantifier is (semantically) a class Q of relational struc-
tures of a single type 1 € ", n > 0, closed under isomorphism,

where a relational structure is a sequence consisting of a universe (a set)
and a series of constant relations on, or subsets of, the universe
{but not individuals). The type of structure 2t is an ordered n-tuple,
{my, ..., m,>, where n is the number of constant relations R; in 2 and m;,
! < i < n, is the number of arguments of the relation R;. (A truth value is
considered by Lindstrom a relation with no arguments. There are only two
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0-place relations, T and F.) Each semami? qganuf}:r Qis rsr);?l:c:‘l:jz;(; l:z
a syntactic quantifier Q; different syntactllc qxianln.lcr‘s.:j:o X pofthe o
different semantic quantifiers. IfQ syg‘ubohzes Q, Q is sal t.(} € hewpe
 common to all the structures in Q. A syntactic quantiher i:;)bles [);‘;;t
=My, ..., M) s a quantifier in ?:‘R-Llr:z 40+ m, var
attac \las to form a new lor . .
du"l“;‘::estrt:t: fs(:rT(;itions for formulas with Li.ndstrém quantifiers are
defined as follows: Let Q be a Lindstrom quanhﬁer gf typectl-:- (zl,uan:
my. Let®y, oo, &, be formulas of ﬁrst-‘or(.ier I(‘)g‘lC.Wlth Linds r(:Vhec:e "
tifiers. Let ¥,, ..., X, bea series of n pairwise d}Sjomt e.lemems‘,d e
| <i<n, the clement & is 2 series of i distinct v'fmabies. 'c et
m;dcl with universe A, and let g be an assignment of elements 1n
individual variables of the language. Then
Xy @,)[ g} ifl the structurc

DN, [g]) is a member of Q,

M= (Qyy, - -
A gl
where for 1 <i<sn,

T ifx, = ¢ Yand Uk .l g}
drxlgl =4 F if %, = ¢ and A @,lg)
o {a;: N ,[g(¥,/a)]}  otherwise :

i ; of Ad,a;, ..., a
(“a" stands for an arbitrary sequence of m; elements b oo Qi
i m

and “g(x,/a;)" abbreviates el fag, ...(:\‘,»m./aig”), o

(“lc};xrly{ the quantifiers definable in Lindstrom's lqglc mclu‘;ic lal:.::;
tifiers of chapter 3 over (sequences of) pred.m.ates and rela 1’ ‘
luding individuals). In addition, all the Ioglca
definable as Lind-

logical quan
(but not over sequences inc
predicates and all the truth-fur .
hus we have the following: )
ifier of standard logic is defined as E =
here A isaset, P € A, and P is not empty.

1ctional connectives are

sirom quantifiers. T
A the class

(1) The existential quant
of all structures (A4, P>, W :
ve quantifier R? of chapter 2 (‘“‘there are more. ... than

7} The predicati
* - -‘— "f;iw defined as R? = the class of all structures {4, Py, P2, where

Adisasel, P, P, €A, and |P,| > | P, ). ‘
(3) The «well-ordering” relational quantifier of chapter 3, WO/; is i
defined as WO = the class of all structures (A, R), where A4 1s a sel,
R < A%, and R well-orders FId(R).
’ ntial logic is defined as N = the class of all

The negation of sente ‘ )
W e A is a set. (The structure (A, Fyisnon

structures (A, F), where sds
isomorphic to (4, TS by definition.)
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(5) The disjunction of sentential logic is defined as [) — the class of all
structures (4, §,, S, ), where 4 is a set and Sy, 8, are truth valiues
at least one of which is T. N
-My df:ﬁnition of logical terms in chapter 3 essentially coincides with
Lindstrém’s. There are some small differences in the construction of
models: Lindstrém’s models include the two truth values T and I as
comp911ents. This allows him to construe the truth-functional connectives
as logical quantifiers. {Indeed, 1 could incorporate the same device in m \
l}}eory.) In addition, Lindstrém does not consider structures with indi:f
vgduals. It is easy, however, to extend his definition to structures of this
kind, and given such an extension, all logical terms of (L) .will fall
ur.lder Lindstrom’s definition. There is also a minor difference bclwc::n
ljmdstr('im’s syntax and mine: whereas I constructed an n-place predica-
tive quantifier as binding a single individual variable in any n-tuple ;)l‘
well-formed formulas in its domain, Lindstrom’s predicative quantifiers
bind n distinct variables. Thus what | symbolize as ‘

(Qx)(D,x, ..., 0,x)
Lindstrom symbolizes as
(Qx,, ..., X ) (@ xy, ..., D, x,).

How?ver, since the two quantifications express exactly the same statement
the difference just amounts 1o a simplification of the notation. ‘

In ci.laplcr I, I pointed out that the apparatus of Tarskian odel-
theoretic semantics is “too rich” for standard first-order logic. We never
use the model-theoretic apparatus in its entirety to state the truth condi-
tions of sentences of standard logic, to determine standard logical truths
and consequences, to distinguish semantically between noncquivalcu;
standard theories, etc. In particular, the collection of infinite models is o
'a large extent redundant because any sentence or theory represented by an
infinite model is represented by uncountably many distinct infinite modecls
(th? Léwenheim-Skolem-Tarski theorem). The new conception of Iugicl
which cheivcd its first full-scale expression in Lindstrom, enriches ilu.z
expressive power of the first-order language so that the model-theoretic
uppara.lus is put to full use. The extended logical vocabulary allows (he
for.mauon of new sentences and theories, so evey model becomes the
unique representation (up to isomorphism) of some theory of the new
language. Put otherwise, every structure, up 1o isomorphism, is describ-
able by a theory of the generalized language, indeed, in Lindstrém's
system, by a single sentence (if the language has enough nonlogical con-
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stants of the “right” type). Thus, let W = {4, R, ..., R,)> be a structure
of type r = {m,, ..., m,>. Let Q be the class of all structures B isomorphic
to U, and let Q be the quantifier defined by Q. Let P,, ..., P, be distinct
relational constants of m, . .., m, places respectively (P, being a sentential
letter if m; = 0), and let ¥,, ..., X, be series of distinct variables as ex-
plained above. Then the sentence

6) (Qx,, ..., )P x,..., PX)

describes the unique structure 20 (up to isomorphism).

Lindstrom’s definition, however, is “from above.” As such, it does not
show us how to ““construct” logical terms over a model 2 using elements
in the universe of N as the initial building blocks. In addition, Lindstrom’s
definition of logical terms over a specific model 2 involves quantification
(in the metalanguage) over all models. Thus, to determine whether an
n-tuple of formulas (b, ..., ®,) satisfies a quantifier Q in A, we need
information not only on the extentions of @, ..., @, in A but also about
the class of all models for the language. In the next section | will propose
a definition of logical terms *“from the ground up.” This definition shows
how to build logical terms over ¥ out of constructs of elements of %1 and
without reference to the totality of models.

2 Constructive Definition of Logical Terms

The idea is this: Tarskian logical terms over a model 21 with universe A4
distinguish the form or structure of scts, relations, and functions over A.
Any two relations differing in structure will be distinguished by a logical
term on A4, but relations that share the same structure will not. Similarly
for sets and functions. So, to define the totality of logical terms on A4, we
first have to define the totality of “structures” over 4. Once we determine
the totality of, say, structures of binary first-level relations over 4, we can
define |-place binary relational quantifiers on A as functions that assign
the value T to some of these structures but not to others (allowing, of
course, for the two extreme cases of functions that assign the value T to
all binary relational structures, and to none). The totality of these func-
tions is the totality of binary relational quantifiers on 4. The definition will
be general enough to include all types of logical terms. For the sake of
simplicity 1 will, however, omit logical functors and logical quantifier
functors. It is casy to extend the definition to these logical terms as well.

Before | begin the formal presentation, T will explain the idea behind the
definition by refercncee to a simple example.
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An informal account

Suppose we have a universe with ten individuals, say Alan, Becky, Carl
Debra, Edfiy, Fred, Gary, Helen, Ian, and Jane. We want 1o iden;if;‘ull,
s:tructures involving these persons that are the extensions of (legitimate)
hrs_t-order logical terms over a model % with the above gronvp as its
universe. I will refer to this universe simply as “The Group.” ‘

. Let us consider several structures involving 1
signated by their initials):

N J
() {a,¢,d, i}
%) {a,b,c,d,e,f, g, h, i,f}
(10) {{a, c, d, i}}
(1) ({a,b,c, dye, fig, b i, j})
(12) {{a}, {c}, {d}, {h}}
(13) {{a}, {6}, {c}, {d), {e}, { £ ). (e}, th}, (i), {/it}
(14) {<a,a>, /) 1, <g, g, $<hi>}
(15) {La, ay, <b, b), {c, ¢, Kdod), Leced, (fy 3. 4¢g, &, <l
i, <y j)}
(16) {@, {<a, j>}, {<a, j>, <, 45, i Y, {<ay iy, <ev by, g, dyt}
(7) {{<a, b>, <b, ¢, <a, b {U, ad, <a, b, <J b} |
{<a, b, <b, d),<a, dd}, - {{oay, <a, o, $<J et
{<a, b, <b3 e),<a, e}, {<ha>, <a, dy, (, d>},

nembers of the Group (de-

)

(<@ 13, Cogd a8} (<15, i £ G 1)
(< 43, b, Ca b)Y, (G, i3, G g, <o g ),
(< 72 o> <@ i3}, (i3, G, < i) )

(18) (&5, <{<a J3}, b5, <{<e, d3, i Iy},
<esd, <g, ), 1)

(19) {<{<ar 03, b, >, Ca, ), a3, (< ay, Ca b, <1, b5}, o,
<@ b3, <bd>, Ca, d3), @b, (UG ad. e, G ool 1,
(U<, b3, <y ed, < ed) b, - (Cuay, Cady. ), 1,

>

v

K, 75, <) 8>, <a, g>}, ap, - - LA, <G, f>1. I IO% .
<a, j, <Gy by, <a, b)), ap, - A id<ivgd, o gdh, i,
A<a, 3, <j, i), <a, v}, a), - Dk, Goy), )
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How shall we decide which of these structures are the extensions of
logical terms over a model ¥ with the Group as its universe? The answer
follows directly from the criterion for logical terms in chapter 3: a struc-
ture is the extension of a legitimate logical term iff it is closed under
permutations of the universe. I will call such a structure a logical structure.
Thus if S is a logical structure that contains the element E, then S also
contains cvery element £’ that can be obtained from F by some permuta-
tion of the universe. Let us examine each of the above structures and see
what kind of structure it is.

Structure (7) consists of a particular member of the Group, Jane. Jane is
not preserved under permutations of the Group, because such permuta-
tions may assign Fred to Jane, and Fred is not Jane. Jane (like Fred, lan,
and the rest) is not a “logical individual.”” Indeed, it is a basic principle of
logic that there are no logical individuals and individuals do not constitute
the extension of any logical term.

Structure (8) is also not closed under permutations of the universe. A
permutation that assigns Jane to Alan, Alan to Carl, Helen to Debra and
Gary 1o lan, will carry us beyond {a, ¢, d, i} to {a, g, h, j}. Here (8) may
be the extension of the first-level predicate “x is redheaded,” or “x is a
leftist.” But (8) does not represent any first-level logical property of mem-
bers of the Group.

Structure (9), on the other hand, does represent a first-level logical
property, since (9) is preserved under all permutations of the universe.
Thus no matter who is assigned to Jane by a given permutation m, this
person is already in (9). Put difTerently, the universal set is its own image
under all permutations of the universe. We can associate with this set the
property of being a member of the Group or see it as the property of being
American, etc. No matter what other properties are “‘extentiated” in the
Group by the universal set, (9) is also an instantiation of the logical
property of self-identity over the Group and hence is a logical structure.

Structure (10), like (8), is not logical. It may be the extension of the
second-level predicate P is a property of redheads,” or ** P is an attribute
of leftists.”” But these do not coincide with any second-level logical proper-
ties of members of the Group.

Structure (11), however, is the extension of a logical term, namely the
universal quantifier over the Group.

Structure (12) is also nonlogical, since it is not closed under permuta-
tions ol the universe. Suppose that among the members of the Group Alan
is the only philosopher, Helen is the only linguist, Carl is the only his-
torian, and Debra is the only novelist. Then (12) may be the extension of
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lhe nonk?gical second-level predicate “ 2 is either a distinctive characteris
tic of phlhlosophers, a distinctive characteristic of linguists, a dislincliv-
characteristic of historians, or a distinctive characteristic ofn‘ovclisls " Bl(l:
(12) cannot be the extension of any logical term over the Group o
Slruclurc (13), unlike (12), is logical. Structure (13) 1s the cxl;:ns*iun of
the q.uantlfier “there is exactly one x such that” over . As g )rclli H t(
(!j) ns”the seco.nd-level attribute “P is a property of exactly lonc ::’d?’
:flielglr,ouc:? attribute whose extension is invariant under permutations of
) S.truclure (14) too is nonlogical. Structure (14) may be the extension f
x‘hkcs y's dog(s)” over the Group (each dog owner likes his own (l;) 1(s )
or n'ma).' be the extension of some other relation over the Group h:l(il)):
relation in question is not logical, and (14) cannot exhaust the Ic:;(l- on
of any logical term over the Group. e
Structure (15) is the familiar relation of identity. This relation is closed
under permutation of the universe and hence is logical. T
Structure (16) may be the extension of the sccond-level predicate * X s
the sgt of fnarried'pairs (husband and wife) in 1981, or X is l;lC qc; (j;
married pairsin 1982, or ... or Xis (he set of married pairs in 1990 ""I‘Im 5
(16) reflects the various matrimonial constellations within the Uriou o b
the lfast decade. For example, during the first five years there wcrcI 1:::
_mamages among members of the Group. Then in 1986 Alan married Jane
u? 1987 Carl married Debra and Jan married Helen, and in 1989 D;b
;:lfwon:ﬁ;x'i Carl arhld n?arried Gary, while Carl married Helen, who divorc;(‘;
0‘:«‘;18 G::O(::I:.omcle is clearly not closed under permutations of members
Structure (17), on the other hand, is closed under permutations. It
rcpresenls.a linear ordering of triples in general. Structure (17) makc:s.u
th extension of the relational quantifier “R is a strict linear ordering T
triples.” This quantifier, symbolized by Q, will appear in formulas Orb“‘"
form “(.Qx_V)(D.” Thus if three members of the Group grantiu'nl‘c;l fi "
Columbia College, and their graduation dates do not coincide ‘lhc slT(:l*"
ment “(Qxp) x graduated from Columbia College before wi‘ll t » out
true in the universe in question. o
Another nonlogical structure js given by (18). Suppose that there are
three children in the Group: Becky, born to Alan and Jane in 1986 FLl‘;‘L
born to Carl and Debra in 1987, and Fred, born 1o Gary and l);:l):’l( l)l/l
I9é(§ii.»A secc;nd-level predicate that records births in the (imup‘ ncx‘t to
w .
e:ten;ri)f:(o men to women, by year, as in (16)), may have (18) as its
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Finally, (19) is a logical structure of pairs consisting of a strict linear
ordering of a triple and its smallest element. This structure “‘extentiates’

a relational quantifier over pairs of a binary relation and an individual,
similar to (24) of chapter 3.

The principle of closure under permutations determines all the logical
terms over a given universe. Every structure containing sets of individuals,
relations of individuals, sequences of these, or sequences of sets/relations
and individuals and closed under permutations of the universe determines
a legitimate logical term over that universe. But the principle of closure
under permutations can be used not only to identify but also to construct
logical structures over a universe 4. The construction of such structures is
a very shmple matter.

Again, take the Group. Construct any set of members of the Group, say
ta, b, d, f}. Examine all permutations m of members of the Group and for
each such permutation m add m(a), m(b), m(d) and m(f) to your set. In
other words, close the set {a, b, d, f'} under all permutations of the uni-
verse, or ereate a union of all its images under such permutations. You will
end up extending {a, b, d, [} to (9), the universal set of the domain. This
set is the extension of the first-level logical predicate of self-identity over
the Group. .

In a similar manner you can start from the relation (14), and by uniting
(creating a union of ) all its images under permutations of the universe, you
will obtain the logical structure (15), the extension of the binary logical
relation of identity.

Likewise, (17) can be obtained from {{<a, ), <b, j), {a, j>}} by clos-
ing it under permutations. And so on.

Suppose now you start with {4, {a}, {a, b} }. Closure under permuta-
tions will give you a set whose members are the empty set, all unit sets, and
all sets of two clements. This set is the extension of the 1-place predicative
quantifier ““there are at most two™ over the Group.

I have characterized the logical terms over a single universe, but my
theory of logical terms says that logical terms do not distinguish between
universes of the same cardinality. That is, each logical term is defined by
a rule that does not change from one universe of cardinality o to another.
Thus, although the characterization of identity for the Group by (15)
would do, this is evidently not an adequate characterization for all uni-
verses with 10 elements. To capture the idea of a logical term, the rule
associated with such a term, rather than its extension in a particular

universe, should be specified. A very simple method of associating terms
with rules presents itself. The idea is this: instead of recording the actual
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extens?on of a given term in a given universe, let us record its “index
extension.”” Unlike its “object extension,” the index extension encodes :
rl‘zle' that applies to all universes of the same cardinality. We can theL:
dls%mguish between rules that do, and rules that do not corrcs;‘)ond tI
Iog:caﬂl terms over universes of the cardinality in qucsxion.‘ ( ’
I \.wll begin by specifying a fixed index set for all universes of a given
cardinality. In case of the Group, I will take 10, identified with ‘t!f;e set
{0,1,2,3,4,5,6,7, 8, 9}, as my index set. More generally, if 4 is a uni-
verse of cardinality a, [ will take the least ordinal ofcardinz;lity a, defined
as the set of all smaller ordinals, to be a standard index set for all l;niver
of cardinality . I will say that A is indexed by « or, in the example e:lb(:/ecS
'that t.he Group is indexed by 10. There ar'e, of course, many ways )f:
indexing the Group by 10. We may start any way we wam’, say aSSigll)i/;] v(()
to Alan, | to Becky, and so on, following the alphabetical order of (bhc
members’s first names. Next we associate with each structure generated
'from members of the Group its index image under the chosen indcx(ix y
Thus the index image of (14) is *

(20) {<0,0), <5, 55, <6, 6), (9, 9>}.

The index image of (15) is

(21) {<0, 03, <1,13,<2,25,<3, 3), (4,4, (5, 5),<6, 65, <7, 7,
<8,8> ¢9,9}.

And the index images of (7), (9), (11), and (16) are respectively

(22) 9,

(23) {0,1,2,3,4,5,6,7,8,9},

(24) {{0,1,2,3,4,5,6,7,8,9}},

(25) {5, {<0, 9>}, {<0,9), (2, 3), <8, 7>}, {0, 9>, €2, 7>, <6, 3>} }.

Note that it is essential that we do not treat the members of 10 in the same

way that we treat 10, namely as sets of all smaller numbers. The reason is

that if we identify 9 with {0, I, 2 i S
nac il {0, 1,2, ..., 8}, (22) will represent not only (7)

(26) {a,b,c,d, e, f,8,h,i}.

Sixzilarly, if we identify 0 with ¢, (25) will not distinguish between (16}
an

(27) {ay {(a’ j>}1 {<a7 .j)’ <C' d>» <" h>}9 J<(l, /)a <C’ h)! <g' d>} }
Therefore, 1 deﬁ'ne an index set to be a set of ordinals treated as individuals
(or as sets of pairs of the form (B, a), where a is some fixed object). More
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precisely, an index set for a universe of cardinality « is the set of all
ordinals smaller than the least ordinal of cardinality a, where the ordinals
in the index set are themselves not sets of ordinals.

Buck to the index set 10. I call a memberof 10 a 10-individual, a subset
of 10 a 10-predicate, and a set of n-tuples of members of 10 (n>1) a
10-relation. Thus (22) is a 10-individual, (23) is a 10-predicate, and (20)
and (21) are 10-relations.

I call any finite sequence of 10-individuals, 10-predicates, and/or 10-
relations a 10-argument. Such sequences constitute the arguments of logi-
cal terms over the Group. It follows that a 10-individual is a 10-predicate-
argument; a finite sequence of two or more 10-individuals is a 10-relation-
argument; other 10-arguments are 10-quantifier-arguments. I say that 10-
arguments are of the same type if they have the same structure: all indi-
viduals are of the same type, all sets of individ uals are of the same type,
and all n-place relations of individuals are of the same type. Sequences
of m elements of corresponding types are also of the same type. (The
formal definition of type is slightly different, but the notion of “same type”
is the same.) Thus
(28) <1, 2
and
(29) 3,4
are of the same type, and so are
(30) {8}
and
(31) {3,4.5,8},
as well as
(32) <1 {12}, KL DY

and
(33) <9$ {3v 41 5}5 {(61 7>s <71 6)})‘

| call two 10-arguments similar iff one is the image of the other under
some permutation of 10. Thus (28) and (29) are similar, but neither 30)
and (31) nor (32)and (33) are. Looking at the logical structures among (7
through (19), we sec that a logical structure is a structure of similar
clements of a given type. More accurately, a logical structure over the
Group is a structure of 10-arguments of a single type closed -under the
relation of similarity. Since the relation of similarity is an equivalence




Chapter 4
78

relation, each logical structure corresponds o a union of equivalenc
classes of similar 10-arguments of a given type. e
Nole that while some logical terms can be identificd with a single
equivalence class, others correspond to a union of equivalence Cl‘ls‘:‘ S ”I]’& .
example, “thcr'e is exactly one” is a function that gives to a l()-‘alr‘::l'nc:::
the value Tiff it is a member of the equivalence class of all sets s‘inﬁil'n‘ to
{0}, [{0}], but “there is ar least one™ assigns the value T (o mt.;mhc‘rs o(f
more than one equivalence class. So Pdefine a logical term over universe
with 10 elements as a function from all equivalence classes of a given Ltlbtf
to {T, F}. “There is exactly one” assigns the value T (o the cquivwlcn):[?(:
class [{0}] and F to all other equivalence classes of subsets of the lem;v d 1“
wgcr!eas “there is at least one” assigns the value T 1o [{0}] [{0, 1}) o
[{ \k}t;dzt’(‘:n‘t;:’di ;;3{ l93] and ,F to {)525] Feall such functions |()~()/J(*ralai‘sj
do o can we ds -operalors? Well, there are several things we can
o Wecan take a 10-operator of type ¢ (that is, an operator defined ove
equivalence classes of elements of type 1), a structure of the same :Wf
gcnerat@d from the Group (a 10-individual being matched with 1 m:m)l/[?t'
of the Group, etc.), and ask whether the latter satisfies (he ln"icwl [‘?“
defin.cd by llFe former. For example, we can take the cx[cnl‘;iill(t)l’LllllI:
p'redlcalc “x is a philosopher,” namely {a}, and ask whether i~l satisti "“L
glvc‘n I-Plilcc predicative quantifier over the Group. To find lh; ‘11;5 ‘\‘5 fl
we hrs.t index the Group by 10 (in any way we choose). Then we l"lkc\llu:
index image of {a} and see whether the quantifier in question (dcﬁl;cd a ']'L
10-operator) gives the value T (o [{index(a)}]. This test will show 1!1‘11‘ a
(34) (At least one x) x is a philosopher ‘
is true in the intended model of the Group (Alan is a philusopher), but
(35) 2x)xisa philosopher ‘
and
(36) (Vx) xisa philosopher
are false in the same model (Alan is the only philosopher).
Sec_:ond, we can take a structure over the Group, ask whether it defines
a Iogxca.I term over the Group, and, if the answer is positive, get a gener; &l
‘seman.trc schema of the logical term in question. We do this [)y cr::':m y 'd
index image of the structure and examining whether the result is ('1 ln&' "
f)l‘ equivalence classes under the relation of similarity. Thus (2I)~'1‘n i Hl‘t“
image of (15), is an equivalence class of all pairs similal: to (2)‘ 0)"" U;
therefore (15) does determine a logical term, namely identity, ;wcr dtll:(c
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Group. The index image (20) of (14) does not constitute such an equiv-
alence class (or a union of equivalence classes under similarity), and hence
(14) does not determine a logical term over the Group.

