
"lI!.1 
!.' ~ 

The Bounds of Logic Gila Sher 

A Generalized Viewpoint 

A Bradford Book 
The MIT Press 
Cambridge, Massachusetts 
London, England 



© 1991 Massachusetts Institute of Technology 
All rights reserved. No part of this book may be reproduced in any form 
by any electronic or mechanical means (including photocopying, recording, or 
information storage and retrieval) without permission in writing from the 
publisher. 

This book was set in Times Roman by Asco Trade Typesetting Ltd., Hong 
Kong, and was printed and bound in the United States of America. 

Library of Congress Cataloging-in-Publication Data 
Sher, Gila. 

The bounds of logic: a generalized viewpoint I Gila Sher. 
p. cm. 

Revision of the author's thesis (Ph.D.)-Columbia University. 
Includes bibliographical references and index. 
ISBN 0-262-19311-6 
I. Logic. I. Title. 

BC71.S47 1991 91-9580 
160-dc20 CIP 

Contents . 
:; 
~ 

Preface ix 

Chapter I 

New Bounds? 

2 

The Initial Generalization 10 

Chapter 3 

To Be u I,ogical Term 36 

~IChapter 4 

Semantics from the Ground Up 67 

'1 
~ 

Chapter 5 

Ways of Branching Quantifiers 105 

Chapter 6 

A New Conception of Logic 130 

tAppcndix 141 

Notcs 149 

References 159 

Index or Notation 169 

I ndex or Terms 175 



:: ~i' 
+ 'I • ~ _ ~ ...- ...... ..-~---- -~ ..." ..", ---...... ... . 
~~~ ...~ ........-. ..
:;:;:;;---~~--....,,- ...... I'">-->---""" 



Preface 

Whatever the fate of the particulars, one thing is certain. There is no going back 
to the view that logic is [standard] first-order logic. 
Jon Barwise, Model- Theoretic Logics 

When I went to Columbia University to study with Prof. Charles Parsons, 
I felt I was given a unique opportunity to work on "foundational" issues 
in logic. I was interested not so much in the controversies involving 
logicism, intuitionism, and formalism as in the ideas behind "core" logic: 
first-order Fregean, Russellian, Tarskian logic. I wanted to understand the 
philosophical force of logic, and f wanted to approach logic critically. 

Philosophical investigations of logic are difficult in that a fruitful point 
of view is hard to find. My own explorations started off when Prof. 
Parsons pointed out to me that some mathematicians and linguists had 
generalized the standard quantifiers. Generalization of quantifiers was 
something I was looking for since coming upon Quine's principle of 
ontological commitment. If we understood the universal and existential 
quantifiers as particular instances of a more general fonn, perhaps we 
would be able to judge whether quantification carries ontological commit
ment. So the idea of generalized quantifiers had an immediate appeal, and 
I sat down to study the literature. 

The generalization of quantifiers gives rise to the question; What is logic? 
in a new, sharp form. In fact, it raises two questions, mutually stimulat
ing. mutually dependent. More narrowly, these questions concern quanti
fiers, but a broader outlook shifts the emphasis: What is it for a tp.rm to be 
logical'! What are all the terms of logic? Sometimes in the course of 
applying a principle, we acquire our deepest understanding of it, and in 
the attempt to extend a theory, we discover what drives it. In this vein I 
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thought that to determine the full scope of logical terms, we have to 
understand the idea of logicality, But the actual expansion of quanti
fiers gives us hands-on experience that is, in turn, valuable in tackling 
"logicality,H Prof. Parsons encouraged me to select this as the topic of my 
dissertation, and The Bounds of Logic, a revised version of my thesis, 
follows the course of my inquiries. 

The idea of logic with "generalized" quantifiers has, in the last decades, 
commanded the attention of mathematicians, philosophers, linguists, and 
cognitive scientists. My own perspective is less abstract than that of most 
mathematicians and less empirical than the viewpoint of linguists and 
cognitive scientists. I.QIf!~igecJ not to address the logical structure of natura I 
language directly. Instead, I would follow my philosophical line of reason
ing unmitigatedly and then see how the theory fared in the face of empirical 
data. If the reasoning was solid, the theory would have a fair chance of 
converging with a sound linguistic theory, but as a philosophical outlook, 
it should stand on its own. 

The book grew out of three papers I wrote between 1984 and 1987: 
"First-Order Quantifiers and Natural Language" (1984), "Branching 
Quantifiers, First-Order Logic, and Natural Language" (1985), and 
"Logical Terms: A Semantic Point of View" (1987). These provide the 
backbone ofchapters 2,5, and 3. Chapter I is based on my thesis proposal, 
and the ideas for chapter 4 were formulated soon after the proposal 
defense. "Logical Terms" was rewritten as "A Conception of Tarskian 
Logic" and supplied with a new concluding section. This section, with 
slight variations, constitutes chapter 6. An abridged version of"A Concep
tion ofTarski an Logic" appeared in Pacific Philosophical Quarterly (1989a). 
I would like to thank the publishers for their permission to reproduce 
extensive sections of the paper. "Branching Quantifiers" gave way to 
"Ways of Branching Quantifiers" and was published in Linguistics and 
Philosophy (1990b). I am thankful to the publishers of this journal for 
allowing me to include the paper (with minor revisions) here. 

At the same time that I was working on my thesis, other philosophers 
and semanticists were tackling tangential problems. In general, my guide
line was to follow only those leads that were directly relevant. A few related 
essays appeared too late to affect my inquiry. In the final revision I added 
some new references, but for the most part I did not change the text. I felt 
that the original conception of the book had the advantage of naturally 
leading the reader from the questions and gropings of the early chapters 
to the answers in the middle and from there to the fonnal developments 
and the philosophical ending. 

xiPreface 

There is, however, one essay that I would like to mention here because 
it is so close to mine in its spirit and its view on the scope of logic. This is 
Dag Westerstahl's unpublished dissertation, "Some Philosophical Aspects 
of Abstract Model Theory" (1976), which I learned of a short time before 
the final revision of this book was completed. Had I come upon it in the