Third, we can take any 10-operator and use it as a blueprint for con-
structing a logical term over the Group. Thus, starting with any indexing
of the Group by 10, 1 take the 10-operator *“exactly one,” a function o
from all equivalence classes of subsets of 10 to {T, F} defined as

o[N| = TifT[N] = [{0}],
and transform it into a quantifier in extension by going through the
elements of the equivalence class(es) assigned T and constructing their
correlates over the Group: {a}, {b}, ctc. | then collect these correlates into
a set, and this is (13), the quantifier ““there is exactly one” over the Group.
Finally, [ define the totality of all logical terms over the Group as the
totality of predicates, relations, and quantifiers corresponding to all dis-
tinct 10-operators. Generalizing, | define the totality of logical terms as
functions that to each cardinal o assign an a-operator.

A formal account
First, let me make some preliminary remarks. In the foregoing definitions

I use the variable o to range over cardinals identified with equipollent least
ordinals. But while 1 take a cardinal o to be a set of ordinals, I require that
the ordinals in « are themselves not sets of ordinals. This requirement is
introduced to ensure that “the index image of x,” defined below, is one-
to-one. (We can treat ordinals as individuals, we can replace each von
Neumann ordinal o with the pair (8, a), where a is some fixed object, etc.)
Throughout the book I use lowercase Greek letters a, f3, y, 8, ... both as
variables ranging over cardinals and as variables ranging over ordinals. It
is always clear from the context what the range of a given variable is.

I identify a I-tuple with its member, ie., (x) = x.

In carlier chapters T often distinguished between predicates (1 place) and
relations (many places). Below 1 will talk only about predicates, referring

to relations as many-place predicates.

DEFINTION | Let A be a set indexed by a = | 4], where an indexing of 4
by « is a onc-to-one function from a onto A. The index image of x, i(x),
under the given indexing is as follows:

s lfved ix)=(filea)(x = ay).
s ifxc A n=1i)={{f,...,B>ea™ {ag,,...,a ) €x}


http:H/_nl,.rp
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TERMINOLOGY Let « be a cardinal number. An a-individual is a member of
a; an n-place a-predicate is a subset of a”.

If A is indexed by a = } 4|, then since the indexing function is one-to-one
and onto, an a-individual is the index image of some a € A, and an n-place
a-predicate is the index image of some R < A", under the given indexing.

DEFINITION 2 Let &k be a positive integer. [ call R(a) = {r,(a), ..., r(a))
an o-predicate-argument if each r(a), | <i<k, is an a-individual. 1
call R(a) = {r(a), ..., n(a)> an o-quantifier-argument if cach r(a),
| <7< k,iseither an a-individual or an a-predicate and at least one r'-(ot),
| i< k,isana-predicate. If R(x) is either an a-predicate-argument o.r an
a-quantifier-argument, [ say that R(a) is an a-argument.

Below I categorize various kinds of entities into “types.” To simplify the
type notation, I use two systems of categorization. Entities categorized by
the first system will be said to have marks, and entities catcgorized by the
second system will be said to have fypes. An entity with a type is a
function, and its type is essentially the mark (sequence of marks) of its
argument(s).

DEFINITION 3 A type is a sequence of natural numbers, {7,,..., 1),
k> 0. A mark is also a sequence of natural numbers, (my, ..., m)
k> 0. ’

CONVENTION [f pis the k-tuple
0, ..., 0,

ktimes

Isay that p = 0* If p = 0!, I say that p = 0.
DEFINITION 4 Ijet R(@) = {ry(a), ..., r(a)) be an a-argument. The mark
of R(a), mg(w), is a k-tuple, (m,, ..., m >, where for | < i<k,
= {0 if r;() is an a-individual,

"7 |n ifr(a)is an n-place a-predicate.
DEFINITION 5 Let R (a), Ry(2) be two a-arguments. R, (x) and R,(a)
are similar iff for some permutation m of o, R (a) = m(R,(x)), where

m(Ry(«)) is the image of R,(«) under the map induced by m (which I also
symbolize by m).

TERMINOLOGY  If R{«) is an a-argument, I designate the equivalence class
of R(a) under the relation of similarity, defined above, as [R(2)]. T call
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[R(a)] a generalized a-argument. If R(a) is of mark p, I say that [R(a)] is
also of mark p. I call a sct of generalized a-arguments an a-siructure.

DEFINITION 6 Let [R(a)] be the set of all generalized x-arguments of a
given mark. An a-operator is a function
o, [M()] = {T, F}

If [9(a)] is a set of generalized a-predicate-arguments, [ call o, an a-
predicate-operator; if [Ra)] is a set of generalized a-quantifier-arguments,
I call o, an a-quantifier. 1f the members of [9N(a)] are of mark p, I say that
0, is of type p. We can identify an a-operator with an a-structure, namely
the set of all [R(a)]'s in its domain such that o([R(0)]) =T.

To prove one-to-one correspondence between a-operators and logical
predicates and quantificrs of UL restricted to 91(|) = «), we need a few
additional definitions.
pEFINIFON 7 10 C is a logical predicate or quantifier satislying conditions
(A) to (E) of chapter 3, then the restriction of C to A, Cy, is as follows: Let
£.(1) be as in chapter 3, section 6. If £,(2) is a subset of B, x -+ x By (see
condition (C)), then Cy is a function from By x -+ x B, into {T, F} such
that Cylxy, ..., x) =Till g,y X e ().

LEFINITION 8 Let A be a set. If x € 4, then the mark of xis0. If x € 4",

n > 0, the mark of xis n.

DEFINITION 9 Let 91 be a model with universe 4.
« If Cis a k-place logical predicate, then the type of Cy is
0, ..., 0 =05
k times
« If Cis a k-place logical quantifier and x = {x,, ..., x> € Dom(Cy),
then the rppe of Cyis {1y, ..., 4y, where for 1 < i< k, 1; is the mark

of v; (sce definition 8).

I sum up the mark/type classification in table 4.1.

I now state a theorem establishing a one-to-one correspondence be-
tween a-operators and logical predicates and quantifiers of UL restricted
to an arbitrary model 91 of cardinality a.

Throres | Let 91 be a model with a universe A of cardinality . Let €|
be the set of all logical predicates and quantifiers of UL restricted to 2.
Let ¢, be the set of all z-operators. Then there exists a 1-1 function 4 from
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Table 4.1

The mark/type classification

Mark Type

a~u;fi|v1dualz 0 k-place a-predicate opcmtor‘,—;: 0k

n-p ;;ctzoa-pred;cate: n k-place a-quantificr, ¢, : {1, ..., 1*>*

:i: 1 k-place logical predicate, Py : 0t

xcAdA":n k-place logical quantifier, Qg : ¢y, ..., 01

. He i ] <ig k, iS lhe Hl'dlk i r{a Wll(}l(: R‘(X} = {(F,{a r{a €
l(e :). ¢ |( ); [ < l( )u LR *( )>]
l Here I ] < i< k is the mark Of X Where <Y Y € assuny
i = Ny ; “Xis Xy ooy Xy l)Ol"(Q\ ) (l ¢ ne
{ha‘ an empty n- lace Iel' t as : 1 I. > o sue
i " pty p') alion hdS a dlﬂblclll n]dlk ﬁ om an Cn]p(y Hl-pk{ce r(‘lu-

(Ou ) l 0
onto ’6 Q( deﬁ"ed as ’OHOWS. I Or eVL]y 0, € (' h((} is [he l()gl(_dl ferm
C a a a)

+ 0, and Cy are of the same type;

o il {8y, ..., Sy isak-tuple in Dom(Cy), then Cy(s,, ..., 5) =
0 [Ci(sy), - - - i(5) )], where for some indexing /ol A by,a i(s))
i(s,) are the index images of 5, ..., 5, respectively, under, I e

Proof See the appendix.

I symbolize the a-operator correlated with Cy as of.

Le't me give a few e.xamples of the a-operators corresponding to logical
predicates and quantifiers restricted to an arbitrary model 9 with a uni-
verse A of cardinality «. I will define the a-counterparts of the logical
predicates and quantifiers of the examples in chapter 3.

(37) The identity relation Jy corresponds to of, an a-predicate of type
0, 0), defined by 0! (X) = T iff for some fea, X = [(f, ).

(38) The universal quantifier Vy corresponds to o/, an a-quantifier of type
(1), defined by 0] (X) = Tifl X = [a].
(39) The existential quantifier 3, corresponds to o2, an a-quantifier of
type (1), defined by 0}(X') = T iff for some 5 < a such that s # ¢
X = [s]. h
(40) The cardinal quantifiers Cy correspond to o?, a-quantifiers of
type (1D, defined by 02(X) = T ifl for some s € « such that {s] = &
X = [s]. ‘
(41) The quantifiers “finitely many” and “uncountably many,” FIN,,

and UNC, correspond to o™ and 0N, a-quantifiers of type ¢1)

&

digged by of™(X) = Tiff for some s € a such that |s] < N,, X = [s];
0, C(X) = Tiff for some s € a such that |x] > X, X = [s]. '
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(42) ‘The quantifier “as many as not,” MNy, corresponds to o¥N an
a-quantifier of type {1, defined by o*N(X) = T'iff for some s S &
such that |s] > la — s, X = [s].

(43) The I-place quantifier “‘most,” MY, corresponds to oM, an
a-quantifier of type {1, defined by oM'(X) = Tifl for some s S «
such that s} > |a — s}, X = [s].

(44) The 2-place quantifier “‘most,” MY;!, corresponds to oM, an
a-quantifier of type <1, 1), defined by oM"'(X) = T iff for some
s, 1 < a such that [sn ] > |s — 1, X =[{s, D)

(45) The I-place “well-ordering” quantifier WOy corresponds to oo,
an a-quantifier of type (25, defined by o¥°(X) = T ifl for some
» < o? such that r well-orders FId(R), X = [r].

(46) The (second-level) set-membership quantilier SM, corresponds to
o™ an a-quantifier of type <0, 1>, defined by oM(X) = Tiff for
some fleaand s €« such that f e s, X =[{B, ]

(47) The quantifier “ordering of the natural numbers with zero,” NZy,
corresponds to oM an a-quantifier of type (2, 0, defined by
oM (X) = Tiff for somer < «? and B € a such that (Fld(r), 7, =
(o, <, 0, X =[<r, Bl

(48) The “the” quantifier, THEy, corresponds to o
type <1, I, defined by oJ"5(X) = Tiff for some s, 1 & such that

Isl=landsc, X = [¢s, )

I define logical operators as follows:

T an a-quantifier of

DEFINITION 10 A logical operator of type 1 is a function that assigns to
each cardinal  an a-operator of type f.

3 Unrestricted First-Order Logic: Syntax and Semantics

I can now delincate the syntax and the semantics of first-order logic with
‘Tarskian logical terms satisfying the metatheoretical requirements spe-
cified in chapter 3 and defined by means of logical operators. As before, 1
will leave logical functors and quantifier functors oul for the sake of

simplicity.

Syntax
Let me first present the preliminary notion of the type of a constant. A type

¢ is, recall, a sequence of natural numbers <{fy, ..., iy, where kis a

T
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posmv.e integer. Intuitively, the type of a constant gives us information
about its arguments.

* Individual constants do not have a type (since they do not have
arguments).

* The type of logical and nonlogical k-place first-levet predicates is
0,...,0) =0~

k times

* The type of k-place quantifiers is ty, ..o, 1, where for some
I <i<n, k;> 0. (Intuitively, if the ith argument of a k-place
quantifier Q is a singular term, 1, = 0; if the ith argument is an n-place
first-level predicate, 1, = n.)

Primitive symbols
1. Logical symbols
a. sentential connectives: any collection that semantically forms a
complete system of truth-functional connectives, say ~, &, v
=, ) ‘
b. n logical predicates and/or quantificrs, Cp, .., G of types
Iy, ..., t,respectively, n > 0
2. Variables: Xy, X3, ... (informally: x, p, z, v, )
3. Punctuation symbols: (a) parentheses: (, ); (b) comma: .,
4. Nonlogical symbols
a. individual constants: a,, ey, m >0
b. predicate constants: for each n > 0, a finite (possibly empty) set of
n-place predicates, Py, ..., Pr.

Well-formed formulas (wfs)

1. Terms: Individual constants and variables are terms,
2. Atomic wifs: If S is an n-place predicate (logical or nonlogical) and
Si5...5 8, are terms, then S(s,, ..., s,) is an atomic wir.
3. Wits
a. An atomic wiT is a wif.
b. If ®, ¥ are wifs, then so are (~D), (D&W), (D v W), (D - V) and
(D P).
¢. IfQis a quantifier of type r = (1, ..., 1>, nis the maximum of
{tis o oo}, xy, .., x, are distinct variables, and B, ..., B arc
expressions such that for each | <i <k, ifs, =0, B;is a term and
otherwise B, is a wif, then ((Qx,, ..., X HBy, o, BY))is a wil,
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| follow the convention that outermost parentheses in wffs may be
omitted.

Bound and free occurrences of variables in wffs 1 say that x occurs in an

expression ¢ iff either x = e or x is a member of the sequence of primitive

symbols constituting e.

» There are no bound occurrences of variables in terms.

« If & is an atomic wif, then no occurrence of x in ® is bound.

« If disa wil of the form ~W, then an occurrence of x in ® is bound iff
it is bound in W.

s Ifdisawlfof the formWY&Z, W v E WY-E or¥—E, thenan

occurrence of x in & is bound iff it is either a bound occurrence in ¥

or it is a bound occurrence in Z.

If @ is a wil of the form (Qx, ..., x,)(B,, ..., By), where Q is of type

{4, .., iy, then an occurrence of x in ® is bound ifT it is an

occurrence in some B;, 1 < i < k, such that either x is bound in B, or

forsomel <m<t, x=x,.
« An oceurrence of v in @ is free iff it is not bound.

The idea is that if Q is, say, of type {1, 2, 0> and R, R, are two 2-place
predicates of the language, then in the wif

(Q‘\‘i ,V)(Rl(x': _V)v RZ("’? ,}')9 x)

Q binds the first two occurrences of x and the second occurrence-of y, but
the third occurrence of x and the first occurrence of y are free. To make
the notation more transparent, I sometimes indicate the type of a quan-
tifier Q with a superscript. That involves rewriting the formula above, for

example, as

QM 2%, »IR (x, ¥}, Ry(x, 3), X).

Sentences A sentence is a wil in which no variable occurs free.

In practice | will sometimes omit commas separating the variables in a
quantifier expression. Thus instead of (Qx, y), I will write (Qxy). I will also
use various types of parentheses.

Semantics
Let ¥ be a first-order logic with syntax as defined above. Say & has
Tegicalprodioares 10 T Tagical guantifizra Q. (), . nonlogical
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F,,. Each logical predicate or quantifier C of type 1 is semantically defined
by means of a logical operator o€ of the same type.

Let U be a model for the language with universe A of cardinality «,
defined relative to the nonlogical vocabulary of .% in the usual way. That
is, W= (4, a¥,...,a},P\,..., P} ). Letg beanassignment of elements
in A to the variables of the language. I define an extension of g, g, to the
terms of the language as follows: For a variable x, g(x) = g(x). For an
individual constant a, g(a) = a¥.

DEFINITION OF SATISFACTION 9 satisfies the wiT @ with the assignment
g— U = ©[g]—iff the following conditions hold:
1. Atomic wifs

a. Let P be an n-place nonlogical predicate and s, .. ., s, terms. Then

Uk Plsys ..., s)[8] T CB(sy), ., B(s,) > € P

(As before, I identify a I-tuple with its member.)
b. Let V be an n-place logical predicate and s, .. ., s, terms. Then

Ak V(s,,...,s,)[g]iff there is an indexing 7 of A

by « such that o) [<i(g(s,)), ..., i{&(s,)))] =T,

where for 1 < j < n, i(g(s;)) is the index image of g(s;) under 1.
(See definition 1.)

2. Nonatomic wifs
a. Let ®, ¥ be wifs.

U= ~0[g]iff A d[g];
Ak (D& V) [g] iff A= Dlg] and A = ¥[g]

b. Let Q be a quantifier of type <t,, ..., £, ), let n be the maximum of
{t;,..., .}, let x,, ..., x, be distinct variables, and let B,, ..., B,
be expressions such that foreach 1 < j < k,if ;= 0, B isa term,
and otherwise B; is a wif. Then

NE= (Qxy, ..., x,)(By, ..., B)[gliff there is an indexing /
of A by a such that o2[<i(gs, (B))), ..., i(£s, (B))]) =T,

where for 1 < j <k,

if ;= 0, then g; (B) = g(B);
ift;21.g; (B)={<a,.....a0>e 4" Uk
Riglx. :V (v 21

rd W e e e~ R T -
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DEFINITION OF TRUTH IN A MODEL  Let ¥ and 2 be as above. [.‘ct ®bea
sentence of £ Then ® is true in A—A = G—iff for some assignment g
of elements in A4 to the variables of the language, 2= D[g].

Examples Let 21 be a model with the Group as its universe. I‘,et Pand M
be the I-place predicates “x is a philosopher” and “x is a mathe-
matician” respectively, P* = {Alan}, and M" = {Alan, Jane}. Let G bﬁ
the 2-place relation “x graduated from Columbia College betjore y
and G = {(lan, Carly, (Carl, Gary), <lan, Gary)}. The q'uanllfétzrs 1§
(“there is exactly one”), Mt !(“most —_ are...”), and TL-F ( t.hrce
individuals stand in the linear relation , the first being .. ..”"), restricted
to N, are definable by the following 10-operators:

(49) oYy : EQ(P(10)) — {T, F}, where 0!,[X] = T iff X is similar to {0}.
(50) ot EQ(P(10) x P(10)) — {T, F}, where oKX, Y =Tiff

10
XN Y|>|X- Y[ ‘
(51) oIL"FEQ(P(10%) x 10) - {T, F}, where ol FIKR, D] =Tiff
(R, x) is similar to ({€0, 1), <1, 25, €0, 251,05,
EQ(Z) is the set of all equivalence classes of members of Z under the

relation of similarity. - . o
Let I be any indexing of the Group by 10, say indexing by alphabetica

order of members’ first names. Then

(52) There is exactly one philosopher,

or formally,

(53) (M x)Px,

is true in 2, since i(P™) = {0}.

(54) There is exactly one mathematician,

or,

(35) (M) My

is false in M. since (M ™) = {0.9) is not similar to {0}.

{241 NMagr philssaphers are 2lin mathemariciang
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or,
(59) (TL-Fxy)(Gxy, lan),

is true in 9, because ({8, 2>, <2, 6>, <8, 6>}, 8> is similar to
<0, 1), <1, 2), €0, 2>}, 0).

4 Higginbotham and May’s Relational Quantifiers

My characterization of logical terms as logical operators puts all logical
predicates and quantifiers on a par. It captures a basic principle of logi-
ca.lity. namely that to be logical is to take only structure into consider-
fillon. Also captured is the complementary principle that cvery structure
1s mirrored by some logical term. It is, however, interesting to divide the
fzx%)anse of logical terms into groups according to significant character-
istics. Mostowski’s work allows us to single out predicative quantiers by
identifying a method of individuation particular to these quantifiers. In
“Questions, Quantifiers, and Crossing” (1981) J. Higginbotham and R.
May distinguish four groups of relational quantiliers of the simplest kind,
type {25, by means of the invariance conditions they satisfy. Their criterion
orders simple relational quantifiers according to their complexity, from
quantifiers that can only distinguish the number of’ pairs a binary relation
R contains to “fine-grained” quantifiers that take into account the inner
structure of R.

Given a universe A4, Higginbotham and May define a binary relational
quantifier over A as a function ¢: P(A x A) - {T, F}. They consider the
following invariance conditions:!

a. Invariance under automorphisms of A x A

b. (1) Invariance under l-automorphisms of A x A
(2) Invariance under 2-automorphisms of A x A
Invariance under pair-automorphisms of A x A
. Invariance under automorphisms of A

e o

F}iven aset A, m:A X A— A x Aisa(set) automorphism of A x A ill
m1s a permutation of 4 x A,

An automorphismm: A x A » A x Aisa L-automorphism of 4 x A iV
foralla, b,a’, b, ¢, d, ¢',d € A,
mia, b) = (a', b') and m(c, d) = (¢’, d') implies (a = ¢ iff &’ = ().
Thatis, misa I-automorphism of 4 x A iff there is an automorphism
of A such that for all g, be 4,

m(a, b) = (m,(a), ')
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for some o' € 4. Informally, if p, and p, are pairs with the same first
clement, then a l-automorphism m will assign to p, and p, pairs that also
share their first element. In such a case I will say that m respects first
clements.

Anautomorphismm : A x A > A4 x Aisa2-automorphismof A x Aiff
foralla, b, a', b, ¢, d, ', d € 4,

mi{a, by = (', b’)and m{c, d) = (¢’, d’') implies (b = d iT b’ = d').

Thatis, mis a 2-automorphism of 4 x A ifl there is an automorphism m,

of A such that forall a, b e A,

m(a, by = (a’, m,(h))

for some o’ € A. Informally, m respects second clements.
Anautomorphismm: A x A — A x Aisa pair-automorphismof A x A

T mris both a l-automorphism of 4 x A and a 2-automorphismof 4 x A.

That is, » is a pair-automorphism of 4 x A iff there are automorphisms

niy ., my of A such that foralla, be 4,

m(a, by = (m,(a), my(h)).

In such a case I will say that m respects both first and second elements.

The invariance conditions (a) to (d) increasingly extend the notion of
relational quantifier, with (a) reflecting a minimalist approach and (d) a
maximalist approach. All quantifiers satisfying (a), (b), or (c) satisfy (d),
but some quantifiers satisfying (d) do not satisfy (a) to (c); some quantifiers
satisfying (¢) do not satisfy either (b.1) or (b.2), etc. The more invariance
conditions a quantifier satisfies, the less distinctive it is. A quantifier satis-
fying (a), for instance, does not distinguish between relations that have the
same number of clements but otherwise differ in structure (for example,
the once is a well-ordering relation, while the other ts not). Quantifiers
satisfying (d) are those for which 1 developed my “constructive” defini-
tion. Ipso facto, all quantifiers satisfying Higginbotham and May’s condi-
tions fall under my definition. Let us describe the quantifiers in each of
Higginbotham and May’s categories.

Invariance condition (a) The relational quantifiers satisfying (a) consti-
tute an immediate extension of Mostowski’s quantifiers and are definable
by his cardinality functions. These quantiliers treat relations as sets, and
clements of relations, i.e., n-tuples of individuals, as individuals. 1 will call
these weak relational quantifiers.

The contribution of weak relational quantifiers to the expressive power
of first-order logic is straightforward. They allow us to enumerate the
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f:lemem's of relations: * pair(s) of individuals in the universe stand(s)
in the binary relation R,” and similarly for n-place relations. Thus we can
define the 1-place weak relational quantifier

(60) (Most! xy)Rxy

(“Most pairs of individuals in the universe fall under the relation R") by
the same function 7 that defines the I-place predicative “most.” Similarly
the 2-place relational “most,” ’

(61) (Most!'! xp)(Rxy, Sxy)

(““Most pairs standing in the relation R stand in the relation $), is defined
by the same cardinality function as the 2-place predicative “most.”

WFak relational quantifiers do not exhaust the cardinality properties of
relations, however. Among the cardinality properties not expressible by
weak relational quantifiers is the following:

(62) The (binary) relation R has « elements in its domain,

where o is z? cardinal number. Instances of (62) can be stated using a pair
of predicative quantifiers:

(63) (lx x)(3y)Rxy

But no weak relational quantifier is equivalent to the pair (la x)(3r).

lnvar.ia.nce condition (b) The relational quantifiers satisfying invariance
condition (b) essentially say how many individuals in the universe stand
to how many individuals in a given relation R. The difference between the
Fwo conditions (b.1) and (b.2) is in the direction from which the relation
is ;?erceived. Quantifiers satisfying the first condition basically say that «
obj.ects in the universe are such that each stands in the relation R to f
objects in the universe. Quantifiers satisfying the second condition say that
there are f objects in the universe to each of which a objects in the universe
s‘tand in the relation R. (The properties predicated on relations by quan-
tifiers satisfying (b.1) and (b.2) can be more complex than those described
apove, but for my purposes it suffices to consider the basic propertics.)
SIHCC the two conditions under (b) are symmetrical, it is enough to discuss
just one. Following Higginbotham and May, I will concentrate on the
ﬁrs't. Higginbotham and May prove that all quantifiers satisfying (b)
assign cardinality properties to relations in their scope. A detailed descrip-
tion and proof of their claim appears in the appendix.
_Intlfitivcly, we arrive at the cardinality counterparts of quantifiers satis-
fy‘mg invariance condition (b.1) in the following way: Given a model 91
with a universe A of cardinality « and a binary relation R € 4%, we can
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describe R from the point of view of its cardinalities by stating, with
respect to each element of 4, to how many objects in A it stands in the
relation R and to how many objects in A it does not stand in the relation
R. We can thus represent the cardinalities of R by means of a function

fra= (B )

where a serves as a set of indices for the elements of A (as in section 2
above) and (f3, 7), is the set of all pairs of cardinals B, y whose sum is a.
Given an element a, € A4, f(8) is the pair of cardinals {f, y) such that a,
stands in the relation R to f individuals and a, does not stand in the
relation R to y individuals. But quantifiers do not distinguish which ele-
ments of .4 are associated with a given pair of cardinals {§, y). Therefore,
Higginbotham and May construct equivalence classes of functions f under
a similarity relation. Quantifiers are then defined as functions from such
equivalence classes to truth values. As you can see, there is a certain
resemblance between Higginbotham and May's cardinality functions and
my a-operators. Indeed, 1 arrived at the idea of my definition by generaliz-
ing Higginbotham and May's method.

Invariance condition (¢) Quantifiers invariant under pair-automorphisms
of A x A distinguish identities and nonidentities both in the domain and
in the range of a given relation R. These quantifiers can express such
properties of relations having to do with identities as, €.8., “____isa

one-to-one relation.”

Invariance condition (d) T will call relational quantifiers satisfying invari-
ance under automorphisms of A4, but not the other invariance conditions,
strong relational quantifiers. Strong relational quantifiers are genuine logi-
cal terms, and they can be represented by logical operators defined in
section 2 above. These quantifiers make the finest distinctions among rela-
tions that logical terms are capable of making. Below I will give several
examples of strong relational quantifiers in natural language, and also of
weaker relational quantifiers satisfying (a) through (c).

5 Linguistic Applications

Several “types” of logical terms of UL have received ample attention in
logico-linguistic circles, usually under the heading of “generalized quan-
tifiers.” In chapter 2 we saw Mostowskian quantifiers being used to inter-
pret determiners. In the present section I will further expand the domain
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of applications of UL quantifiers. My discussion will not assume the form
of a survey. Instead, I will describe applications of logical quantifiers that
came up in the course of my own investigations. (Other works devoted to
linguistic applications of, or theoretical linguistic approaches 1o, gene-
ralized quantifiers are listed in the references. The reader s referred to
Barwise and Cooper, Higginbotham and May, Kcenan, Keenan and
Moss, Keenan and Stavi, May, van Benthem, and Westerstahl, among
others.)

I will begin with a new application of Mostowskian qQuantifiers and then
proceed through Higginbotham and May’s categorics to describe increas-
ingly strong relational quantifiers in natural language.

Generalized operations on relations

In standard first-order logic we use the existential and universal quantifiers
as operators that, given two binary relations R and S, yield new relations
called the relative product of R and S RI”S - and the relative sum of R
and S— R[SS. These are defined (by dual conditions) as follows:

RIPS =4 {<x, > : (z)(xRz & zSy)}
RBS =4 {<x, > 1 (Y2)(xRz v z8y)}

Linguistically, we can interpret the relation “being a paternal uncle of ™
as the relative product of the relations “being a brother of™ und “being a
father of,” etc. By generalizing the definitions of relative product and sum,
we arrive at the notion of a relative product/sum modulo Q. where Qisa
l-place Mostowskian quantifier. I define the relative product and sum of
binary relations R and § modulo Q as follows:

RIGS =4 {<x, pd (Q2)(xRz & z8y)}

RIGS =4 {<x, > (Qz)(xRz v 253}

(As in the traditional product and sum, if Q, is the dual of Q,, the
definiens of RG, S is the dual of the definiens of R3,S) T will call the
standard relative product the relative product modulo 3 and the standard
relative sum the relative sum modulo V. The notions of relative product
and sum allow us to define relations that include a “cardinality factor.”
The operation of relative product modulo Q appears to be especially
useful, as can be seen in the following examples:

(64) xis a friend of many people who know y.

(65) x has few common acquaintances with .

When R is an ordering relation, we can define relations that have to do
with distance or relative position in R uas relative products of R modulo

e
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the appropriate Q. In this way we can define
(66) There arc n elements between x and y in R.
(67) xis far behind/ahead-of y in R.
(68) xis second best to yin P. ‘ N
Here P is a property (e.g., diving) that determines the field of an-implicit

‘dering relation R, “‘being better at....”
m'(;c»:fl:-l:)lzlce predicative quantifiers can also be used to deﬁ.ne sets and
relations that include a cardinality factor. | f:a_ll' the 0pc;rallon of con—’
structing such a set (or relation) from two initial relations R fmd f
“a generalized relative product of R and R’..” For example, Lfsmlg t t:
quantifier “*same number,” defined in the obylous.way, we can single ou
the median element in a linear ordering relation with
(69) (sume-number z)(xRz, zRx).
In a similar way, we can define “x is relatively higl}/low in R.” o

It is often useful to consider “semilinear” orderings, an ordering like a
linear ordering but with the requirement “(Vx)(Vy)(x”< yvy> x VX =
1)” replaced by “(Vx)(Vy)(x <y v » > VXA ) . wherfbx ll:. :(;21'«3
équivulcnce refation, for example “bcmg in the sarne income brac ’e .
Thus if R is a semilinear ordering relative to “bcmg in the §ame l-ncome
brackel as,” (69) will give us the set of all elements in the middle mc?me
bracket. Using a second predicative quantifier, we can Now express s.t‘%te‘
ments indicating how many individuals occupy a certain relative position
in R. For example, . .
(70) Proportionally more women hold high-paying jobs in San Diego

than in other cities in the country. .

Other statements stating formal properties ofgeneraliz.ed relative prt')duc?s
of R and § can be constructed using relational quantifiers defined in this

chapter.

rak relational quantifiers . '
!W\tf?: indicate solme of the uses of weak relational quantlﬁe.rs. Given a
relative product modulo Q, e.g., (66), we can use weak relational quan-
tifiers to make statements of the form
(71) There are m pairs whose distance in R is n. . .
Other cases of quantification where pairs are lakf:n as basic units are
also naturally expressed using weak relational quantifiers. For example,

(72) Most divorced couples do not remarry,

e mip ot

g apicentl

el

e S s v i o~ b e At mom 3 iy e e



T -

Chapter 4 04

Consider, however,

(73) Four married couples left the party.

The most natural construal of (73) as a weak relational quantification fails.
S}xpposc thz}t exactly 43” 14, is a 2-place weak relational quantifier over
binary rela%lons. Then, since !4 is essentially a Mostowskian quantifier, we
can define it by a cardinality function as described in chapter 2 Tha‘l is
given a universe 4, 1} is a function such that for any qu . ,

adrupl

wherex + S+ y + 6 = |A], . uple s [l 0
i a, B,y,0)=Tifa =4.

This means that if R and S are binary relations on A4,

4(R, S)=TIif |[RNn S| =4.
Now, if we interpret (73) as
(74) (14 xy)(x is married to y, x and y left the party)

then (?4) turns out true when the number of married couples who left the
party is two, not four. (This is because there are two pairs in a couple.)
Thus (74) is an incorrect rendering of (73). There are various remedies l;)
the problem. Among them are the following:

a. We can treat binary relations as sets of couples (a couple being an
unordered pair) and then define weak relational quantifiers as regular
Mostowskian quantifiers by setting numerical conditions on the
ato.ms of tbc Boolean algebra generated by n-tuples of such “sets” in
a given universe 4. The couple quantifier 14 will thus be defined by
the same ¢-function as the corresponding quantifier based on pairs:
!Q(R, S) = T iff the intersection of the two sets of couples R and S‘(
yields a set of 4 couples. ‘

b. Wc can cqnstrue couple quantifiers as strong relational quantifiers
i.e., quantifiers satisfying invariance condition (d). ‘

‘ By adopting s'tralegy (a), we will be able to use weak relational quan-
tifiers to symbolize the following English sentences:

(75) Half the students in my class do not know each other.
(76) Most of my friends have few common acquaintances.
(77) Few townsmen and villagers hate each other.

(78) Almost all brothers compete with each other.

Thus, for instance, (75) will be symbolized as

(79) (Half xy)[x is a student in my class & y is a student in my class &
x # y, ~(x knows y & y knows x)].
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But to interpret
(80) Most younger brothers envy their elder brothers

we must go back to quantifiers based on pairs.

I should say that weak relational quantifiers (based on pairs or on
couples) do not exhaust the possibilities of interpretation of the sentences
in our examples. On my interpretation, (75), for instance, is true if my class
consists of four students, a, b, ¢, and d, and one of the students, say a,
does not know (and is not known to) anyone in the class, but the rest—b,
¢, and d-- -all know each other. Someone may wish to interpret (75) so that
it will come out false in the situation just described. This can be done by
adopting stronger relational quantifiers.

Linearity quantifiers
Higginbotham and May’s I-place relational cardinality quantifiers over
A universe A, i.c., 1-place binary quantifiers invariant under |-automor-
phismof A x A4, essentially say how many individuals stand to how many
ndividuals in a given binary relation R. But this is exactly what a linear
quantifier prefix with two 1-place predicative quantifiers says about a
relation R in a model 2 with a universe A. For that reason [ name
relational cardinality quantifiers linearity quantifiers. ‘Higginbotham and
May called the operation of constructing a relational quantifier equivalent
to a linear quantifier prefix with two predicative quantifiers absorption. A
relational quantifier constructed by absorption is said to be separable.
The rule of absorption is this: if Q, and Q, are two |-place predicative
quantifiers over a universe A and R is a binary relation included in A%, then
the quantifier prefix (Q,)(Q,y) will be absorbed by (Q,xy), where Qs is
a linearity quantifier over A such that

QyR=T ifQ,({lae 4 1Q,({be A caRbh)=TH=T.

We can generalize the operation of absorption to n-place quantifier
prefixes by defining 1-place linearity quantifiers on n-place relations over
a universe 4. A l-place linearity quantifier on an n-place relation over a
universe A is a function
g: P(A") — {T, F}
that is invariant under linear automorphisms of A" 1 define “linear auto-
morphism of A"" as follows. The function
m A" — A"
is a linear automorphism of A" iff m is an automorphism of A" and for

any ul,az,...,a,,,u’,,u’z,...,a,',, by, by, s bas b1, 4y ...rbpE A the
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following holds:

lf'm(a,, ay, o, a,)=(dy, ay, oo ay)yand by by, ... b)) =
(b1, b3, ..., b,), then

L. a; = b, iffd} = b}, and

2. ifa; = by, then a, = b, ilT a), = b3, and

f’— I.ifa; =b,andu, = b,and...anda,_, =b, ,,thena, , =b
lﬂ-a,:-l =blll"l' ’

n-1

To vrcturn to absorption of two linearly ordered I-place predicative
quantifiers, let 4 be a set of n children, n > 3. Consider the sentence

(81) Three children had three friends each.

We can formalize (81) with either (82) or (83) below:

(82) (13 x)(!3 y) x is a friend of .

Here}3 is a 1-place predicative quantifier defined, for A4, by a Mostowskian
‘functlon t such that for any (k, m) in its domain (k + m =n), (k. m) =T
iff k = 3. : o

(83) (3/3 xp) xis a friend of y.

Here 3/3 is a linearity quantifier of type (2) defined, for A, by a Hig-
gmbothtum-Muy function £ such that for any [f] in its domain
(Jin—=(j, k),), k[ f1=Tiff fis similar to some f/* such that

S*O0) = f*(1)=f*(2)=(3,n —3)and
TG S = 1) £ Gun =),

lntuiti.vely, the function /* assigns 3 to children 0, I, and 2 as the number
of‘thcn* friends, and n — 3 as the number of their nonfriends. To all other
chxldrgn f* assigns a different combination of numbers of friends and
n?nfrlends. (For the sake of simplicity I assumed that a child can have
himself or herself as a friend.) ‘
Note, however, that lincarity quantifiers on binary relations can also
e‘xpress' Boolean combinations, possibly infinite, of linear quantificr pr‘c—
hxc§ wup predicative quantifiers. Thus, consider the following infinite
conjunction in which “number” stands for “*natural number” and n ranges
over the natural numbers: ‘

(84) One number has no predecessors, and two numbers have al most
one predecessor, and three numbers have at most two predecessors
and ..., and n numbers have at most n — 1| predecessors, and | .

Semantics from the Ground Up - 97

This infinite conjuction cannot be formalized in first-order logic with
predicative quantificrs, but it can be formalized in first-order logic with
lincarity quantificrs on binary relations. 1 will symbolize it as

(85) (n atmost (n — 1) xp)x hasa predecessor y,

where *n -at most (# — 1) is defined, in a universe A of cardinality N,
by a function

k:|F} = {T, F}

such that for any [f1e [FLk[f1=Tiff fis similar to the function

./l* : Nl) - ([\v I)Nuv

which is such that for every n < N,

[Hn) = (1, Ry).

Intuitively, f represents a relation R with field of cardinality X, such that

under some indexing of the universe 4 by Ry, do stands in the relation R

{o no objects in A, @, stands in the relation R to one object in 4, a, stands

in the refation R to two objects in A, and so on. Clearly, k also defines the

complex quantifier in (86):

(86) Onc number has no predecessor, and one number has exactly one
predecessor, and one number has exactly two predecessors, and ...,
and one number has exactly n predecessors, and ...

Note that k need not express a condition which exhibits a regularity.
Using a quantifier k, similar (in the intuitive sense) to k, we can represent
an irregular situation like the following:

(87) Two children have two friends each, and ten children have four
friends each, and twelve children have nine friends each, and . ..

Another kind of cardinality condition expressible with linearity quan-
tifiers, but not with a standard prefix of two I-place predicative quanti-
fiers, is exemplified by the following sentence:

(88) “There is a great variance in the number of friends of cach of these
youngsters

(which could also be phrased as “These youngsters differ considerably in

the numbers of their friends™). Assuming, for simplicity, that the universe
consists of “these youngsters” and that the friends in question are
members of the universe, (88) could be expressed as

(89) (Great variance vv) voungster x has youngster v for a friend,
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where for each universe 4 of cardinality a, “great variance” is defined by
the function & such that for every [ /] € Dom(k),

k([f] = T iff there is a wide distribution of cardinals y

such that for some f € a, f(fi) = (y, « — y).

We can construct 2-place linearity quantifiers, of type <1, 2, that will
gna.ble us to restrict linear quantification to 81 R (R with it; domain
hmuleq to B). If we want to symbolize the following sentence without
assuming the universe consists of “these youngsters,” we will use the
2-place “‘great variance” quantifier.

(90) There is a great variance in the number of words in the active
vocabulary of each of these youngsters.

This sentence will-be rendered ““(Great variance xp)(x is one of these
youngsters, x has word y in his active vocabulary).”

' LeF us nowvtum to absorption of two 2-place predicative quantifiers. A
linguistically interesting case is that of quantifications of the form

O (Qix) (P, (Q.p) (¥, E)),

where @, ¥, E are well-formed formulas. The quantifiers in (Y1) are

absorbed by the quantifier (Q,/Q,)" %2, defined, for a universe A, as
follows: for every B< A and C, D < 42, ‘

(Qi/Q)A(B, C, D) =Tiff (Q,)4({ae A ae B},

{aeA:(Q) ({bed:Ca,bdeCl, {bed:{abyeD})=T}) =T.

It is easy to see that (91) is equivalent to

(92) ((Qi/Q2)""*2xy)(®, ¥, E),

whose s?tisfaction condition in a model U with a universe A by an assign-
ment g1s

A= (Qi/Qx)) (@, ¥, E)[g] iT (Q)4({a € 4 : A= blg(x/a)]},
{aed:(Q)a({be 4: Uk Y[g(x/a)(y/b)]},

{ped: Uk Elg(x/a)(y/D)]}) =T} =T.

This definition .of absorption is similar to one proposed by R. Clark and
E. L. Keenan in “The Absorption Operator and Universal Grammar”

(1986). ~But lherg is an essential difference: whereas I constructed the
absorption quantifier Q,/Q, in such a way that in the formula

(Q/Q)(dx, Wxy, Zxy)
Q,/Q; binds all free variables, Clark and Keenan defined Q,/Q, in such
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a way that it does not bind the occurrence of x in Wxy. The reason the
absorbing quantifier has to bind x in Wxy is simple: Q,/Q; has to be so
defined that

(93) (Q,/Q ¥y}, ¥, E)

is logically equivalent to

(94) (Qx)(®, (Q (Y, E)),

no matter what well-formed formulas @, ¥, and E are. Now it is an
essential feature of (94) that any free occurrence of x in®, ¥, or Zis bound
by Q,, and similarly, that any free occurrence of yin ¥ or E is bound
by Q,. The relation of binding between quantifiers and free variables
in (94) must be preserved by (93). In particular, if x occurs free in ¥, it
should be bound by Q,/Q,. The definition of absorption by Clark and
Keenan that I have referred to goes as follows: for every B, C< 4 and

D A2,
(Q1/Q2)A(B, C. D) =Tilf(Q)s(lae A:ae B},
(hed:(QibedibeC) {bed:(abyeD)=TH=T.

‘T'his definition is intended to “simulate” quantifications of the form

(Q, )M, (Q (Y, =Zxp)]

But as we have seen, it is not adequate for absorbing all well-formed
formulas of the form

(Q, )P, (Q (Y, E)]-

Note that the definition of satisfaction allows me to apply my absorbing
quantifier whether x occurs free in ¥ or not. For example, I can apply

absorption to

(95) Every man loves some woman,

or formally,

(96) (V) [Mx, @y)(Wy, Lxy)),
and get

(97) (V/Axp)(Mx, Wy, Lxy),

which has the right truth conditions. This is because the truth definition
of (97) in a model U is

W= (V/Axr)(Mx, Wy, Lxp) il Y 0{ae A NE= Mx[g(x/a)l},
lae 4:1,({hed: N Wylgxla)(y/D)]},

{hed: Ak Lolgx/a), (v} =T} =T,

s
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and U= Wylg(x/a), (¥/b)]} is equivalent to W= Wylg(v/M]}.

Absorption operators were originally investigated by Higginbotham
and May (1981) in an attempt to account for the logical structure of cross
reference, as in the Bach-Peters sentence

(98) Every pilot who shot at it hit some Mig that chased him.
May, in “Interpreting Logical Form” (1989), explains the issue as follows:

If scope is represented asymmetrically [as it is in formulas of form (91)], then
the narrower scope quantifier cannot bind, as a bound variable, the pronoun
contained within the broader scope phrase, which, in virtue of having broader
scope, is outside its c-command domain. Thus if the every-phrase has broader
scope, it cannot be a variable bound by the narrower some-phrase. Of course this
problem disappears if the proper structure associated with [(98)} at LF is onc
of symmetric ¢c-command, since then it wouid reside within the c-command
domain of some Mig that chased him simultaneously with him residing within the
c-command domain of every pilot who shot at it. [Absorption is then presented as})
a structural readjustment of asymmetric structures into symmetric ones.?

I will not describe the exchange of views regarding this matter in the
linguistic literature.® However, 1 would like to propose for consideration
two formalizations of (98) in the spirit of May’s suggestion.

First consider the 2-place predicative quantifier 3*'-', which [ will call
*“the conditional existential quantifier”” or “‘the conditional some.”
a universe A, I define 3} as follows: for any B, C < A4,

3B, C)y="Tiffeither B= Jor BnC # .

Given

In terms of cardinality t-functions (see chapter 2), 3% is dcfined by the
function 3" such that for any («, §, 7, 8) in its domain,

13 (a, B, y, 8) = T iffeither f = Oora #0.

Figure 4.1 helps elucidate the relation between 3* and ¢}, Clearly, if &, ¥
are wils,

99) (F*x)(D, ¥)

is logically equivalent to

(100) (Fx)® - (A (P& P).

The quantifier 3* might be used to interpret such English scntences as
(101) Every boy who chased a unicorn caught one,

understood as having the same truth conditions as

(102) (Vx) {Bx - [3y)(Uy & CHxy) - 3y)(Uy & CHxy & Cxp)]},

with the obvious symbolization key for B, U, CH and (. The formal
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sentence (102) is equivalent 10
» ) XV va)]’
03) (Yx)[Bx = @* () & CHxy, Cx) .
o o rm to (101). Returning to the Bach-

- in some respects is closer in fo
e ; 98) seem to be captured by

Peters sentence (98), the meaning of (

(104) (Vx){Px—
[(F)(My & Cyx & Sxy
with the obvious readings for P,

as havi ame meaning as (104), 1 ;
(98) as having the same mean ), 1 i e
in “*Questions, Quantifiers, and Crossing” and Clark and Keena

2y l]

Absorption Operator and Universal Grammar. “) Howeverl,oa}l::’zutie
. i binding, it does not appear

104) avoids the problem of cross ' . e

iumc logical structure as (98). 1 propose, therefore, that we assign to (98)

)= (Ay)(My & Cyx & Sxy & Hx»)l},
M, C, S, and H. (In understanding
follow Higginbotham and May

the logical form

(105) (Yx)[Px— (3*y)
Alternatively, we can analyze (98) as

(106) (Y)[Px, F*p)(My & Cyx & Sxy, Hxy)l, N
which is obtained from (105) by rc.placing the I‘;plz«:t: lvut)ii:kntshe;poﬁer
variant. ot (19542 e (;r: ;?:l;\é‘;lfl?;:c;l:; ();04), while solving the
11. If absorption is still desirable, we can

en obtain

(My & Cyx & Sxy, Hxy)].

a better semantic representati
problem of cross binding just as we
apply it to the linear pair <V, 3*). We th
(v/3* 22 (Px, My & Cyx & Sxy, Hxy). |
arity with (98), we can rewrite
2.2 yut of the type <1, 2,2, 2>+

(107)
IFinally, to increase the structural similH
(107) using a quantifier equivalent to v/3
This quantifier will be so defined that

- e i



Chapter 4 102

Figure 4.2

(108) (v/3*!:22:2xy)(Px, Sxy, Hxy, My & Cyx)

is equivalent to (107). Alternatively, we can construct a 3-place variant of
3* and replace (106) with

(109) (Vx)[Px, 3*" 1! p)(Sxy, Hxp, My & Cyx)).

The quantifier V/3*'%22 will then be obtained by absorption from
v, 3‘1""‘) in the obvious way. Formally, there is no problem in con-
structing “‘superfluous” versions of quantifiers, and indeed, in chapter 2, |

noted that such terms are common in natural languages. The 3-place 3* is
defined by a function 1 as follows:

L, By, 8,6 0, n,8) =Tiffeither 6 = 0 or « # 0

The relation between 3*'! and 3*!'!! becomes clear when we compare
figure 4.1 to figure 4.2. (Given an x, Bl represents ““Sxy,” B2 represents
“My & Cyx,” and C represents “Hxy.”)

If my analysis is correct, it is left for the linguist to account for the
occurrence of “superfluous” logical forms in certain natural-language
constructions. I will not attempt such an account. It may indeed be the
case that what is superfluous from a purely logical point of view is signi-
ficant from a linguistic viewpoint.

Pair quantifiers

Pair quantifiers are 1-place quantifiers satisfying Higginbotham and
May’s invariance condition (c) but not (b) or (a). Here are two examples:
(110) Three villagers and two townsmen exchanged blows.

(111) Two Germans and three Americans will challenge each other in
the next tournament.
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Note that the number words in each of these sentences can themselves
be construed as quantifiers. But as predicative quantifiers, neither is within
the scope of the other. Therefore, these are not ordinary predicative quan-
tifications but fall under the category of branching quantifications. A
general analysis of the branching structure will be given in chapter S.

Other pair quantifiers express various correspondence relationships.
Thus, treating modes of unhappiness as individuals (or allowing ascent to
sccond-order logic), we can analyze Tolstoy’s opening to Anna Karenina
as a pair quantification stating a one-to-one correspondence:

(112) Each unhappy family is unhappy in its own way.
Other examples of pair quantifiers are

(113) Courses vary in the students they attract.

(114) My countrymen are divided in their views about war and peace.
(115) Different students answered different questions on the exam.’
Statements of the form “For every A thereis a B,” discussed by G. Boolos
(1981), can also be construed as pair quantifications.

(116) For every drop of rain that falls, a flower grows.®

Sentences (112) to (116) include quantifiers that take into account not only
cardinalities but more refined formal features of objects standing in rela-
tions. In particular, these quantifiers discern sameness and difference be-
tween objects within (though not across) each domain of a given relation.
Thus the I-place quantifier “vary,” as in

(Vary xy)Rxy,

is defined, for each cardinal a, by a logical operator o, such that, for
example,

o1 ([{<1, 6), (2,6),(3,6),<4,6), (5 7>}]) = F,
while
o ([{€1. 65,42, 75, 43,85, ¢4, 3>, (5, D) =T.

Finally, 1 would like to point out a construction with strong relational
quantiliers that is more common in Hebrew than in English. Consider the
following situation: A group of objects is divided into pairwise disjoint
subgroups of n members each, and a certain condition is set on the mem-
bers of each group. For example, given an initial group of students, the
members of each subgroup are assigned a room in the dormitory, or given
an initial group of soldiers (say an army in disarray), the members of each
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subgroup “fight their own war.” These siluations are described concisely

in the sentences below.
(117) Every four students will reccive a room.
Kol arba’ah studentim yekablu heder.
(118) Every several soldicrs fought their own war.
Kol kama hayalim lahamu at milhamtam shelahem.
Every four” and “every several” (in the sense indicated above) are na-
l.urally understood as strong relational quantifiers that distinguish parti-
tions of a certain size in the domain of the quantified relation.

Strong relational quantifiers

Strong relational quantifiers are quantificrs satisfying the strongest in-
variance condition {d) in Higginbotham and May’s list but ot (a) through
(c). As we have seen above, “couple” quantificrs fall under this category.
Other genuinely strong relational quantifiers are quantifiers rcquiring the
detection of sameness and difference across domains. Thus the quantificr
“Reflexive xy™ is a strong quantificr, as are all quantifiers attributing order
properties to relations in their scope. Consider the following cxumblcs:
(119) Parenthood is an antireflexive relation.

(120) Forty workers elected a representative from among themselves.

We have completed the description of first-order Unrestricted Logic
(UL) based on the philosophical conception developed in chapter 3. This
conception was formally and linguistically elaborated in the present
chapter. Along with Lindstrom’s original semantics, | have proposed a
“‘constructive” method for representing logical terms with ordinal func-
tions. This method constitutes a natural extension of Mostowski’s work
on |-place predicative quantifiers. Some philosophical issucs concerning
lvhc new conception of logic will be discussed in chapter 6. But first I would
like to investigate the impact of the generalization of quantiliers on an-
other new logical theory. This theory has to do not with logical particles
but with complex structures of logical particles. It is the theory of branch-
ing quantification.

Chapter 5
Ways of Branching Quantifiers

I Introduction

Branching quantifiers were first introduced by L. Henkin in his 1959 paper
“Some Remarks on Infinitely Long Formulas.” By *“‘branching quanti-
fiers™ Henkin meant a new, nonlinearly structured quantifier prefix whose
discovery was triggered by the problem of interpreting infinitistic formulas
ol a certain form.! The branching (or partially ordered) quantifier prefix
is, however, not essentially infinitistic, and the issues it raises have largely
been discussed in the literature in the context of finitistic logic, as they will
be here.

We would eventually like to know whether branching quantification is
a genuine logical form. But today we find ourselves in an interesting
sitnation where it is not altogether clear what the branching structure is.
While Henkin's work purportedly settled the issue in the context of stan-
dard quantifiers, Barwisc’s introduction of new quantifiers into branching
theory reopened the question. What happens when you take a collection
of quantifiers, order them in an arbitrary partial ordering, and attach the
result to a given formula? What truth conditions are to be associated with
the resulting expression? Are these conditions compositionally based on
the single quantifiers involved? Although important steps toward answer-
ing these questions were made by Barwise, Westerstahl, van Benthem, and
others, the question is to my mind still open. Following the historical
development, Fwill begin with standard quantifiers.

Initially there were two natural ways to approach branching quantifica-
tion: as a gencralization of the ordering of standard quantifier prefixes and
as a generalization of Skolem normal forms,
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A generalization of the ordering of standard quantifier prefixes

In standard modern logic, quantifier prefixes are lincarly ordered, both
syntactically and semantically. The syntactic ordering of a quantifier pre-
fix {(Qyx), ..., (Qnx,)> (where Q; is either V or 3 for 1 < i < n) mirrors
the sequence of steps used to construct well-formed formulas with that
quantifier prefix. Thus, if

(M Quxy) - (Quxa) (x4, .., X,)

is a well-formed formula, of any two quantifiers Q,x; and Q;x; (I <i#
J < n), the innermore precedes the outermore in the syntactic construction
of (1). The semantic ordering of a quantifier prefix is the order of deter-
mining the truth (satisfaction) conditions of formulas with that prefix, and
it is the backward image of the syntactic ordering. The truth of a sentence
of the form (1) in a model A with-universe A4 is determined in the following
order of stages:?

1. Conditions of truth (in ) for (Q,x,)¥,(x,), where
W =(Qax2) - (Quxp)®P(xy, X5, .oy X,)

2. Conditions of truth for (Q,x,)¥,(x,), where
¥y =(Qax3) ... (Qux,)P(ay, x5, X3, ..., x,)
and g, is an arbitrary element of A4

n. Conditions of truth for (Q,x,)'¥,(x,), where
W, =®a,, ay,...,0,.1, X,)
and a,, ..., a,-, are arbitrary elements of 4

We obtain branched quantification by relaxing the requirement that
quantifier prefixes be linearly ordered and allowing partial ordering in-
stead. It is clear what renouncing the requirement of linearity means
syntactically. But what does it mean semantically? What would a partially
ordered definition of truth for multiply quantified sentences look like?
Approaching branching quantifiers as a generalization on the ordering of
quantifiers in standard logic leaves the issue of their correct semantic
definition an open question.

A generalization of Skolem normal forms
The Skolem normal form theorem says that every first-order formula is
logically equivalent to a second-order prenex formula of the form

2 G- ) Vxy) .. (Yx,),

3

*
k
A
%
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where x,, ..., x, are individual variables, f, ..., f,, are functional vari-

ables (m, n > 0), and @ is a quantifier-free formula.® This second-order

formula is & Skolem normal form, and the functions satisfying a Skolem
normal form are Skolem functions.

The idea is roughly that given a formula with an individual existential
quantifier in the scope of one or more individual universal quantifiers, we
obtain its Skolem normal form by replacing the former with a functional
existential quantifier governing the latter. For example,

3) (VXY E)P(x, y, 2) R

is equivalent to

(4) FHV)VPLx, y, f2(x, )]

The functional variable £? in (4) replaces the individual variable z bound

by the existential quantifier (3z) in (3), and the arguments of /  are all the

individual variables bound by the universal quantifiers governing (3z)
there. It is characteristic of a Skolem normal form of a first-order formula
with more than one existential quantifier that for any two functional
variables in it, the set of arguments of one is included in the set of
arguments of the other. Consider, for instance, the Skotem normal form of

(5) (VX)E(V2)@w)d(x, y, z, w), ’

namely,

(6) (31" (3H) (V) (V2)[x, £ (x), 2, g2(x, 2)].

In general, Skolem normal forms of first-order formulas are formulas of

the form (2) satisfying the following property:

(7) The functional existential quantifiers (3f,), ..., (3f,) can be ordered
in such a way that for all | <i,j < m, if (3f;) syntactically precedes
(3f,), then the set of arguments of f; in & is essentially included in
the set of arguments of f; in ®.*

This property reflects what W. J. Walkoe calls the “‘essential order” of

linear quantifier prefixes.®

The existence of Skolem normal forms for all first-order formulas is
thought to reveal a systematic connection between Skolem functions and
existential individual quantifiers. However, this connection is not sym-
metric. Not all formulas of the form (2), general Skolem forms, are expres-
sible in standard (i.e.. linear) first-order logic. General Skolem forms not
satisfyving (7) are not.

Itis natural to generalize the connection between Skolem functions and

syogramce st scmeeSoer iy o ]
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ization requires that first-order quantifier prefixes not be in general
linearly ordered. The simplest Skolem form not satisfying (7) is

(8) A (Ee"H (V) (V)D[x, /' (v), 2, 8" ()]

Relaxing the requirement of syntactic linearity, we can construct a “first-
order” correlate for (8), namely

(Yx)(3y)
(9) >(I)(x, y, 2, w).
(V2)(3w)

We see that the semantic structure of a partially ordered quantifier
prefix is introduced in this approach together with (or even prior to) the
syntactic structure. The interpretation of a first-order branching formula
is fixed to begin with by its postulated equivalence to a second-order,
linear Skolem form.

Do the two generalizations above necessarily coincide? Do second-
order Skolem forms provide the only reasonable semantic interpretation
for the syntax of partially ordered quantified formulas? The definition of
branching quantifiers by generalized Skolem functions was propounded
by Henkin, who recommended it as “natural.” Most subsequent writers
on the subject took Henkin’s definition as given. I was led to reflect on the
possibility of alternative definitions by J. Barwise™s paper “On Branching
Quantifiers in English” (1979). Barwise shifted the discussion from stan-
dard to generalized branching quantifiers, forcing us to rethink the prin-
ciples underlying the branching structure. Reviewing the earlicr contro-
versy around Hintikka’s purported discovery of branching quantifier con-
structions in natural language and following my own carlier inquiry into
the nature of quantifiers, I came to think that both logico-philosophical
and linguistic considerations suggest further investigation of the branch-
ing form,

2 Linguistic Metivation

In “Quantifiers vs. Quantification Theory” (1973), J. Hintikka first pointed

out that some quantifier constructions in English are branching rather

than linear. A wéll-known example is,

(10) Some relative of each villager and some relative of each townsman
hate each other.®

Hintikka says, ““This [example] may ... offer a glimpse of the ways in

which branched quantification is expressed in English. Quantifiers occur-
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ring in conjoint constituents frequently enjoy independence of each other,
it seems, because a sentence is naturally thought of as being symmetrical
semantically vis-da-vis such constituents.”” Another linguistic form of the
branching-quantifier structure is illustrated by
(11) Some book by every author is referred to in some essay by every
critic.®

Hintikka's point is that sentences such as (10) and (11) contain two
independent pairs of iterated quantificrs, the quantifiers in each pair being
outside the scope of the quantifiers in the other. A standard first-order
formalization of such sentences— for instance, that of (10) as

(12) (VOEANVHIEw)(Fx & Tz - Ryx & Rwz & Hyw & Hwy)

or
(13) (V) (V2) (33 () (Vx & Tz - Ryx & Rwz & Hyw & Hwy)
(with the obvious readings for V, T, R, and H)—creales dependencies
where none should exist. A branching-quantifier reading, on the other
hand,

(VA
(14) 1 & Tz o> Ryy & Rwz & Hyw & Hwy,

(V2) ()
accurately simulates the dependencies and independencies involved.
Hintikka does not ask what truth conditions should be assigned to (14)
but rather assumes that it is interpreted in the “usual™ way as

(15) 3713 (YN (V) {Vx & Tz = R(f'(x), x) & R(g'(2), D) &

HO M, 812 & Hig @) /1t

Hintikk a paper brought forth a lively exchange of opinions, and G.
Fauconnier (1975) raised the following objection (which [ formulate in my
own words): (15) implies that the relation of mutual hatred between rela-
tives of villagers and relatives of townsmen has what we might call a
nassive nuclens. one that contains at least one relative of each villager
and one relative of cach townsman —and such that each villager relative
in the nucleus hates @il the townsman relatives in it, and vice versa.
However, Fauconnier objects, it is not true that every English sentence
with syntactically independent quantifiers implics the existence of a mas-
sive nucleus of objects standing in the quantified relation. For instance,

(16) Some plaver of every football team is in love with some dancer of

every ballet company
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does not.? It is compatible with the assumption that men are in love with
one woman at a time (and that dancers/football-players do not belong to
more than one ballet-company/football-team at a time). Even if Hin-
tikka’s interpretation of (10) is correct, Fauconnier continues, i.e., even if
(10) implies the existence of a massive nucleus of villagers and townsmen
in mutual hatred, (16) does not imply the existence of a massive nucleus of
football players in love with dancers. Hintikka’s interpretation, therefore,
is not appropriate to all scopewise independent quantifiers in natural
language. I'illustrate the issue graphically in figures 5.1 and 5.2. The point
is accentuated in the following examples:

(17) Some player of every football team is the boyfriend of some dancer
of every ballet company.

(18) Some relative of each villager and some relative of each townsman
are married (to one another).

Villagers Villagers' Mutuat Townsmen's Townsmen
Relatives Hatred Relatives
VWl temcmr e > LN 1

VY svmmmm e >
V4 e 3
W s s TN
Figure 5.1
Football Players Love Dancars Ballet
Teams => Companies
1 Sl s L IRY Eal BT B e * b1
?
12 emvoevmnnnn >e o 0 o P W e « b2
MASSIVE
[ I Rt s 13 L T *« b3
NUCLEUS
f4 oo > Ea S et * b4
?
B #rccmcencanann »e . P G * b5

Figure 5.2
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Is (17) logically false? Does (18) imply that the community in.question is
polygamous?

Fauconnier’s conclusion is that natural-language constructions with
quantifiers independent in scope are sometimes branching and sometimes
lincar, depending on the context. The correct interpretation of (16), for
instance, is
(19) (VX)(Vy)(32)(3w)(Fx & By — Pzx & Dwy & Lzw).

Thus, according to Fauconnier, the only alternative to ‘“‘massive nuclei” is
linear quantification.

We can, however, approach the matter somewhat differently. Acknowl-
edging the semantic independence of syntactically unnested quantifiers in
general, we can ask, Why should the independence of quantifiers have
anything to do with the existence of a ““massive nucleus” of objects stand-
ing in the quantified relation? Interpreting branching quantifiers non-
lincarly, yet without commitment to a “*massive nucleus,” would do justice
both to Hintikka’s insight regarding the nature of scope-independent
quantifiers and to Fauconnier’s (and others’) observations regarding the
multiplicity of situations that such quantifiers can be used to describe. We
arc thus led 1o search for an alternative to Henkin’s definition that would
avoid the problematical commitment. '

3 Logico-philosophical Motivation

Why are quantifier prefixes in modern symbolic logic linearly ordered? M.
Dummett (1973) ascribes this feature of quantification theory to the genius
of Frege. Traditional logic failed because it could not account for the
validity of inferences involving multiple quantification. Frege saw that the
problem could be solved if we construed multiply quantified sentences as
complex step-by-step constructions, built by repeated applications of the
simple logical operations of universal andjor existential quantification.
This step-by-step syntactic analysis of multiply quantified sentences was
to serve as a basis for a corresponding step-by step semantic analysis that
unfolds the truth conditions of one constructional stage, i.e., a singly
quantified formuda, at a time. (See section | above.) In other words, by
Frege’s method of logical analysis the problem of defining truth for a
quantified many-place relation was reduced to that of defining truth for a
series of quantified predicates (I-place relations), a problem whose solu-
tion was essentially known.'® The possibility of such a reduction was
based, however, on a particular way of representing relations. In Tarskian
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semantics this form of representation is reflected in the way in which the
linear steps in the definition of truth are “glued” together, namely by a
relative expression synonymous with “for each one of which” (“*f.e.w.”).
Thus, for example, the Fregean-Tarskian definition of truth for

(20) (Qxf’f)(Qz}’)(Qaz)R:‘(X, Ys 2)s

where Q,, Q,, and Q; are either ¥ or 3, proceeds as follows: (20) is true in
a model A with a universe A iff there are ¢,«'s in A4, f.e.w. there are ¢,5’s
in A, f.e.w. there are g5 ¢’s in A such that “R*(a, b, ¢)” is true in 2, where
d,, 42, and g5 are the quantifier conditions associated with Q. Q,, and
Q, respectively.'!

Intuitively, the view of R? embedded in the definition of truth for (20)
is that of a multiple tree. (See figure 5.3.) Each row in the multiple tree
represents one domain of R3 (the extension of one argument place of R?);
each tree represents the restriction of R® to some one element of the
domain listed in the upper row. In this way the extension of the second
domain is represented relative to that of the first, and the extension of the
third relative to the (already relative) representation of the second. Differ-
ent quantifier prefixes allow different multiple-tree views of relations, but
Frege’s linear quantification limits the expressive power of quantifier pre-
fixes to propertics of relations that are discernible in a mutliple-tree repre-
sentation.

We can describe the sense in which (all but the outermost) quantifiers in
a linear prefix are semantically dependent as follows: a linearly dependent
quantifier assigns a property not to a complete domain of the relation
quantified but to a domain relativized to individual elements of another
domain higher up in the multiple tree. It is characteristic of a lincar
quantifier prefix that each quantifier (but the outermost) is dircctly depen-
dent on exactly one other quantifier. I will therefore call lincar quantifiers
unidependent- or simply dependent.

a4

1 1 c|
h ‘7“ By

b
By
1
g,

Figure 5.3
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i here are two natural alternatives to simple dependence: (1) no depen-
denee, i.e., independence, and (2) complex dependence. These correspond to
two ways in which we can view relations in a nonlinear manner: we can
view cach domain separately as complete and unrelativised, or we can view
a whole cluster of domains at once in their mutual relationships.

Syntactically, 1 will represent an independent quantification by

(Qyxy)

2 ) R'(xy, ..oy Xy)
(Q,x,)

and a complex quantification by
(Qyxy)

(22) 1 =DRUN,, ... X))
(QN"‘")

Of course, there are many complex patterns of dependence among quanti-
fiers. These can be represented by various partially ordered prefixes.

Our analysis indicates that the concept of independent quantification is
different from that of complex quantification. Therefore, the first question
regarding the correct interpretation of natural-language sentences with
juantifiers is, Are the quantifiers in these sentences independent

branching ¢
or complex?

4 Independent Branching Quantifiers

It is casy to give a precisc definition of independent quantification:

Q)

(23) B, 1) =g (Q V) ANP(x, y) & (Q)EX)P(x, ¥),
Q21

or more generatly,
(Qyxy)

24) DX, . X,) =gr e
(Quxa)

(Q,x)Ex) . Fx)Plxy, )& ... &
(Q,x,)3x,) ... (T, )W xy, o X,)-
This new definition of nonlinear quantification is very different from

that of Henkin’s. Independent quantification is essentially first-order. It
does not involve commitment to a ‘“‘massive nucleus” or to any other
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f:()mplex structure of objects standing in the quantified relation. Therefore
it endl?tlies u§ to anal'yze natural-language sentences with scope-independent
quantifiers 'm a .stralghtl"orward manner and without forcing any indepen-
dent quan}rﬁer into a nested position. I thus propose (23) as a delinition
of branchmg quantifiers as independent quantifiers. Linguistically, this
construe?! is SI‘Jppor(ed by the fact that “and” often appears as a “quantifier
C()‘n;:e(:‘tht’? in nat‘ural~language branching structures in a way which
?ug Itv;ndn:ate a shift from its “original™ position as a sentential connec-
lve.h ?reover, natural-language branching quantifiers are symmetrical in
muf the s'a;]ne wz:jy that the conjuncts in my definition arc. An English
sentence with standard quantifiers that appe: ify i :

. ' ppears to exemplil’
teation plify independent
(25) Nobody loves nobody,
understood as *“Nobody loves anybody.””'? I will symbolize (25) as

(~3x)
(26) Lxy
(~3y)
and interpret it as
(27) ~(@3Ex)3Fy)Lxy & ~(3y)(3x)Lxy.
By extending our logical vocabulary to I-place Mostowskian quantifiers

we w1|l.be able tq interpret the following English sentences as independent
branching quantifications:

(28) Three elephants were chased by a dozen hunters.
(29) Four Martians and five Humans exchanged insults.
(30) An odd number of patients occupied an even number of beds.

The .“mdependent" interpretation of (28) to (30) reflects a “cumulative”
rez.admg. under which no massive nucleus, or any other complex relation-
§h1p between the domain and the range of the relation in question, is
intended.!?® We thus understand (28) as saying that the relation “élc )h:in}
x was chased by hunter y” includes three individuals in its domain fm;i a
dozen individuals in its range. And this reading is captured by (23) (Sim'(
larr!y, (23) yields the cumulative interpretations of (29) and (30) oo

F?le extension of the definition to 2-place Mostowskian quantificrs
(which in this chapter I symbolize as Q? rather than Q'') will "‘Ikl
independent quantifications of the form o

Qix) | ¥, x,
3D Dxy.
(Q%J‘) ‘Pz}’.-
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Here. however, we can apply the notion of independent quantification in

several ways. Given a binary relation R, two sels A and B, and two

quantifier conditions g, and g,, we can say the following:

a. The relation R has g, As in its domain and g, Bs in its range.

b. The relation A1 Rt Bhas g, elements in its domain and g, elementsin
its range (where A1 Rt B is obtained from R by restricting its domain
to A and its range to B).

¢. The relation A1 R!B has g, As in its domain and ¢, Bs in its range.

d. The relation Rt B has g, As in its domain and ¢, Bs in its range.

It is easy to see that (a) through (d) are not equivalenl."‘ However, for the
examples discussed here it suflices to define (31) for case (c). I thus propose
as the definition of a pair of 2-place independent quantifiers

(Q%Y) "‘1-\'.

(32) AT Qi)W x, (3y) (W x&W¥y& Dxy)}&
(Q3») | ‘War (Q2)[¥,0, (X (P x & W,y & Oxp)]
When Q2 and Q} satisfy the property of living on, i.e., when (Q*x)(®x, ¥x)
is logically equivalent to (Q2x)(dx, dx & Yx), we can replace (32) with

the simpler :
Qv | ¥yx,

(33) Dxy =4 (QI0) Wy x. (3)(¥2y & Dxy)] &
(Q3r) | War. (Q21)[¥,p, GX) (¥ x & Dxy)].

Using this definition, we can interpret (34) and (35) below as independent

quantifications:
(34) All the boys ate all the apples.'*
(35) Two boys ate half the apples.
We can also analyze (28) to (30) as independent quantifications of the form
(33).'¢

What about Hintikka's (10) and Fauconnier’s (16)? Should we interpret
these as independent branching quantifications of the form {(33)? Under
such an interpretation. (10) would say that the relation of mutual hatred
between relatives of villagers and relatives of townsmen includes at least
one relative of cach villager in its domain and at least one relative of each
townsman in its range: (16) would be understood as saying that the rela-
tion of love between football players and ballet dancers includes at least
one player of each football team in its domain and at least one dancer from
each ballet company in its range. Such interpretations would be compat-
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ible with both figures 5.1 and 5.2. Later on | will suggest a test to determine
whether the intended interpretation of a given natural-language sentence
with branching quantifiers is that of an independent or complex quantifi-
cation, and this might give us a clue regarding Hintikka's and Fauconnier’s
sentences. As for the linear option, here the question is whether one pair
of quantifiers is within the scope of the other. Generally, I would say that
when “and” appears as a quantifier connective, that is, *“Q, As and Q, Bs
stand in relation R, the quantification is not linear. However, when
the quantification is of the form “Q, As R Q, Bs,” the situation is less
clear. (For further discussion, see May 1989 and van Benthem 1989.'7) |
should note that sometimes the method of semantic representation itself
favors one interpretation over another. For example, in standard seman-
tics, relations are so represented that it is impossible for the range of a
given binary relation to be empty when its domain is not ecmpty. Thus a
quantification of the form “Three As stand in the relation R to zero Bs™
would be logically false if interpreted as independent branching quanti-
fication. To render it logically contingent, we may construe it as a nested
quantification of two |-place predicative quantifiers, and this gives us the
linear reading.

S Barwise’s Generalization of Henkin's Quantificrs

I now turn to complex quantification. Evidently, Henkin's quantifiers be-
long in this category. I ask: What kind of information on a quantified
relation does a complex quantifier prefix give us? As we shall soon sce, the
shift to a more general system of quantifiers, namely Mostowski’s 1- and
2-place predicative quantifiers, throws a new light on the nature of com-
plex branching quantification.

Barwise (1979) generalized Henkin's definition of standard branching
quantifiers to 1-place monotone-increasing Mostowskian quantifiers in
the following way:'8

(Q,x)

(36) >‘DU =4 AX)EV)(Q ) Xx & (Q, 1) Y1 &

(Qzy) (VX)) (V) (Xx & Yy - dxyp)].'°
Technically, the generalization is based on a relational reading of the
Skolem functions in Henkin’s definition. Thus, Barwise's cquivalent of
Henkin’s (8) is
37) ARYES) (VX)) Rxy & (Vz)(3w)Szw &

V) (V) (V) (VW) (Rxy & Szw — D(x, v, 2, w))].
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Clearly. Barwise's quantifiers, like Henkin's, are complex, not indepen-

dent, branching quantifiers. . '
Barwise suggested that this generalization enables us to give English

sentences with unnested monotone-increasing generalized quantifiers a
“Henkinian™ interpretation similar to Hintikka's interpretation of (10)
and (11). Here are two of his examples:*°
(38) Most philosophers and most linguists agree with each other about
branching quantification.
(39) Quite a few boys in my class and most girls in your class have
all dated each other.

To interpret (38) and (39), we have to extend (36) to 2-place predicative
quantifiers. This we do as follows: Let Q% and Q3 be 2-place monotone-
increasing predicative quantifiers. Then

Qiv) - Wix
(40) ~ Oxp =y
Qi) - Wy,
AN AN QI (P, X, X0 & Q2 (Far, 1)) &
(V) (V) (Xx & Yy — dxp)}
We can now interpret {38) as
(M2y) » Px,
41) : Axy & Ayx =y
(M2p) - Ly,
(AN EV) M) (Px, Xx) & (M?p)(Ly, Y1) &
(VX)) (X & Yy — Axy & Apx)],
with the obvious readings of P, L. A and where “M 2" stand for the 2-place
“most.” We interpret (39)ina similar manner.

Barwise emphasized that his definition of branching monolqne-
increasing generalized quantifiers is not applicable to mono(one-deereastmg.
non-monotone, or mixed branching quantifiers.?! This is easily explained
by the absurd results of applying (36) to such quantifiers: (36) would
render any monotone-decreasing branching formula vacuously true (by
taking X and Y to be the empty set); it would render false non-monotone

branching formulas true, as in the case of “Exactly one x and exactly one

v stand in the relation R, where R is universal and the cardinality of the

universe is targer than 1.
Barwise proposed the following definition for a pair of I-place monotone-

decreasing branching quantifiers:
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( ?l )\
(42) Oxy =4 AX)EV(Q ) Xx & ’
] d . J ( &
(Qz}-)/ 1 Q1)

& (VX)) (V1) (Dxy - Xx & 1y)).22
Definition (42), or its counterpart for 2-place quantifiers, provides an

intuiti . .
tuitively correct §emant|cs for English sentences with a pair of unnested
monotone-decreasing quantifiers. Consider, for instance,

(43) Few ph.ilosophers and few linguists agree with each other about
branching quantification.

. As to non-monotone and mixed branching quantificrs, Barwise left the
omfer unattended and skeptically remarked about the latter, *“There is no
sensible way to interpret

le

(s) >A (x, y)
Qz}'

;lez:p(;:f: [quantifier] is increasing and the other is decreasing. Thus, for
(t) 7Few of the boys in my class and most of the girls in your class

have all dated each other. )
appears grammatical, but it makes no sense.”??

Barwise's work suggests that the semantics of branching quantifiers
depends 0.!\' the monotonic properties of the quantifiers involved. The
t.ruth conditions for a sentence with branching monotone-increasing . uan
tifiers a.re altogether different from the truth conditions for a semenc: v»:itl;
br‘anchmg monotone-decreasing quantificrs, and truth for sentences with
mixed ‘branching quantifiers is simply undefinable. Is the meuni‘n of
branc‘hmg quantification as intimately connected with mono(onicitg ¢
Barylse's analysis may lead one to conclude? o
m(i:;stt(;n;dwould . like to f)bseer: that B.arwise interprets branching
oo ecreasing quantifiers simply as independent quantifiers: when
ﬂl]:;]aqujr; r?(?nolone-decreasing (42) is logically equivalent to my (23).

er e.mmor‘l, as we have seen, has meaning --the same meaning --

.for all quantifiers, irrespective of monotonicity. On this first-order rc%ul-
ing, (4.13) s?ys that the relation of mutual agreement about br'mch‘in

qua.\nuﬁcatlon between philosophers and linguists includes (at mlmn f \g'
phllOS(\phers m 1ts domain and (at most) few linguists in itg range -

] Barwise explained the limited applicability of (36) in the fo\lo;.‘ina way:
Every formula of the form ' -

Bz {28
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(44) (Q)dx,

where Q18 monotone-increasing,
formula of the form

45) (3.X) [(Q¥) ¥x & (Vx)(Xx — dx)],

ar to (36). This fact establishes (36) as the correct
definition of branching monotone-increasing quantifiers. However, (45)
is not a second-order representation of quantified formulas with non-
monotone-increasing quantifiers. Hence (36) does not apply to branching

quantificrs of the latter kind. The definition of branching monotone-
42) is explained in a similar manner: when Q is

is logically equivalent o a second-order

which is structurally simil

decreasing quantifiers by (
monotone-decreasing, (44) is logically equivalent to
(46) (X [(QX) Xx & (Vx)(Dx — X¥)],
which is structurally similar to (42).24

[ do not find this explanation convincing. Linear quantifiers vary with
respeet to monotonicity as much as branching quantifiers do, yet the
semantic definition of linear quantifiers is the same for all quantifiers,
irrespective of monotonicity. Linear quantification is also meatiingful for
all combinations of quantificrs. Why should the meaningfulness of the
branching form stop short at mixed monotone quantifiers? Moreover, if
the second-order representation of “simple” [first-order quantifications
determines the correct analysis of branching quantifications, Barwise has
not shown that there is no second-order representation of (44) that applies
universally, without regard to monotonicity.

6 A General Definition of Complex, Henkin-Barwise
Branching Quantifiers

The conception of complex branching quantification embedded in Bar-
wise's (36) assigns the following truth conditions to branching formulas of

the form
Q,x)
Q0
am Xy,
Vs
Q1)
where Q, and Q; arc monotone-increasing:

pEFINTTION 1 The branching formula (47) is true in a model 21 with
universe A iff there is at least one pair, (X, YD, of subsets of 4 for which

the follawing conditions hold
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I. X satisfies the quantifier condition Q,.
2. Y satisfies the quantifier condition Q,.
3. Each element of X stands in the relation ®* (o o the elements of Y.

The condition expressed by (3) I shall call the each-all (or all-all) condition
on (X, Y) with respect to ®¥. We can then express definition 1 more
succinctly as follows:

DEFINITION 2 The branching formula (47) is true in a model 2 with a
universe A iff there is at least one pair of subsets of the universe satisfying
the each-all condition with respect to ®¥, with its first element satis{ying
Q, and its second element satisfying Q,.

Set-theoretically, definition 2 says that ®¥ includes at least one Cartesian
product of two subsets of the universe satisfying Q, and Q, respectively.
(The *‘massive nucleus” of section 2 above was an informal term for a
Cartesian product.)

Is the complex quantifier condition expressed by definition 2 meaningful
only with respect to monotone-increasing quantifiers? I think that the idea
behind this condition makes sense no matter what quantifiers Q, and Q,
are. However, this idea is not adequately formulated in definition 2 as it
now stands, since this definition fails to capture the intended condition
when Q, and/or Q, are not monotone-increasing. In that case Q, and/or
Q, set a limit on the size of sets X and/or Y such that (X, Y ) satisfies the
each-all condition with respect to ®¥: (47) is true only if a Cartesian
product small enough or of a particular size is included in ®*. But defini-
tion 2 in its present form cannot express this condition: if ®" includes a
Cartesian product larger than required, definition 2 is automatically satis-
fied. This is because for any two nonempty sets A and B, if 4 x Bisa
Cartesian product included in ®¥, so is A" x B, where A’ and B’ arc any
proper subsets of 4 and B respectively. The difliculty, however, appcars to
be purely technical. We can overcome it by demanding that the condition
be met by a maximal, not a sub-, Cartesian product. In other words, only
maximal Cartesian products included in ®* should count as satisfying the
each-all condition.

I thus add a maximality condition to definition | and arrive at the
following general definition, in which no restrictions are set on Q, and Q,:

DEFINITION 3 The branching formula (47) is true in a model 2 with
universe A iff there is at least one pair (X, Y} of subsets of A for which
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the following conditions hold:

I. X satisfies quantifier condition Q.

2. Y satisfies quantifier condition Q,.

1 Each element of X stands in the relation
Y.

4. The pair (X, Y)isa maximal pair satisfying (3).

@Y (o all the elements of

Referring to (3) and (4) as “the maximal each-all condition on .(X, Y
with respect to @, we can reformulate definition 3 more concisely as
follows:
DEFINFIION 4 The branching formula (47) is true in a—model ‘ll w_ith
universe A ifT there is at least one pair of subsets in the universe sa'tusfymg
the maximal each-all condition with respect to & such that its first
clement satisfies Q, and its second element satisfies Q,.
I thus propose to replace (36) with
(Qi -\‘)\
(48) Dy =y
(Qz)
AVYAN{Q X)X x & (Q,)) Yy & (Vx)(Vy)(Xx & Yy—- dxy) &
VXYV YOHIYO ) ((Xx & Yy — X'x& Yy &
(X'x & Y'y—-bxy)) -
VOV Xx& Yy X'x& Y'nl
as the definition of Henkin-Barwise complex brunching quantifiers. We
can rewrite (48) more succinetly, using common conventions, as

(Qy¥)
(49) Dxy =4

(Q21)

AN EANHQ VAN & (Q1) Yy & X X Y&

(VXY HVY I x YeX <Y’ chosXx V=X xV")]

Maore concisely yet, we have

(Q, )~
(50) by =y

Q17

AN ENHQ VXX & Q) Yy &
(VX NVENX x FEX x V' edoXx Y=X x Y9l
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It is easy to see that whenever Q, and Q, are monotone-increasing, (49)
is logically equivalent to (36). At the same time, (49) avoids the problems
that arise when (36) is applied to non-monotone-increuasing quantifiers.

Maximality conditions are very common in mathematics. Generally,
when a structure is maximal, it is “‘complete’ in some relevant sense.?® The
Henkin-Barwise branching quantifier prefix expresses a certain condition
on sets (subsets of the quantified relation). And when we talk about sets,
it is usually maximal sets that we are interested in. Indeed, conditions on
sets are normally conditions on maximal sets. Consider, for instance, the
statement ““Three students passed the test.”” Would this statement be true
had 10 students passed the test? But it would be if the quantifier *“13" set
a condition on a nonmaximal set: a partial extension of “x is a student who
passed the test” would satisfy that condition. Consider also “No student
passed the test™ and ““Two people live in America.”

The fact that quantification in genceral sets a condition on maximal sets
(relations) is reflected by the equivalence of any first-order formula of the
form

(44) (QY)Px,
no matter what quantifier Q is (monotone-increasing, monotone-decreasing
or non-monotone), to

(51) AX)HQO)Xx & XS P& (VX)X S X' S ® - X' = X))},

which expresses a maximality condition. The logical equivalence of (44) to
(51) provides a further justification for the reformulation of (36) as (49).

We have seen that the two conceptions of nonlinear quantification dis-
cussed so far, independence (first-order) and complex dependence (sccond-
order), have little to do with monotonicity or its direction. The two con-
ceptions lead to entirely different definitions of the branching quantifier-
prefix, both, however, universally applicable.

Linguistically, my suggestion is that to determine the truth conditions
of natural-language sentences with a nonlinear quantifier-prefix, one has
lo ask not whether the quantifiers involved arc monotone-increasing,
monotone-decreasing, etc. but whether the prefix is independent or com-
plex. My analysis points to the following clue: Complex Henkin-Barwisc
quantifications always include an inner each-all condition, explicit or
implicit. Independent quantifications, on the other hand, do not include
any such condition.

Barwise actually gave several examples of branching sentences with an
explicit each-all condition:
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(39) Quite a few boys in my class and most girls in your class.have all

[
dated each other.?

. 27
(52) Most of the dots and most of the stars arc all connected by lines.

Such an explicit “all” also appears in his
(1) Few of the boys in my class and most of the girls in your class have
all dated each other.”®
| therefore suggest that we interpret Barwise's () as an ins(ange of (49). _
Some natural examples of Henkin-Barwise complex branching quanti-

ficrs in English involve non-monotonic quantifiers. For example,

(53) A couple of boys in my class and a couple of girls in your class were
all dating each other.

(54) An even number of dots and an odd number of stars are all
connected by lines.

Anotlier expression that seems (o point to a complex branc?hing structure

(which indicates a second-order form) is ‘‘the same.” Consider

(55) Most of my friends have applied to the sane few graduate programs.

To interpret the above sentences accurately, we have to cxtenfi 49) to

ntifiers. As in the case of 2-place independent quantifiers (sce

¢ can apply the notion of complex each-all quantifica-
y attention to one of these,

2-place qua

section 4 above), w '

tion in more than one way. I will limit m .
M M 23] (g

defining “Q, Asand @, Bs all stand in the relation R as “There is atlleefst

one maximal Cartesian product included in A1 RV B with Q, As In its

domain and Q, Bs in its range.” In symbols,
Qi) - Wy,
(56) . hxy =4
(Q3r) - o,
AN ENHQIN Y x, ¥x) & Q30 (For, Y1) &
(VX)VY )X x Y€ X' x V' e, T, e
X x V=X x ¥

ains the meaning (function) of inner quan-

Linguistically, nty account expl . '
. idual variables

tifiers that, like Barwise's “all.” do not bind any new indiv :
in addition to those bound by Q and Q,. A “standard” reading of such
quantifiers is problematic, since all the variables are uhlready bound by the
ouler gnantifiers. Onmy analysis, these quantifiers point toa second-order

condition.
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Going back to the controversy regarding Hintikka's reading of natural-
language sentences with symmetrical quantifiers, we can reformulate Fau-
connier’s criticism as follows: Some natural-language scntences with un-
nested quantifiers do not appear to contain, explicitly or implicitly, an
inner each-all quantifier condition. On my analysis, these are not Henkin-
Barwise branching quantifications. Whether Hintikka's (10) includes an
implicit each-all condition, I leave an open question. (One way to justify
Hintikka’s claim that (10) is a Henkin sentence is to interpret “cach™ in
“each other” as elliptic for “each-all.”")

The reading of a natural-language branching quantification with no
explicit each-all condition involves various linguistic considerations. QOur
logical point of view has so far indicated three possible readings: as an
independent quantification, as a linear quantification, or as a Henkin-
Barwise complex quantification. But as we will presently sce, these are not
the only options. In the next section I will introduce a “family of inter-
pretations” that extends considerably the scope of nonlincar quantification.

7 Branching Quantifiers: A Family of Interpretations

The Henkin-Barwise definition of branching quantificrs, in its narrow as
well as general form, includes two quantifier conditions in addition to
those explicit in the definiendum: the outer quantifier condition “there is
at least one pair (X, ¥»" and the inner (maximal) each-all quantifier
condition. By generalizing these conditions, we arrive at a new delinition
schema whose instances comprise a family of semantic interpretations for
multiple quantifiers. Among the members of this family are both the
independent branching quantifiers of section 4 and the Henkin-Barwise
complex quantifiers of section 6. This generalized definition schema de-
lincates a totality of forms of quantifier dependence. Degenerate depen-
dence is independence; linear dependence is a particular case of (non-
degenerate) Henkin-Barwise dependence.?®

We arrive at the definition schema in two steps. First we gencralize the
inner each-all quantifier condition (sce definitions |- 4), and we obtain the
following schema:

GENERALIZATION | A branching formula of the form (47) is truc in a
model 2 with a universe A iff for at least one pair (X, ¥ of subsets of
the universe satisfying the maximal quantifier condition 2, with respect to
O, X satislies Q,, and Y satisfics Q,,
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where 2, represents any (first-order) maximal quantifier-condition on a

: i i o o o are a few
patir of subsets of the unmiverse with respect to @™, The following are a fe
instances of Z,:
Condition A= one one The pair (X, ¥)isa maximal pair such that each
element ol X stands in the relation ™ to exactly one element of Y.m?d for
cach element of ¥ there is exactly one element of X that stands to it in the
relation k¥,
Condition B: each two or more  "The pair (X, Y is a maximal pair such
: ; w

that euch element of X stands in the relation @7 to two or more ¢Iemcnt.s
of ¥ and for each element of Y there is an element of X that stands to it

. . l
in the relation @Y,

Condition C: cach more than ___The pair (X, }>wls a maximal pat
such that cach element of X stands in the relation ©¥ to more than

clements of ¥ and for cach element of Y there is an element of X that

. . . $"
stands to it in the relation &7

Condition D+ each at least halfat least half~each The pilll‘.<X s }; yisa
rch clement of X stands in the relation &7 to at

maximal pair such that ¢
“and to cach clement of ¥ at least half the

Ieast hall the clements of )
clements of X stand in the relation @™
We can find natural-language sentences that exemplify gereralization |

by substituting conditions A through D for 2,:

(57) Most of my right-hand gloves and most of my left-hand gloves
maltch (one to one).

(58) Most of my [riends saw at least two of the same few TrufTaut
movies.

(59) The same few characters repeatedly appear in many of her early
novels.

(60) Most of the boys and most of the girls in this party are such that
cach boy has chased at least half the girls and cach girl has been
chased by at least half the boys.

The adaptation of generalization 1 to 2-place quantiliers, needed in order

to give these sentences precise interpretations, is analogous lo-(56),

We can verify the correctness of our interpretations by checking whether

(57) to (60) can be put in the following canonical forms:

(61) Most of my right-hand gloves and most of my left-hand gloves
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are su.ch that each of the former matches exactly one of the latter
and vice versa.

(62) I\/zost of my friends and few of Truffaut's movies are such that cach
of the former saw at least two of the latter and cach of the latter
was seen by at least one of the former.

(63) FF.W characters and many of her early novels are such that each
o the‘ﬁ)rmer appears in more than__of the latter and cach of the
latter includes at least one of the former.

Sentence (60) is already in canonical form,

. By replacing 2, in generalization | with condition E below we get the
independent quantification of section 6.

Condiri . . .
Suor;]dr]!zon E: each—some[some-each The pair (X, ¥> is a maximal pair
Cch that each element of X stands in the relation @™ (0 some element of

l'e 8C b b
an or each e €¢ment o 1ere is yme elemen ¢} 4‘ lhd stands to 1
n lhe ICIaUOH (D . (

. Thfss. both i{adependent branching quantifiers and complex, Henkin-
arwise branching quantifiers fal] under the general schema.

g S ts “0 t st E:XISICHIIJI con-
l he SCCOIld cnet allza“o“ db tr ac m he outer mos
dl“o".

GE]‘:EI?A:,IZA.TI()N 2' A branching formula of the form (47) is truc in a
lr;lo eA A w:lh_umversc A iff there are v, pairs (X, ¥> of subsets of

1§ universe sahsfy,ng the maximal quantifier condition 7, with respect to
® % such that X satisfies Q, and Y satisfies Q,.3°

Zl;e fol,l’o»Ymg sentences exemplify generalization 2 by substituting “by
and large™ (interpreted as “most™) and “at most few” for 2, (2, is the
each-all condition): T

(64) By and [a'ge no more llla" a ‘EW b S d“d a ‘CW ”IS a” ddle ne
’ 0

(65) There are at most few cases of more than a couple Eastern delegates
and more than a couple Western delegates who are all on speaking
lerms with one another,3!

The family of branching structures delineated above cnlarges consider-
at.)ly the array of interpretations available for natural-languagé 9cnl‘cncc‘;
V\flth multiple quantifiers. The task of selecting the right le((’:l‘llﬂ;i\’e for 1
given .natura]*language quantification is casier il explicit inner and out “r
quantifier conditions occur in the sentence, but is more complica‘tcd olhctr
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wise. One could, of course, be assisted by “‘context,” but linguists will be
interested in formulating general guidelines that hold across contexts.
Indeed, we may look at Barwise’s claims regarding monotone-increasing
and monotone-decreasing English branching quantifiers in this light.
According to Barwise, in English monotone-increasing branching quan-
tifiers are usually accompanied by an inner “all,” indicating a complex
“each all structure™ (with “some” as the outer quantifier condition);
monotone-decreasing quantifiers are usually not accompanied by an inner
quantifier condition, pointing to an independent (each- some/some—each)
structure. These conjectures can be expressed in terms of my general
definition schema of branching quantification (generalization 2).>2 How-
ever, the new multiplicity of inner and outer quantifier conditions intro-
duced in the present section calls for refinement and supplementation of

Barwise’s conjectures.
8 Conclusion

My investigation has yielded a general definition schema for a pair of
branching, or partially ordered, generalized quantifiers. The existing def-
initions, due to Barwise, constitute particular instances of this schema.
The next task is to extend the schema, or particular instances thereof,
especially (49), to arbitrarily large partially ordered quantifier prefixes.
This task, however, is beyond the scope of the present work.

In “Branching Quantifiers and Natural Language™ (1987), D. Wester-
stahl proposed a general definition of (Barwise's) branching quantifiers
different Irom the ones suggested here. Although Westerstahl’s motivation
was similar to mine (dissatisfaction with the multiplicity of partial defini-
tions), he approached the problem in a different way. Accepting Barwise's
definitions of monotone-increasing and monotone-decreasing branching
quantifiers, along with van Benthem’s definition of branching non-
monotonic quantifiers of the form “exactly n,” Westerstahl constructed
a general formula that yields the above definitions when the quantifiers
plugged in have the “right” kind of monotonicity. That is, Westerstdhl
was looking for an umbrella under which the various partial existent
definitions would fall. From the point of view of the issues discussed here,
Westerstahl's approach is very similar to Barwise’s. For that reason I did
not include a separate discussion of his approach.®® As for van Benthem's
proposal for the analysis of non-monotonic branching quantifiers, his

definition is
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(Exactly-nx) - Ax,
(66) . Ryy=43X)3¥)(XcA4&YcB&
(Exactly-my) - By, [ X|=n&|Y|=m&R=Xx 1)
For I-place quantifiers, the definition would be
(Exactly-n x)
(67) >R.\’} =4 BX)AY)(X]=n&|V]|=m&
(Exactly-m y) R=XxY).

Since (67) is equivalent to (68) when R is not empty, I can express van

Benthem's proposal in terms of my second generalization by saying that

quantifiers of the form “exactly n”" tend to occur in complex quantifica-

tions in which 2, is “each-all” and 2, is *‘the (only).”

(68) The (only) pair (X, Y of subsets of the universe satisfying the
maximal each-all condition with respect to R is such that X has
exactly n elements and Y has exactly m elements.

I would like to end with a few general notes. Russcll, recall, divided the
enterprise of logic into two parts: the discovery of universal “templates’ of
truth and the discovery of new, philosophically significant logical [orms.
Branching quantifiers offer a striking example of an altogether new logico-
linguistic form unlike anything thought to belong to language before
Henkin's paper. One cannot, however, avoid asking: When does a generali-
zation of a particular linguistic structure lead to a new, more general form
of language and when does it end in a formal system that can no longer be
considered language? Henkin, for instance, mentioned the possibility of
constructing a densely ordered quantifier prefix. Would this be considered
language? What about a prefix of quantifiers organized in some non-
ordering pattern? Even the thoroughly studied form of an infinitely long
linear prefix has yet to be evaluated with respect to our general concept of
language.

Another question concerns the possibility of “‘importing’ new struc-
tures into natural language. New forms continuously “appear™ in all
branches of mathematics and abstract logic. The “discovery” of branching
prefixes in English makes one wonder whether new constructions cannot
be introduced into natural language as well. Let us look back at Hintikka's
“revelation’” that branching quantifiers exist in English. Did Hintikka
discover that all along we were talking about villagers’ and townsmen’s
relatives hating each other en masse (each-all hatred) when we said that
some relative of each villager and some relative of each townsman hate
each other? Or did he, perhaps, propose to give a new meaning to a
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syntactically well-formed but semantically empty (loosely deﬁn‘ed) linguis-
tic form? I am not sure what the right answer to this question is. Some of
the English examples discussed in the literature strike me as having had a
clear branching meaning even before the oflicial seal of“bra_n_c_hing quanti-
fication” was aflixed to them. But others impress me as having been
hopelessly vague before the advent of branching theory. These could have
been semantically undetermined structures, forms in quest of content.
Present-day languages have not used up all their lexical resources. Is
logical form another unexha usted resource? o
Investigations of the branching structure in the context of “‘generalized
logic led Barwise to extend Henkin’s theory. My own inquiries have led to
an even broader approach. In the next chapter | will return to the general
conception of logic developed in this book and introduce some of its 'philo’:
sophical consequences. The philosophical ramifications of “.unreslrklcted
logic have never before been (publicly) investigated. | will briefly point the
direction of some philosophical inquiries and spell out a few results.
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A New Conception of Logic

The b.road questions underlying this work concern the scope and limits
of logic. Are the principles underlying modern logic fully exhausted b
the standard system? Do generalized quantifiers signify a gcnuinc\ hrmk)-l
through in logic? What are the boundaries of logic fmm the point of v;cw
ofmode.m semantics? Starting with a general outlook of logic, I proceeded
}o exa‘m'me Mostowski’s generalization of the standard quantifiers, tracin
1ts origins to Frege's interpretation of number statements. | th‘cn mmgl
‘T?/los'lowtski‘s theory as a jumping board for investigating the nntion. of
.logrcallly.” The initially loose philosophical question regarding the prin-
?IPICS of logic received specific content: What makes a linguistic expression
?nto a.logical term? What are all the logical terms? My method ()f‘:ll]é\;er-
ing this qulestion was conceptual. Examining Tarski's foundational ;\'()rk
in s'emanucs, I was able to identify a central motivation for constructing
logic as a syntactic-semantic system in which logical truths and con-
Sequences are determined by reference to a full-blown system of models
I showed that within the framework of model-theoretic semantics th'e.
success of the logical project depends on the choice of logical térmq
In'asmuch as logical constants represent the formal and necessary con;:
stituents of possible states of affairs. the system will zlccompli;I; its task
But the task is fully accomplished only if all formal and ncccssz;z‘v c;)x);{it;
uents are taken into account. The standard system carries us on;: ste \ to-
warq the goal. It takes the full range of Tarskian or first-order Unrc‘qtrgltcd
Logic ,(l.JL) to achieve the objective in full. This outlook on logic is r‘cnlimd
by logicians working within the dynamic field called “abstract” logic lf is
also reflected in the work of linguists secking to enhance the rcs‘ourrcc'q (\k*
studying the logical structure of natural language. l o
If.the central claim of this book is correct, namely that standard mathe-
matical logic, with its limited set of logical constants, does not fully ex;)rcss
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the idea of logic, the question arises of whether a conceptual revision in
the *official” doctrine is called for. Should *‘unrestricted logic™” become
“standard™ logic? Because of the prominent place of standard first-order
logic not only in mathematics but also in philosophy, linguistics, and
related disciplines, at stake is a change in a very general and basic concep-
tual scheme. What are the philosophical ramifications of the new concep-
tion of logic? What new light does it shed on old philosophical questions?
Are the conditions ripe for an “official’" revision? And how should the new
developments in semantics be viewed from the standpoint of proof theory?
I would like to end this work with reflections on some aspects of these

questions.

I Revision in Logic

Putnam has convincingly argued that a change in a deeply ingrained
conceptual scheme is seriously entertainable only if a well-developed alter-
native already exists. Referring to the revolution in geometry, Putnam
argued that the laws of Euclidean geometry could not have been aban-
doned “before someone had worked out non-Euclidean geometry. That is
to say, it is inconceivable that a scientist living in the time of Hume might
have come to the conclusion that the laws of Euclidean geometry are false:
‘I do not know what geometrical laws are true but I know the laws of
Fuclidean geometry are false.” "' Principles at the very center of our con-
ceptual system are not overthrown unless ““a rival theory is available.”?

Is there a serious alternative to standard logical theory incorporating
the principles of Unrestricted Logic delineated in this book? The unequi-
vocal answer is yes. There exists a rich body of literature, in mathematics
as well as in linguistics, in which nonstandard systems of first-order logic
satislying (UL) have been devcloped, studied, and applied. Mostowski's
and Lindstrom’s pioneering work led to a surge of logico-mathematical
rescarch. From Lindstrom’s famous characterizations of “‘elementary
logic™ (1969) to works like Keisler's proof of the completeness of first-
order logic with the quantifier “there exist uncountably many,” the yield
of mathematical investigations is astounding. For a representative collec-
tion of articles plus a comprehensive bibliography of more than a thousand
items, the reader is referred to the 1985 volume Model-Theoretic Logics,
edited by Barwise and Feferman. .

In linguistics, Barwise and Cooper’s 1981 paper also led to a profusion
of literature. Generalized quantifiers became an essential component of
formal semantics and of the theory of Logical Form within generative
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grammar. Representative works by van Benthem, Keenan, Ma W
stdhl, and others are listed in the references. ’ e
Philosophically, the view (hat Tarskian or unrestricted logic is logic
pmpf:r has not yet received its due attention. In particular fcwbphilg;)-
so.phncal arguments in support of the new view appeared in ;;rinl I hope
th.lS book has, to some extent, filled the void. If my argument is C(.)gcnI pit
will add a new philosophical dimension to the support that lhc; new | '
has received from other quarters, ( e

2 The Logicist Thesis

The logicist thesis says that mathematics is reducible to logic in the sense
that a‘l! mathematical theories can be formulated by purely logical m;:'l 1‘:
That is, all mathematical constants are definable in terms of Ing;iml co[n
stants and.aH the theorems of (classical) mathematics are dcrivabl‘e from
purely logical axioms by means of logical rules of derivation (and defini-
tions). Now for the logicist thesis (o be meaningful, the notions of logical
constant, logical axiom, logical rule of derivation, and definition muf:l l;e
well dc{ined and, moreover, so defined as to make the reduction nontri.vhl
In pf)rllcular, it is essential that the reduction of mulhcnmliés to logic (hL
carried qul relative to a system of logic in which mathematical constants
do 'n'ol, m' general, appear as primitive logical terms. The “fh(hcﬁ‘i 0>f
logicism did not engage in a critical examination of (he concept of k; ical
constant from this point of view. That is, they took it for granted llﬁt tie;e
1S a.smal[ group of constants in terms of which the reduction i; 1o be
carncq out: the truth-functional connectives, the existential (un;'vcrﬂl)
quanUﬁftr, identity, and possibly the set-membership relation. The I;“W
concep[non'of I(?gic, however, contests this assumption. If my z;n:llyﬁistof
the semantic principles underlying modern logic in chapter 3 is cn;‘rkcct
then any mathematical predicate or functor satisfying condition (E) c'n{
play the role of a primitive logical constant. Since mathematical cum't'n;le
In general satisfy (E) when defined as higher-level, the program of rcdu(‘i r
mathemalics to logic becomes trivial, Indeed, even if the whole of nn:hlolc%
m‘aucs could be formulated within pure standard first-order logic ‘thcn
(since the standard logical constants are nothing more than certain ;'n'tic-
ular m.alhematical predicates) all that would have been accomplish'c‘l is ¢
reduction of some mathematical notions to others. o
While the .logicisl program is meaningless from the point of view of the
new cgnceptnon of logic, its main tenet, that mathematical constants are
cssentially logical, is, of course, strongly supported by this co‘n;cp.li(:nL
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Indeed, Russell’s account of the logicality of mathematics in /ntroduction
to Mathematical Philosophy is in complete agreement with my analysis:
There are words that express form. .. . And in cvery symbolization hitherto invented
of mathematical logic there arc symbols having constant formal meanings. .. .
Such words or symbols express what are called ‘logical constants.” Logical con-
stants may be defined exactly as we defined forms; in fact, they are in essence the
same thing. .. . In this sensc all the ‘constants’ that occur in pure mathematics are
fogical constants.?

The difference between the new conception and the “old” logicism re-
garding mathematical constants is a matter of perspective. Both approaches
are based on the equation that being mathematical = being formal =
being logical. But while the classical logicists say that mathematical con-
stants are essentially logical, the new conception implies that logical con-
stants are esentially mathematical. Thus if the classical thesis is “the
logicist thesis of mathematics,” the new one is “the mathematical thesis of
logic.”™ Another point of difference worth noting is that according to the
new conception, mathematical constants are logical only when construed
as higher-level. Accordingly, the natural numbers, as individuals, are not
Togical objects. But as second-level entities, classes of classes, they are. This
view is, as we saw in chapter 2, in some respects very Fregean. Frege's
logical delinition of the natural numbers takes numbers to be higher-level
entities. i.e., classes of classes or classes of concepts. Indeed, the formula-
tion of numerical statements as first-order quantifications in UL is exactly
the same as 'rege’s in The Foundations of Arithmetic.

3 Mlathematics and Logic

My discussion of logicism above highlighted one aspect of the relationship
between logic and mathematics: in the new conception of logic any mathe-
matical constant can play the role of a logical term, subject to certain
requirenients on its syntactic and semantic definitions. However, mathe-
matical constants appear in the new logic also as extralogical constants,
and this reflects another side of the relationship between logic and mathe-
matics: as logical terms, mathematical constants are constituents of logical
frameworks in which theories of various kinds are formulated and their
logical consequences are drawn. But the “pool™ of formal terms that can
figure as logical constants is created in mathematics. The semantic defini-
tion of, say, the logical quantifier “there are uncountably many x* is based
on some mathematical theory of sets. Similarly, the semantic definition of
the quantifier “there is an odd number of x™" is based on arithmetic. And
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even in'slandard logic, the semantic definitions of the truth-functional
gonnectnves and the universal (existential) quantifier arc based on certain
snn‘ple Boolean algebras. These observations point to a difference between
logic and mathematics vis-a-vis formal terms: formal terms are created in
mathematics; they are used in logic.

' Now since logic provides a framework for theories in general, the mean-
mg of formal terms can be given by a mathematical theory formulated
wnh'in logic. We can thus picture the interplay between logic and mathe-
matlc§ as a cumulative process of definition and application. Starting with
a logical system that applies certain elementary but powerful mathe-
matical functions (Boolean truth functions, the universal/existential-
quantifier function and, usually, identity) to a first-level extralogical vocab-
ular.y, we construct various formal theories. Such theories describe mathe-
matical structures by delimiting the semantic variability of the extralogical
ler.ms of the language. This is done by introducing a set of extralogical
axioms that partition the “universe” of all models for the language into
lh(.)se that do, and those that do not, “realize™ the theory. In this way the
axioms of the theory give specific meanings to all nonlogical terms of the
language. Once mathematical terms are defined within the framework of
standard first-order logic, they can be incorporated in the superstructure
of a new, extended system of logic. As an cxample, consider the first-order
lhcory of Peano arithmetic. As soon as arithmetic terms receive their
meaning within this theory, we can convert them into logical arithmetic
quantifiers: the numerical quantifiers, the “even” quantifier, quantitative
comparative quantifiers (“there are fewer x's such that ... than x’s such
that ), and so on. We can now use the new logical vocabulary
10. formulate theories—mathematical, physical, etc.--that assume the
F‘,XlSlC.an;‘ of a machinery for counting and comparing sizes. In these
theories we will logically conclude that, say, there are 4 Bs, given that there
are 2 Cs, and that the number of Bs is twice the number of Cs. As we shall
see be'low, there is an essential difference between applying mathematics
by us'mg mathematical terms as part of the logical superstructure and
applymg mathematics by adding extralogical mathematical constants and
axioms to a theory of standard first-order logic.

4 Ontological Commitments of Theories

Quine is known for the thesis that the logical structure of theories in a
standard first-order formalization reflects their ontological commitments.
To determine the ontology of a theory .7 formulated in natural language
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(or a scientific “dialect” thereof’), we formalize itas a (standard) first-order
theory. .7,, and examine those models of F; in which the extralogical
terms receive their intended meaning. 7 is committed to the existence of
such objects as populate the universes of the intended model(s) of J.
Thus if .7 includes a sentence of the form

(1) Uncountably many things have the property P,

then. since the notion of uncountably many is not definable in pure stan-
dard first-order logic, we have to include in .7, some theory in which

“uncountably many"” can be defined. Choosing a set theory with Ur-
clements, we express (1) as
(2) (Av)jrisaset & xis uncountable &
(Vy)(y e x—yisan individual & Py}l
And through (2), 7 is committed to the existence of sets.

Now. consider what happens if we formalize .7 within the framework
of UL. using a system ¢ that contains, in addition to the standard logical
terms and axioms, the logical quantifier “uncountably many"” and appro-
priate axioms (€.g.. Keisler's). Obviously, we do not need set theory to
express (1}in & The meaning of (1) is adequately captured by the sentence

(3) (Uncountably many x)Px,

which does not commit .7~ to the existence of sets. So with a “right” choice
of logical vocabulary, 7" can be formalized by a theory, 7,, whose ontol-
ogy consists merely of individuals, not sets.

We see that the new conception of logic allows us to save on ontology
by augmenting the logical machinery. We can weaken the ontological
commilments of theories by parsing more terms as logical. We no longer
talk about the ontological commitment of an unformalized (or pre-
formalized) theory J (there is no such thing!). Instead, ontological
considerations become a factor in choosing logical frameworks for for-

malizing theorics.
The examination of Quine’s principle from the perspective of UL

reveals the relativistic nature of his criterion. The comparison of 7, and
7, highlights the crucial role played by logical constants in deciding
commitment in other theories of logic and ontology as well. Consider the
straightforward view that the commitment of a theory under a
formalization Z is determined by what is common Lo all models of #.
Here too the difference in logical terms between the formalizations .7, and
75 of .7 results in essentially different commitments. The occurrence of
the quantifier “‘uncountably many" in (3) ensures that in every model of

simple.
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. Pis assigned an uncountable set of individuals. But by the Léwenheim-
Skolem theorem, 7, has at least one model in which the predicate “x
is uncountable™ is given a nonstandard interpretation and P is assigned a
countable set. We can thus say that 75 is committed to an ontology of
uncountably many objects, whercas 7, 1s not.

We see that logical terms are vehicles of strong ontological commitment,
\r\(hilﬁ extralogical terms transmit a relatively weak commitment. This
difference in ontological import between logical and extralogical terms is
explained by the fact that logical terms are semantically pre-fixed, whereas
the meaning of extralogical terms is relative to models. To use Putnam’s
turn of speech, extralogical terms are viewed from within models, whereas
logical terms are viewed from the ourside.* Including formal terms as part
of the logical superstructure allows us to use them in the logic with “a view
from the outside.”

The distinction between “strong” and “weak™ ontological commitments
explains the difference between using mathematical notions as part of the
logical machinery and using them as extralogical terms in theories within
the logic. It also suggests a guideline for choosing logical frameworks. If
you formulate, say, a physical theory and you want to use formal tools
.crealcd clsewhere (i.e., in some mathematical theory). you might as well
include the mathematical apparatus as part of the logical superstructure.
This }Jvill reflect the fact that you are not interested in specifying the
meanings of the mathematical terms but in saying something about the
physical world, using mathematical notions which you take as given. The
pre-fixed notions will enable you to make some very strong claims about
the physical world, strong in the sense that what they say does not vary
from one model of the theory to another. All this will be done without
compromising the uscfulness of the logical framework in determining
necessary and formal consequences. If, on the other hand, your goal is to
define the mathematical notions themselves, you cannot construe them as
logical, because as such their meaning would have to be given at the outset.
You have to use undefined terms of the language (i.e., extralogical terms)
and then construct a theory that will give these notions a distinclive

content.’

5 Metaphysics and Logic

\Yhal role, if any, does metaphysics play in logics based on Tarski's idcas?
First, for Tarski, the very notion of semantics has a strong metaphysical
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connotation. Semantics investigates concepts having (o do with the relation-
ship between language and the world (see page 39). The categories used in
classilying relevant features of the world are, ipso facto, an important
factor in the analysis of such concepts. More specifically, as we have seen
carlier in the book, it is crucial for Tarski that an adequate system of logic
yield consequences that hold necessarily of reality. In that way meta-
physics provides an important criterion for evaluating logical systems
vis-d-vis their goal. But the role of metaphysics does not end with this
cxternal criterion. To see the metaphysical dimension of Tarskian seman-
tics more clearly, it might be well to contrast his model-theoretic method
with another type of theory, which, following Etchemendy 1990, 1 will call
“interpretational.” The interesting feature of interpretational semantics
from my point of view is that it purports to ensure the satisfaction of
Tarski’s metaphysical condition by purely syntactic means. The inter-
pretational definition of “logical consequence™ is the following:

DEFINITION LC The sentence X is a logical consequence of the set of
sentences K iff there is no permissible substitution for the nonlogical
terms in the sentences of K and in X that makes all the former true and

the latter false.

(A substitution is permissible if it is uniform and it preserves syntactic
calegories.) This definition, in essence, goes back to Bolzano (1837). It can
also be found in modern texts, e.g., Quine's Philosophy of Logic (1970).

The distinctive feature of the interpretational test for logical conse-
quence is that it is based on substitution of strings of symbols. Definition
(1.¢7) does not take into account anything but grammar and the distribu-
tion of truth values to all the sentences of the language. Thus to the extent
that syntactic analysis and a list of truth values are all that are needed to
determine logical truths and consequences, interpretational semantics has
nothing to do with metaphysics.

Tarski rejected the substitutional definition of “logical consequence”
just for that reason. The success of interpretational semantics depends on
the expressive power of the language. Relevant possible states of affairs
may not be taken into account if the language is too poor to describe them.
Thus, consider a language in which the only primitive nonlogical terms are
the individual constants “Sartre” and “Camus’ and the predicates “x is
active in the French Resistance™ and “x is a novelist.” In this language the

sentence
(4) Sartre was active in the French Resistance
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will come out logically true under the substitutional test, But obviously
(4) is not necessarily true. ’
Etch'emendy pointed out another problem with interpretational theory
due to {ts syntactic character.® In interpretational “semantics,” as in model-
theoretic semantics, “logical consequence™ and the other logical concepts
are defined relative to a set of logical constants. But in interpretational
semantics, the set of logical constants is an arbitrary set of terms, arbitrary
because the interpretational theory does not ofler a guide for determining
whether a term is logical or not. Logical and extralogical terms are defined
b){ use, and for all that interpretational semantics has to say, any term
might be used either way. What Quine calls the remarkable concurrence
of the substitutional and model-theoretic definitions of “logical conse-
q}lence" for standard first-order logic is no more than a “happy™ accident.”
Since the standard logical constants do not form a grammatically distinct
'gro'up', they are, from the point of view of interpretational sém;m(ic‘;
mdsst‘mguishable from other terms that can also be held constant in t!;t;
‘s‘ubsu‘u‘nional test. Thus even if every individual, property, and relation
participating™ in relevant possible states of afTairs has a name in the
]gnguage, some divisions of terms into the logical and extralogical will
yield unacceptable results. Suppose, for instance, that expressions naming
.Sarlre and the property of being active in the French Resistance are
included in the set of fixed (i.c., logical) terms. Then (4) will again turn out
to be logically true. (See chapter 3.)
Tarski‘.s semantics avoids the two problems indicated above by using
a semantic apparatus which allows us to represent the relationship be;
tween language and the world in a way that distinguishes formal and
nece§sary features of reality. The main semantic tool is the model, whose
r(?le 1 Lo represent possible states of affairs relative to a given language.
Sm.ce any set of objects together with an “interpretation™ of the non-
logngal t.erms within the set determine a model, every possible state of
affairs vis-a-vis the extralogical vocabulary is represented (extensionally).
Furthermore, the choice of logical constants is constrained by the rcquinf—
ment l'hal the logical superstructure represent formal, metaphysically un-
‘c‘hang.m.g' parameters of possible states of afTairs. (1t should be noted that
possibility” in this context is “formal possibility.” Therelore, the totality
of models reflects “possibilities” that in general metaphysics might bL‘
ruleq out by nonformal considerations. That is to say, the notion of
possibility underlying the choice of models is wider than in metaphysics
proper.)
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Although metaphysical considerations are central to Tarskian seman-
tics. only the most basic and general metaphysical principles are taken into
account. The historical Tarski expressed a dislike for “abstruse” philo-
sophical theories. The notions of necessity and possibility he used were, he
emphasized, the common, everyday notions, not the philosopher’s. I think
Tarski's mistrust of philosophy is not warranted, but the claim that the
philosophical foundation of logic should not rest on the web of philo-
sophical controversies regarding modalities appears to me sound. Thus the
view underlying the new conception of logic, that the mathematical “‘coor-
dinates™ of reality do not change from one possible world to another (and
therefore mathematical constants can, in general, play the role of logical
constants), is bused on a basic, generally accepted belief about the nature
of reality.

We cannot rule out, however, divergence of opinions even with respect
to “core’™ metaphysical principles. And for those who do not share the
“conumon” belief regarding the nature of mathematical properties, 1 pro-
pose the following relativistic view of logic: we can look at the definition
of “logical terms™ in chapter 3 as a schema saying that to treat a term as
logical is to take it as naming a rigid, formal property or function (fixed
across possible states of afTairs) and define it in accordance with conditions
(C) to (). 1t is then left for the user to determine whether or not it is
appropriate to treat a given term in that way. (A similar strategy will
enable one to reconcile nominalistic compunctions with the new concep-
tion: depending on the metalinguistic resources one finds acceptable, one
will construe those mathematical predicates that are definable in one’s
language as logical constants.)

The foundations of Tarskian semantics reach deep into metaphysics,
but the link between models and reality may have some weak joints. In
particular, Tarski has never shown that the set-theoretic.structures that
make up models constitute adequate representations of all (formally)
possible states of aflairs. This issue is beyond the scope of the present
book, but two questions that may arise are the following: Is it formally
necessary that reality consist of discrete, countable objects of the kind that
can be represented by Ur-clements (or other constituents) of a standard set
theory? Does the standard model-theoretic description of all possible states
of aflairs have enough parameters to represent all relevant aspects of
possible situations (relevant, that is, for the identification of formally
necessary consequences)? These and similar questions lie at the bottom of

nonstandard models for physics, probablistic logic, and, if we put aside
formality, such discourse theories as *‘situation semantics.”
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6 Proof-Theoretic Perspective

The philosophical justification of the new conception of logic is based on
an analysis of certain semantic principles underlying modern logic. What
about proof theory? Should we not set proof-theoretic standards for an
ztdequate system of logic, for example, that it be complete relative to an
*“‘acceptable” deductive apparatus? The new logic, one would then object
surely fails to comply with this requirement! 1 think this judgement m
prej'mature. The ““new conception of logic™ is a result of reexamining the
philosophical ideas behind logical semantics in response to certain mathe-
matical generalizations of standard semantic notions (Mostowski and
others). There is no sense in comparing the generalized semantics with
current un- or pre-generalized proof theory. To do justice to the new
C({n.ccption from a proof-theoretic perspective, one has to cast a new
critical look at the standard notion of proof. This task may be cxactiné
bf:c:ause there is no body of mathematical generalizations in proof theory
directly parallel to *‘generalized logic” in contemporary model theory.
~However, if the new philosophical extension of logic based on semantics
is significant, it poses a challenge to proof theory that cannot be over-
looked. I can put it this way: if Tarski is right about the basic intuitions
underl‘ying our conception of logical truth and consequence, and if my
analysis is correct, namely that these intuitions are not exhausted by
standard first-order semantics, then since standard first-order logic has
equal semantic and proof-theoretic power (completeness), these intuitions
are not exhausted by standard first-order proof theory either. Semantically
we }?ave seen, it suffices to enrich the superstructure of first-order logic b):
adding new logical terms. But what has to be done proof-theoretically?
hope that future researchers will take up this question as a challenge.

Appendix
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DEFINITION | Let A beaset. A quantifier on A'is a function

q: P - {1 F}
such that if mr: A4 - Ais an automorphism (permutation) of 4, i.e., mis

one-to-one and onto A, then for every B < A,

qgumB)) = q(B),
where m(B) is the image of B under n.

It is easy to see that Boolean combinations of quantifiers on A are also

quantifiers on A.
DEFINFFON 2 Let o be a cardinal number. A 2-partition of o is a pair of
cardinals (5. ) such that f + y = a.

DEFNITION 3 Let (. 7), be the class of 2-partitions of «. A cardinality
Sfunction on 2-partitions of ais a function 1 (f, 1), = {T, F}.

urorem 1 (Mostowski 1957.) Let 4 be a set. Let . be the set of car-
{A|. Let 2 be the set.of quantifiers

dinality functions on 2-partitions of o =
7 onto 2 defined

on A. Then there cxists a one-to-one function /i from .

as follows:

Forany 1€ 7. h(t) = the quantifier g on 4 such that forany B A,

¢(B) = ((|Bl. 14 — B).

bolize a quantifier g on A4 as Q. Given a quantifier on 4, Q4,1

1 will sym
uation the car-

will call the cardinality function ¢ satisfying the above ¢q
dinality counterpart of Q4 and symbolize it as 9.
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DEFINITION 4 A quantifier Q is a function that assigns to each universe A
a quantifier on A4, Q,, and such that if 4, 4’ are universes of the same
cardinality, then Q, and Q. have the same cardinality counterpart.

Chapter 2, Section 5

DEFINITION 5 Let A be a set. A 2-place quantifier on A is a function

g: P(4) x P(4) - {T, F}

such thatifm: A — A4 isan automorphism of A, then for every B, C < A,
q(m(B), m(C)) = (B, C),

where m(B) and m(C) are the images of B and C under m.

DEFINITION 6 Let a be a cardinal number. A 4-partition of a is a quadruple
(B.v,90,¢)of cardinals such that f + y + d + ¢ = .

DEFINITION 7 Let (f3, v, 6, €), be the class of 4-partitions of a. A cardinalit y
Junction on 4-partitions of « is a function

t:(B,7.9,¢), - {T, F}.

THEOREM 2 (Lindstrém 1966.) Let A be aset. Let .7 be the set of cardinal-
ity functions on 4-partitions of « = [4|. Let £ be the set of 2-place quanti-
fiers on 4. Then there exists a one-to-one function /1 from .7 onto 2
defined as follows:

Forany 1 € 7, h(1) = the 2-place quantifier g on A such that for any
B,C=A,4q(B,C)=1t(IBNC|,|B—C|,|C— B|, |4~ (BUC))|).

Given a 2-place quantifier on 4, Q2, 1 will call the cardinality function ¢

salisfying the above equation the cardinality counterpart of Q* and sym-
holize it as <.

DEFINITION 8 A 2-place quantifier Q? is a function that assigns to each
universe 4 a 2-place quantifier on A, Q2, and such that if A, A" are
universes of the same cardinality, then Q2 and Q3. have the same cardinal-
ity counterpart.

Chapter 4, Section 2

Proof of theorem I The proof is straightforward because we have already
introduced all the concepts connecting the ordinal structures over which
a-operators are defined with structures within % over which logical terms
restricted to U are defined. I will prove
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I. /ris a funtion from ¢, into €| 2,
2. his onto 612, and
3. liis one-to-one.

(1.a) First | prove that /i is a function. Let o, be an a—opcr;?tor of lypj
< 1. Let (sy, ..., 5 be a sequence such that for I <i<k, :s,~ €
ifr, =0, and s, € A"if 1; =n # 0. | have to show {hat.”[g(.j,), e t(s,:)g]
cxi;ts and is unique. Existence is obvious. To prove umqueness.;', letI,1 he
two indexings of 4 by a. Let i(sy), ..., i(s) a'nd i'(SI,Z’l‘“’-l (si) be tl ci
index images of sy, ..., s, under land I rcspecllvc)y.. I'''ol 1swa permuda
tion of a and <i'(sy), ..., i'(s,)> is the image of i(sy)s .-+ t(f,‘).) un e;
I'"'o . Hence, lsy), ..., i(5)> and {'(sy), i'(s,(')> are snm'llar e]mi
[€i(s)s - e es i) = (K Gsy)s e e i'(5))]. That is, [<i(sy), s i(s )] is
lm(l(ll.l{;)‘ Next | prove that /i is into @920 Lf:t 0, be an a-opcratorfof t1yp<e
{tyo oy i Let By x oo x By be a Cartesian product such that 'orf ;_
i<k, B=Ail 1;=0, and B; = P(A") if,=n =;é 0. Let Cy be a fun
ti(—m from B, x -+ x B into {T,F} such that for every {sy, .(,lsk? €
Dom(Cy), Cylsyy -y 5¢) = 0,051, ...y i(5,))], where for somc:dmf e):m},:
Tof Abya, i(s), } <j <Kk, is the index image of:s'j undler 1. I?y ¢ lmhx;);
of i, Cq = hi(0,). (By (1.a) above, Cy is well delined.) We have tg s \
that Cy is indeed a logical term restricted to ‘I.l. In particular, we a\ic' o
show that Cy satisfies the restriction of condition (E) othapter 3, ser.llo?i
6 to . That is, if {sy,...,80 and (si,..., &) are In Dom,(Cgl) al'l
(AL Spq e 5> = (A, 81, ..., 50, then Culsyy S = Cm.(sl, ....,sk),
Take any indexing / of A by a. For 1 <j < k, let i(s;) be the index image
of 5; under 1. By definition,

Calsye v Si) = 0,008 ) oo i 0]
Colsyy e 51) = 0,[i(sY), <L i) N
It suflices to show that [{i(s) - .., is )] = [is1), i) Let f

be an isomorphism of {A, 5, ... 5. onto (A, Y, ..., 50 Th.usrf ]S,;;

permutation of A, Define a permutation m of a as follows: for a

fea,

m(f) =y ill f(ay) = a,.

Clearly. Gis)), -« i(sy)) is the image of {itsy). ..., 1(‘.9,‘)) under- tl}e>perr(;

mutation induced by m. Henee, {i(sy)y - - -5 105 and'<zss, ), ..., i(sk)ya

similar. Therefore, [{i(s¢)s ...+ (s )] = [i(sy)s s itsi)]- .
(2) The next step is to prove that his onto %|N. Take any Cy € 6’!!1‘.~

The claim is that there is an o, € @, such that hi(o,) = Cy. Let the type o
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Cy be (1y,..., 1,). Consider the totality of a arguments R(x) = {r (x),
..., i(a)) of the same mark. Let [91(a)] be the set of all equivalence classes
of R(a)’s under the relation of similarity. Define

0, [R(a)] = {T, F}
as follows: Let / be some indexing of 4 by a. For any [{r,(a), ..., r(a))] €

Dom(o,), 0,[{r (@), ..., n(a)>] = T iff for some structure (A4, s,, ..., 5>
such that s;, | <7 <k, is of mark ¢, (1) and (2) below hold:

(1) ri(a) = i(s;), where | <j <k, and i(s;) is the index image of 5; under /
(2) C?l(sl’ ) sk) = T

I have to show that o, is a well-defined a-operator. Let {r (a). .. .. r(a)>
and (ry(a), ..., r(@)) be two similar a-arguments of mark {m ., ..., m).
Let the corresponding structures within 91 be (s,, ..., s, and sy, ..., 5D
respectively. It suffices to show that Cy(s,. ..., s5) = Cy(s). ..., 55).
But this follows from the fact that Cy is a logical term (restricted to )
fmd the fact that the structures {4, s,,..., 5> and {4, s}, ....3 s> are
!somorphic, (That the structures {4, s,,....: s and (A, sy, ..., 5 are
isomorphic is obvious: By definition of similarity, there is a permutation
m of a such that {a, ri(a), ..., n(a)) = <{a, ri(a), ..., rg(a)), where for
| <j <k, r(a) is the image of r(a) under m. Let f be the corresponding
permutation of 4. That is, under the given indexing f(ay) = a, il m(f}) =
y. Now (A,s5,....50 =La, r(a),...,n(@)), and {(A,s5),..., 50 =
Ca, ri(a), ..., r(a)). Therefore, (A, s, ..., 50 = (A, 57, ..., $x0-)

(3) Finally, I prove that 4 is one-to-one. Let ol, # 02,. Then for some
R(a), ol [R(a)] # 02,[R(a)]. Say ol,[R(x)] =T, 02,[R(2)] = F. Suppose
/z(o.la) = Clg, 1(02,) = C24. We have to show that Cly # (2. Let [ be
an indexing of 4 by a and let s be the structure within 21 determined by
R(x) through 1. Then by definition of A, Cly(s) = T, C24(s) = F. Hence
Cly # C24. Q.E.Dj

Chapter 4, Section 4

Binary relational quantifiers satisfying the invariance condition (b.1)

DEFINITION |1 Let a be a cardinal number, identified with the least ordinal
of cardinality « and defined as the set of all smaller ordinals (as in section
2). Let (3, y), be the set of 2-cardinal-partitions of «, i.e., the set of all pairs
of cardinals (f, y) such that § + y = a (+ being cardinal addition). Con-
sider the functions
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Jia= (V)

and let # be the set of such functions. For any f, /7 € &, the functions f
and f are simifar ifl there is an automorphism m of a such that for every

dea,

S(8) = ["(m(9)).

DEFINITION 12 Let a be a cardinal number. Consider the functions f
defined above. Let [#] be the set of equivalence classes [ /] under the
relation of similarity defined above. Then a hinary cardinality function on
a is a function

k,:[7]-{T.F}

tiroriM 2 (Higginbotham and May 1981.) Let A be a set. Let X" be the
set of binary cardinality functions k, on o = |A]. Let 2 be the set of 1-place
quantiticrs on binary relations over A satisfying the invariance condition
(b.1) (p. 88). Then there exists a one-to-one function & from X" onto 2
defined thus:

For every k, € ¥, li(k,) = the quantifier g, € 9 such that for any

RS A% ¢ (R) = k([ fx]). where fp:a— (B, ), 15 defined, relative

Lo some one-to-one and onto indexing i of 4 by a, as follows: for every
Sea fr(d)=(e. O ilTe={a: a5, a> € R}l and { = |{a:<a,, a) ¢ R}|.

1 say that fg represents the cardinalities of R in A (relative to i).2

LEMMA | Let A be a set. Let m be a 1-automorphism of A%, and let m, be
an automorphism of 4 such that for all a, be A, m(a, b) = (m(a), b') for
some I € A. Let R, R’ be two binary relations on 4 such that R = m(R).
Then forevery a e A,

(1) [{heA:<a,bye R} =|{VeA: {my(a), b)Y e R},

(2) lheA:{a. by ¢ R} ={Ved: (my(a), b’y ¢ R’}

Proof Takeany ae A.

() Let{he A:<{a, by e R} = B.{h' e A:{mla), b>e R} = B.1want
to prove that |B|=|B]. Let C= {ce A:for some be B, m(a, b) =
(my(a). ¢)}. Then | B] = |C]| because m is a l-automorphism based on m,.
The claim is that B = C. This follows from the fact that R = m(R). As a
resull, | B] = |B].

(2) The proof is similar to (). - Q.E.D.

Proof of theorem 2 Let the members of A4 be ordered with indices in .
(The index map i:a — A is one-to-one and onto.) I will prove that
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1. his a well-defined function from J# into 2,
2. hisonto 2,
3. his one-to-one.

(1.a) First I show that 4 is a well-defined function. Let k, be any binary
cardinality function on a.

(1.a.i) h(k,) exists. Let R be any binary relation included in A2, Then R
is represented by some function f : a0 — (f3, 7). Since k([ fr]) exists for
every R, so does h(k,).

(l.a.ii) h(k,) is unique. Let R be any binary relation as above. Then Ris
uniquely represented by fz under the given indexing. So (/itk,))(R) is
unique under the given indexing. Let fg, Jr be the representations of R
under two indexings of 4 by a. Then clearly fr and fg are similar. That is,
[/&] = [/z]. Hence, (h(k,))(R) is unique.

(1.b) Next I show that & is into 2. Let k,, R, and fg be as above. Let R’
be any binary relation on 4 such that for some L-automorphism mr of 42,
R' = m(R). Let fx. be the function representing the cardinalities of R in 4.
I will show that (h(k,))(R) = (h(k,))(R’). It suflices to show that /g and fg.
are similar. Since m is a l-automorphisin, there is an automorphism »ry of
A such that for all 8, 4 € a, m(a,, a,) = (m,(as), a,.) for some i’ € a. Let p
be an automorphism of « that simulates my. Le., forall § € a, p() = the
0 € a such that m, (as) = g;. To show that fp and fg. are similar, it sullices
to show that for every a; € A, the number of elements to which ag stands
in the relation R is the same as the number of clements to which ny(as)
stands in the relation R’, and similarly, the number of elements to which
as does not stand in the relation R is the same as the number of elements
to which m | (a,) does not stand in the relation R’. This is proved in lemma
L As a result, (1)) (R) = k(U fx]) = ko (fx]) = (h(k) (R).

(2) Letg e 2, and let & = {R < A%: g(R) = T}. Define a binary car-
dinality function on «, kl,, as follows:

k1, ([/]) = Tiff for some R e R, frepresents R in A (under the given
indexing).

Claim: k1, is well defined. I have to show that if fo. [ are similar functions
representing R and R’ respectively, then Re R ifl R e K. 1 will show
that if fg, fx- are similar, there is a 1-automorphism m of 4 x A4 such
that m(R) = R'. Let p be an automorphism of a such that for every
dea, fp(d) = fo(p(d)). Let m, be the automorphism of 4 induced by g
(through the given indexing of A). I will definc m as follows: Take any
ae A. Letm,(a) = a'. Then since fy, f5. are similar and fg, fr represent K2,
R’ respectively,
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|B| = |B|and |B| = | B, -
where 8= {h:(a. by e R}, B ={b:{a' . b')€ R'}.and B, B’ are tfu(;zt)ion
plements of B, B (in A) respectively. Let m" be z}ny oixc-to—otl? e
from B onto B and m” any one-to-one function from B onto B'.Le

any member of 4. I define the value of m for (a, b) as follows:

(@', n’'(h))y ifbeB
mia. b) = {(a’. m"(h)) otherwise ‘
(1 assume the axiom of choice.) The reader can check th'flt m is afwel(li-
defined 1-automorphism of 4 x A. I have shown that k1, is well defined.
e .f distinct binary card
3 se that for two distinc ¢ .
znl(ts);\-sztf)z:’;c;:) = h(k2,) = q4. Since kl, # k2,, for some f, kl,([f]):é—
k2,([ /1). Let R be a binary relation on A wholse cardmahues' a“rc repj
xm:!u.d by /. (1t is casy to describe the cmmlruclgm of R. For .Cd(, 1as€ A,
i cunslr;ld the set Ray = {a: {as.a) € R} as iollows: Lcl f‘(é) = (f:,[f).
There are two cases: (a) e =, (bye < {or { < . Case(a). Constr\[llcrt c::
by altermating a, € Ray, a, ¢ Ras, ... a,€ Rus, a4y ¢ Ra',,‘,' k .lh l:aSl
a limit ordinal, let a, € Ras.j Case (b). Suppose & < {. Ta .e e "
ordinal & cquipollent to & Define, for all g, € A, a,€ Raz il 1 < ét.hat
¢ < &, define the complement of Ray in the samc way.) S‘uPposef(l) 0
/Mcl(,(ij']) =T and (ii) that k2a([_/']).= F.. Then by dc:flr]nt;:onBot i]},;i,s )
implics that g,(R) =T, while (ii) implies that g,(R) =F. Bu QED
impossible, since g4 is a function. .E.D.

inality functions on a, kI,
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(Frege 1904, p. 114).
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14. See Mostowski 1957, p. 17.
15. Mostowski 1957, p. 12.
16. Barwise and Cooper 1981, p. 159.

17. Sentences (14) and (15) are(1.a)and (i.b) of Barwise and Cooper 1981, p. 160.
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' ] nd Stavi (1986), who were co-0rig
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the nature of proper names, though, rather than with the nature of quanti

35 May 1991, p. 353.

Chapter 3
1. Tharp 1975, p. 5. The italics are mine.

2. Vaught 1974, p. 161 ‘ )
1 Sce articles 3 6, 8 1) 12, and 14 in Tarski 1983, especially pp. 30, 36-37,
3% 40,60 63, 69-72. 166, 281,285, 298, and 342.

4. Tarski 1936a, pp. 412 413
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5. Tarski 1936b, p. 401.
6. Tarski 1936a, pp. 414-415,
7. Tarski 1936a, p. 417.

8. In “Truth in a Structure™ W. Hodges speculates that Tarski did not talk
explicitly about variability of universes in “On the Concept of Logical Conse-
quence,” because this paper was intended for a philosophical audience, which,
Tarski thought, might not appreciate the point. Sce Hodges 1986, p. 138,

9. Tarski 1936a, p. 417.

10. This proof is superficially similar to another “proof™ of Tarski’s claim sug-
gested by Etchemendy (1990, chap. 6). However, the proof proposed by Etche-
mendy leads to a fallacy. I criticize Etchemendy’s reconstruction of Tarski's proof
in “Did Tarski Commit *Tarski’s Fallacy’?” (1991).

1. Tarski 1936a, pp. 414-415.

12. See Tarski 1936a, pp. 415-416.

13. Tarski 1936a, pp. 418-419.

14. Tarski 1936a, p. 419.

15. This is a reformulation of Tarski's definition in 1936a, p. 419, n. 1.

16. This definition is different in style from the onc proposed in chapter 2. Therc
the universal quantifier was construed as a function rather than a set of sets.
However, the two definitions are equivalent. In chapter 2, I construed a (1-place
predicative) quantifier Q as a function from subscts of the universe to {T. F}. Here
Fdentify Q with the set of all subscts to which the above function gives the valuc T,

17. Westerstahl (1976, p. 57) points to another case in which a given logical term
has different denotations in different models. This is the case of two models with
disjoint universes. Thus, in the case of the existential quantifier, its denotation in
a model with a universe of dogs is different from its denotation in a model with a
universe of donkeys.

8. Westerstahl (1976, p. 57) proposes a similar characterization, saying that the
interpretation of logical constants in a given model is “fixed in advance.”

19. Let me add a note on the relation between structures and models. A structurc
is a model in the most general sense, i.e., not a model for a particular language but
a sequence of a set (thought of as a universe), and a series of individuals, subsets,
and relations based on this set. More precisely, a structure is a sequence N =
(A, Vy, ..., V), where ¥y, ..., F,arcindividuals in 4, subscts of A, relations on
A, andjor functions on A. (If N is a model for a language, then V,, ... 1,
correspond to primitive symbols of the language [of the right type].) Now, given a
logical term C—say a l-place, second-level predicate over first-level predicates
(i.c., a Mostowskian quantifier)—and a model ¥ with universe A, the semantic
definition of C specifies with respect to every subset B of A whether it satisfies ¢
in U or not (formally, whether it is a member of Cy or not). So in constraining the
definition of C, we have to take into account all structures of the type {A, B,
where 4 is the universe of some model for the language and /2 is a subsct of 4. This
kind of structure is considered in condition (E).
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20. Lindenbaum and Tarski 1934-1935, p. 385. The formal theorem is, “‘Every
sentence of the form

ML s R LR T
( c ’ ) Xy 2t

PYR S PP P20 R g 2" )

is logically provable,” where

R T
R .

Xt o '
expresses *'the fact that the relation R maps the class of all individuals onto itsell

elati Ly 2z, ... are
in one-one fashion, so that the individuals, classcs, rdatmns etc., x', ¥, z;\ re
mapped on X7, ¥ 2% respectively and Yo (v, p, 2, . ). 15 a gcncra] TC em‘f ’
a sentential function with no extralogical constants and with the variables x, y, 2,
.. free (p. 385).
21. Mautner 1946, p. 345. The citation has italics removed.

22, See Mostowski 1957, p. 13, n. 3.
23. FFor Lindstrom’s theorems, sce Lindstrom 1969 or 1974. A textbook presenta-
tion appears in Ebbinghaus, Flum, and Thomas 1984.

24. Tarski 1986, p. 149.
75, See McCarthy 1981, sections 3 to 5.

Chapter 4 - ‘
1. As in the appendix, when discussing Higginbotham and May's \york': I lolloi\:vi
their use of “automorphism (of scts)” where 1 usually usc “*permutation. I shou1
add that in the context of their investigations Higginbotham and May regard (b.1)
as the limit of “true™ quantifiers.

2. May 1989, p. 397. » o
3. | will explain the context very bricfly. In “Que§ti()ns, Quantificrs, z.md (;rosstqrg]
(F9R1). Higginbotham and May cxplained crossing corcf‘cren.cc {as in (f? D, jsilsi
absorption as follows: 1 Q, and Q, are two 2-place prcdlcatwe quanti 16:r(si,b o4
set. and R. S arc relations included in A2, then Q, and Q, can be absorbed by th

relational quantificr Q,/Q; of type {2, 2), defined as

(Q,/Qy) (R S) =Till o
Q,({ae A:ueE Dom(R)}, {ae 4:Q,({beA caRb}, {be A:aSh}) = T =T.
When applicd to (95) and (98), this rule yiclds respectively

) (VA My & Wy, Lxy)

and

(i) (V3 X [(Px & Sxp) & (My & Cyx), Hxpl,

7 is interpreted according e definitic
where v/ is interpreted according (o the ¢ ~abo ' nal
(1986) show, with a counterexample, that the analysis of (95) by n?c.dnie ofg(;)) ll:
incortect. Take a nonempty universe A consisting only of men. [ntuguvc yi,( C{]
false in A. But the relation “*Mx & Iy is empty in A (there is no pair {a, b) su

n above, Clark and Keenan
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that a is aman and & is a woman), and hence (i) comes out true. Clark and Keenan
proceed to investigate several other possibilities of absorption schemas. While their
operator (described in the main body of the chapter) is adequate or (95), it fails for
(98). On the other hand, a €2, 2, 2) absorption operator that they propose works
for (98) but not for (95). As 1 have shown in the present chapter, the absorption
operator has to be of type (1,2, 2), and the absorption operator | propose
accurately represents both (95) and (98). For further discussion of this issue, sce
May 1990,

4. Clark and Keenan (1986) take the following to be a natural paraphrasc of (98):

“Every pilot who shot at some Mig that chased him hit some Mig that chased him
that he shot at.”

5. This sentence is (4.c) in Keenan 1987, p. 110.
6. Boolos 1981, p. 466.

Chapter §
I. Henkin 1959, pp. 179-180.

2. For simplicity I assume that (1) has no free variables. I make similar assump-
tions throughout the chaplter. I speak of *truth in a model™ rather than of “satis-
faction by an assignment in a model,” and I formulate the definitions as if [ were
dealing only with sentences. It is easy to extend these formulations to formulas
with free variables.

3. For the Skolem normal form theorem, sec, for example, Enderton 1972, p. 275.

. Henkin 1959, p. 181.

. Walkoe 1970, p. 538.

. Hintikka 1973, p. 344, sentence (37).

. Hintikka 1973, p. 344,

. Hintikka 1973, p. 345, sentence (39).

9. Fauconnier 1975, p. 560, sentence (10).

10. Dummett 1973, pp. 8f.

1. An alternative reading is, ¢, a’s in A4 are such that for cach onc of them {q, b's
in A4 are such that for each one of them [g, ¢'s in 4 are such that for each one of
them “R>(a, b, ¢)” is true in AJ).

12. 1 wish to thank Robert May for this example.

13. See van Benthem 1989.

14. We can show that (a) through (d) present four distinct notions by describing
situations that distinguish between them:

* A= Dom(R), B< Ran(R), and 4 and B are properly included in the universe.
When g, = ¢, ="all,” (a), (), and (d) arc true, while (b) is false. Hence (a) # (b),
(c) # (b), (d) # (b).

* A < Dom(R), B < Ran(R), where < means “is a proper subset.” When ¢, =
4, = “‘only,” (a) and (d) are false, while (c) is true. Hence (a) # (c), (d) # (¢)
When g, = “all” and g, = “only,"” (a) is false and (d) is true. Hence (a) # (d).

(2 B R SN Y
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15. 1 would like to thank an anonymous referee of Lf’nguifn'cs and Phi{osophy for
suggesting (34) as an example of independent quantification that, unlike (28) to
(30). cannot be analyzed as (23). ‘
16. However, to analyze “Mostly women were cle—ctcd to lhe Nvacant seats in
Congress™ we have to define independent quantification of type (&):

Q| ¥ 2 [¥,y, (3x)0xy]
Oxy =4 (Q}0)[¥,x, AN (Y2 & Dxy)] & Q) [Y2y, (A)Pxy)

Qi) | ¥ar, ’
We get the intended reading of “Mostly women .. . when we construe nlostly )
and the plural “the” as 2-place Mostowskian quantifiers deﬁqed as follows: (Thed
x)(P,x. Pyx)" is true in a model 2 ifT the extension of *“P, x” in 2 is not Sn?pty an
the extension of *“P,x & ~ Pyx"" in 2 is empty. “(mostly? x) (P, X, P, x) "15 true 2
9L ifT the extension of “P,x & P,x™ in W is larger than l!.u: exten§lon'of ~}?,x
P,x" in . (For a definition of “mostly” by a Mostowskian cardinality function ¢,
sec chapter 2, section 5.) '
17. Johan van Benthem suggested to me in correspondence that we chargc:terltz]e
independent quantifiers as *‘scope-free,” d«:fmed~ as foll(?ws: ‘Q, As stand in t 3
relation R to Q, Bs™ is scope-free iff it satisfics (N mva'nanc‘e under passive
transformations (*“Q, As stand in the relation R to 9‘1 Bs” is logically eqmvz;lerzu
to “Q, Bs stand in the relation R to Q, A4s,” where Ris the converse of R)and ( ;
domain/range invariance (if S is a relation such t!lat Dom_(R) = I’?qm(S). arlxl
Ran(R) = Ran(S), then “Q, s stand in the relation R. t'o Q, Bs is Iog{ca y
equivalent to “Q, As stand in the relation S to Q, Bs”). This deﬁmuon.apph;s to
independent quantifiers of types (a) to {(c). Van Benthem suggests t}.lat 1fw: ave
evidence that a natural language sentence of the above‘ form satisfies t e‘f;wo
invariance conditions (1) and (2), its logical form is that of independent quantifica-
tion. Sce van Benthem 1989, .

18. A quantifier Q is monotone-increasing iff (Qx)®x and (Yx) (®x — ¥x) imply
Q¥

19. Barwise 1979, p. 63.

20. Barwise 1979, p. 60, sentences (21) and (22). .
21. ) is monotone-decreasing iff (Qx)®x and (V,'r)(‘l’x - ®x) imply (Qx).‘lfx‘ Qis
non-monotone iff it is neither monotone-increasing nor monotone-decreasing.
22. Barwisc 1979, p. 64.

23, Barwise 1979, pp. 65- 66. Labels changed.

24. Barwisc 1979, pp. 62 -64. ‘

5. Thus the structure of a maximal consistent sct of formulas gives us enough
information to construct a syntactic model as in Henkin's proof of the completeness

of standard first-order logic. (I wish to thank Charles Parsons ‘for this examé)k?t.i
For the importance of maximality, note, for example, Zorn's lemma and 1

PUIMCTous Uscs.
26. My italics. .
27. Barwise 1979, p. 62, sentence (23). Sec also (25). My italics.
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28. Barwise 1979. My italics.

29. To see that linear quantification is a particular instance of Henkin-Barwise
complex quantification, we have to express the conception of branching embedded
in (49) more generally so that it applies to any partially ordered quantifier
prefix. I will not discuss the nature of such a definition here, but in the casc of
“(Q;x)(Q,y)Pxy” the definition I have in mind will yield the following second-
order counterpart: .

@BX)ER)[(Q,x)Xx & X is a maximal set such that
(V) (Xx = (Q ) Rxp) &

R is a maximal relation such that (Vx)(Vy)(Rxy — ®xp)].

30. The quantifiers over which 2, ranges are higher-order Mostowskian quanti-
fiers that treat pairs as single elements.

31. This example was made up before glasnost.

32. Another conjecture expressible in terms of the general definition schema was
suggested by an anonymous referee of Linguistics and Philosophy. Compare the
following:

(i) In the class, most of the boys and most of the girls all like each other;

(ii) In the class, most of the boys and most of the girls like each other.

The conjecture is that the difference between (i) and (ii) is in the intended inner
quantifier-condition. The presence of the explicit “all” in (i) indicates that the inner
quantifier-condition is each all. However, the absence of “all” in (ii) signifies that
there the inner quantifier-condition is weaker. The reviewer suggests that this
condition is, however, stronger than each—some/some—each (independence). Each-
most appears appropriate.

33, 1did, however, discuss Westerstahl's definition in “Two Approaches to Branch-
ing Quantification” (1990a).

34. Westerstidhl 1987, p. 274.

Chapter 6

I. Putnam 1966, p. 106.

2. Putnam 1966, p. 106.

3. Russell 1919, pp. 201-202.
4. See Putnam 1967, p. 16.

5. Some of the themes developed in this section regarding the interplay between
logic and ontology appear in Charles Parsons “Ontology and Mathematics” (1971a)
and “A Plea for Substitutional Quantification” (1971b). The observation that by
augmenting one’s logic, one can save on ontology was made earlier by Hartry Field
in Science without Numbers: A Defense of Nominalism (1980), preface and chapter 9

6. See Etchemendy 1983 and 1990. Although I accept Etchemendy’s account an¢’
criticism of interpretational semantics, my view of the relation between Tarski’
semantics and interpretational semantics differs radically from his.

7. See Quine 1970, p. 91.
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Appendix
I. I formulate the definitions and the th
and May 1981. In particular, I follow

before I used “permutation.” _ ' (
2. Higginbotham and May do not include a description of the function h in their

i lation
formulation of the theorem (nor do they present a proof). 1 believe my formu
of the theorem is consistent with their intentions.

eorems in terms taken from Higginbotham
their use of *“‘(set) automorphism,” where
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Index of Notation

Page numbers indicate the first introduction of a symbol and its definition.

Use of Variables

The list below gives the most common use of different letters, but in some places
the same letter is used for different objects. The letters might occur with subscripts
or superscripts.

X, 0,2, ... individual variables, 1, 5, 84
fgho... functions, 11, 58
A, B, ... sets, 11
o ... cardinals, I1, 30
ordinals, 79
k,m,n, ... natural numbers, 16, 28
a, b,ed, ... nonlogical individual constants, 16, 29, 84
P nonlogical 1-place, first-level predicate, 12
R nonlogical first-level relatio‘n,S‘v'}w“
e nonlogical primitive term, 48
Q logical quantificr, 10, 16, 28, 84
C logical term (constant), 54, 84
V first-level logical predicate, 86
o, W = formulas/sentences of first-order language, 5, 28, 84
N a model, 14
A universe of discourse, 11

First-Order Logic
~ not (negation), 16 R
& and (conjunction), 18

v or (disjunction), 84
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if ... then (material conditional), 18

if and only if (material biconditional), 23

identical with, 6

not identical with, 18

true (truth value), 11

false (truth value), 11

for all (universal quantifier), 5

for some (existential quantifier), §
the assignment function, 16

is satisfied in €A by g, 16

x is replaced by a, 16

A is derivable (provable) from B, 20
denotation function, 40

is a member of, 16

is not a member of, 58

is a subset of, 23

is a proper subset of, 154

the difference of two classes, |1
binary intersection, 23

binary union, 27

Cartesian product, 34

AxAx--xA4,40
——

n times
the set of x,, x,,...,x,, 72
a singleton, 42
the empty set, 57
the set off all x’s such that Px, 17
a sequence (n-tuple), 33
a triple, 11
an ordered pair, 11
a l-tuple, 79
the empty sequence, 69
the power set (set of all subsets) of A4, 11
the cardinality of 4, 11
the least infinite cardinal, 17
the least infinite ordinal, 39
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Chapter 2
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Zermelo-Fraenkel set theory, 37

the natural numbers, 58

is isomorphic to, 83

the field of R (the union of the domain and range
of R), 57

the domain of R, 67
the range of R, 154
the domain of R is restricted to B, 98

the range of R is restricted to B, 115

the domain of R is restricted to A and its range
to B, 115

the composition of the relations Fand G, 143

the inverse of the relation 7, 144

Skolem functions, 5

branching quantifiers (for every X there is a y and
for every z there is a w such that (x, y, z, w), 5

the (definite description operator), 7

there are exactly n x’s, 7

cardinality functions, 11, 15

a l-place predicative quantifier, e.g., (Qx)®, (Qx)®x,
(Q'x)®, (Q'x)®x, 10, 16, 28

a 2-place predicative quantifier, €.g., (Q%x) (Ox, ¥x),
26, 28, chap. 5 ;

a |-place quantifier over two variables, e.g., (Q*x, »)
(¥x, p), 33, chaps. 3, 4

a 2-place quantifier over 1 variable, e.g., (Q""'x)
(®x, ¥x), 33, chaps. 3, 4

an n-place predicalive quantifier, e.g., Qx)(®yx, .-,
®,x), 33, chap. 5

a l-place quantifier over n variables, €.g., (Q"xy, ...
x)(®xy, ..., X,), 33, chaps. 3,4

most (generalized quantifier), 13

most as a 1-place quantifier, 26

most as a 2-place quantifier, 27, chaps. 2,5
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most as a 2-place quantifier, 57, chaps. 3, 4
a quantifier on the universe 4, 15, 141
a determiner, 21

a formal system, 38
a theory of a formal system, 40

a language (nonlogical vocabulary) for a formal
system, 38, 60

the logical vocabulary of a formal system, 60
sentences in a formal system, 38, 42
a class of sentences in a formal system, 39

the interpretation of C in U or the universe of 2,
55, 56

the denotation of the nonlogical term S in U, 58, 69,
86-87, 124

automorphism, 67, 81
the image of s under m, 67
a type, 68
a semantic quantifier (Lindstrom), 69
a sequence of variables x,, x,, ..., x,, 69
the equivalent class of S, 78
the index image of x, 79
an a-argument, 80
an a-individual, 80
a generalized a-argument, 81
the set of all generalized a-arguments, 81
the set € of logical terms restricted to 2, 81
the restriction of C to A (the same as f-(A)), 56, 81
an a-operator, 81
a-operator correlated with Cy, 82
the set of a-operators, 81
expressions in the formal language, 84
a 3-place quantifier of type <1, 2, 0D, 85
an abbreviated form of (Qx, ), 85
x stands in relation R to y, 85, 92
extension of the assignment function g, 86
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the sct of all pairs of cardinals §, y such that p+y=a
91, 141
a with index 4, 91

the absorption operator, 99
the conditional existential quantifier, 100

Skolem functions, 107

quantifier conditions associated with Q;, 112
maximal quantifier conditions, 124—125

a 1-place independent quantification, 113

a 2-place independent quantification, 115

an n-place independent quantification, 113
a 1-place complex quantification, 116
a 2-place complex quantification, 117

an n-place complex quantification, 113

formalized first-order theories, 135
the formalization of first-order theory, 135
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Absorption, 95-96, 98102, 153-154
Abstract logic, xiii, 61, 63, 105, 128, 130
a-operator, 81-83, 91, 142-- 144
Apriority, 36

Aristotle, §

Bach-Peters sentence, 100101
Barwise, J., xii, 8,27, 105, 108, 116-119,
122, 123, 127, 129, 131, 149, 150, 151,
155, 156. Sce also Barwise and Cooper’s
theory of generalized quantifiers;
Branching quantifiers, Barwise's
definition of; Henkin-Barwise
quantifiers
Barwise and Cooper’s theory of generalized
quantifiers, 7-8, 15, 17-26, 29, 92,
131, 150, 151
Bolzano, B., 137
Boolean Algebra (Boolean functions), 4, 30,
33, 54, 66, 96, 134, 141
Boolos, G., 2, 103, 154
Branching (partially ordered) quantificrs,
xii, 5, 8, 103, 104, 105, 106, 108
Barwise's definition of monotone-
decreasing, 117 118, 155
Barwise's definition of monotone-
increasing, 116117, 155
complex, 113, 11-124, 126-128, 155
generalizations, 119-127
lenkin's definition of standard, 10-108
independent, xii, 113--116, 118, 122--124,
126, 155-156
linguistic applications, 114--116, 122
124, 125--127, 128 - 129
linguistic motivations (Hintikka), 108-
11

Van Benthem’s definition of non-
monotone, 127-128, 155

Cardinality functions used in the definition
of Mostowski’s quantifiers, 11-13,
15-17

Cardinality quantifiers. See Predicative
quantifiers

Carnap, R., 7, 149

Clark, R., 98-99, 101, 153-154

Collective quantifiers, 33

Completeness of logical systems, 2, 17, 26,
37, 38,41, 42, 131, 140, 155

Completeness of logical terms, 4, 65-66

Conditional existential quantifier, 100-102

Connectives (truth-functional) as logical
terms, 3, 4, 23, 43, 52, 53-54, 57, 59,
63,70, 132, 134

Conservability, 23-25, 32, 64, 115, 151

Cooper, R. See Barwise and Cooper’s theory
of generalized quantifiers

Corcoran, J., 63

Dependence. See also Branching quantifiers,

independent

complex, 113, 116124, 126128, 155
linear, 106108, 111113, 124, 156
Description operator, 7, 58, 79
Determiners, 7, 21-24

Dummett, M., 14-185, 24-26, 34, 111,

150, 154

Each-all conditions
in Barwise, 110120
maximal, 120-126, 128, 156
ET (extralogical term), 48
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Etchemendy, J., xi, 45, 137138, 152,
156

Fauconnier, G., 109-111, 115-116, 124,
154

Field, H., 156

Formal structure, 68

Frege, G., 2-3, 6, 10-11, 14, 26, 1, 133,
149, 150. See also Quantifier prefix,
Frege's linear; Standard quantifiers,
Frege's conception of

Fregean-Russellian logic, ix, 3

Generalized (nonstandard) quantifiers. See
Logical quantifiers; Nonlogical
quantifiers

Generalized quantifiers and natura)
language, 17-26, 31-33, 91-104

Gdodel, K., 38, 41

Gdodel's incompleteness theorem, 38--39

Hacking, L., 2

Henkin, L., §, 105, 108, 128, 154-155

Henkin-Barwise quantifiers, xii, 116- 127,
155, 156

Henkin's quantifiers, 5, 106 -108, 111,113

Higginbotham, 1., 32, 34, 92, 153. See also
Invariance, Higginbotham and May's
conditions of

Hintikka, J., 8, 108-111, 115-| 17, 124,
128, 154

Hodes, H. T,, 5, 149

Hodges, W., 152

Identity, 17, 52, 57, 63, 74, 82, 91,132, 134
Independence, xii, 113-116, 118, 122-124,
126, 155-156
Index image, 76, 78-82
Index set, 76-77
Individual constants, 40, 48, 55, 84-86, 90,
137
Individuals, 45, 47, 55, 61-63, 67-68, 70,
89-91, 93, 95, 133, 138
Interpretational semantics, 137138, 156
Invariance
Higginbotham and May's conditions
of, 88-91, 102, 103, 144~ 147, 155,
157
under isomorphic structure, 53, 55, 56,
60, 61-65
under permutation of universe, 14, 34, 53,
62, 6768, 73-75
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Kant, L., 5-6, 149

Kaplan, D., 20

Keenan, E. L., 92, 98 99, 101, 132, 151,
153154

Keisler, H. J., 17, 131, 135, 150

Klein's Erlanger program, 62 63

Larson, R., 151
LC (logical consequence), 40
LF (Logical Form), 31
Lindenbaum-Tarski theorem, 61- 63, 153
Lindstrom, P., xi xii, 27 28, 33, 34, 53,
62-64, 68--71, 104, 131, 142, 153
Lindstrém’s definition of generalized
quantifiers, 68-71
Linearity quantifiers, 95-102
Living on condition, 23. 25, 32,064,115, 151
Logic. See also Abstract logic; Logicism;
Metalogic; Modal logic; Probabilistic
logic; Tarskian logic; Substitutional
logic; Unrestricted logic
general approach to, xi- xiii, 6- 9
Kant's view of, 5-6, 149
logical positivists' view of, 7
and mathematics, xii, 63, 132 134
and metaplysics, 136 -139
new conception of, 59 61, 130 140
ontological commitment of, 134..136
revision in, 131132
Tarski's view of, 37-39, 63--64 (sce also
Tarskian logic)
Logical consequence, 53, 64, 70, 130, 140
in interpretational semantics (LCY, 137
138
intuitive conditions for (formality and
necessity), xiii, 39-45, 49 52, 56. 60 61,
67
vs. material consequence, 45 46, 51
in Tarskian semantics, 37- 47
Tarski’s definition of (LC), 40
Logical Form (LF), 31 -32, 100, 131
Logical functor, 54 56, 58, 71,83
Logicality, x-xiii, 14, 26, 34-35, 61, 63-65,
130
Logical quantifier functor, $6, 58, 71,83
Logical quantifiers. See also Predicative
quantifiers; Relational quantificrs
criterion for (see Logical terms, construc-
tive definition of, criterion for)
Dummett’s criterion for, 14-15
generalized quantifiers as, ix, |- 4, 7
Mostowski's criterion for, 13-17
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Lindstrém’s definition of, 68 71
Logical structure, 73- 75,77
Logical terms (constants)
constructive definition of (formal account),
79-83
constructive definition of (informal
account), 71 79
criterion for, 50 58
introductory discussion, ix- xii
main discussion, 3666
ontological commitment of, 135-136
Logical truth (L'TR), Tarski's definition of,
40
Logicism, ix, xii, 132-133
Léwenheim-Skolemn theorem, 2, 62, 136
Léwenheim-Skolem-Tarski theorem, 41,
70
LT (logical term), 56
LTR (logical truth), 40

McCarthy, T.. 2, 64 65, 153

Massive nucleus (Cartesian product), 109-
111,113,114, 120

Mathematics and logic, xii, 63, 132 134

Muautner, F. 1., 6263, 153

May, R., 32,34,92, 100, 116, 132, 153, 154.
See also Invariance, Higginbotham and
May's conditions of

MC (material consequence), 45

Metalogic, 37, 38, 53

Mectaphysics and logic, 136-139

Modal logic, 8, 54

Modecl, 40, 47 -50, 51. See also Non-
standard models; Tarskian semantics

Madel-theoretic semantics, 3-4, 39-46,
49 50,53,60,70, 111-112,130,137- 139,
156

Most (quantifier), 12,13,19-27,29 30, 57,
59, 75,83, 87,90, 117, 155

Mostowski, A, | 2,17, 3435, 36, 43, 53,
02, 65 66, 67 68, 140, 150, 153. See also
Predicative quantifiers

Nonlogical (extralogical) terms (constants),
44 52, 133 136. See also Logical terms;
Nonlogical quantifiers

Nonlogical quantitiers, xi, 14, 21 26, 30
32

Nonsortal quantifiers, 33

Nonstandard models, 16, 139, 150

NP (noun phrase), 32

Numerical quantifiers, 12
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w-completeness, 39
Ontological commitment, ix, xii, 134-136

Parsons, C., ix-x, 155, 156
Peacocke, C., 2
Peano axioms, 38, 134
Predicates, logical/nonlogical, 3, 14
Predicative (Mostowski's) quantifiers, ix,
1- 2, 36, 57, 62-63, 65-68, 88, 89, 104,
114-117, 130-131, 150, 153, 155~156
generalization from standard, 10-13
incompleteness of, 17, 26
linguistic applications, 17-21,92-94
as logical, 26--31
as nonlogical, 1726
from predicative to relational, 33-35
syntax (LQ1) and semantics (LQ2), 14-17
Probabilistic logic, 16, 139
Proof-theoretic perspective, 140
Putnam, H., 131, 136, 156

Quantifier prefix, 5, 95-96
densely ordered, 128,
Frege's lincar (standard), 106108,
111-113, 124, 156
partially ordered (.g)e{q“[}ranching
quantifiers)
Quine, W. V. O., ix, xii, 134-135, 137, 138,
156

Relational quantifiers, 26, 57-58, 74-75,
131
gencral considerations of, 33-35
Higginbotham and May’s distinction of,
88-91
linearity, 95-102
linguistic applications (see Absorption;
Conditional existential quantifier;
Unrestricted logic, linguistic applications)
pair, 102-103
strong, 91,94 95, 103 -104
weak, 89 90,93 95
Relative product/sum modulo Q, 92-93
Rescher, N., 20
Russell, B., 1, 4,128, 133, 149, 156

Semantics as a distinct discipline, 38-39,43
Semantic variability (strong), 47 -48
Sentential logic, analysis of, 53-54

Sgro quantifier, 15

Similar a-arguments, 77-78, 80

Skolem functions, 5, 107-109, 116, 149
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Skolem normal forms, 105-108, 154
Slomson, A., 150
Standard (existential and universal)
quantifiers
definition of, in Mostowski's logic, 11-12
Frege’s conception of, xi, 6, 10-11, 12,
13-14
generalization from, 10-13
Stavi, J., 92, 151
Substitutional logic, 8, 137

Tarski, A., xi—xii, 36-50, 59, 61, 63-64,
67, 136—137, 139, 140-141, 151153
Tarskian logic, ix, xi—xii, 37, 38, 4652,
53-56, 59, 63, 65, 130, 132. See also
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Tarskian semantics, 3-4, 39-46, 49-50, 53,
60, 70, 111-112, 130, 137~139, 156

Tharp, L. H., 2, 36, 151

Thijsse, E., 151

Tolstoy, 104

Topological quantifiers, 15

Type and mark, 8082, 83-85

Universal Grammar (UG), 32, 131-132
Unrestricted logic (UL), 59-61, 65, 81, 104,
130-133, 135
definition of, 59
linguistic applications, 29-33, 91-104
semantics, 85-88
syntax, 83-85

Van Benthem, J., 92, 105, 116, 127-128,
132, 151, 154-155

Vaught, R., 37

Von Neumann ordinal, 79
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Zorn's lemma, 155
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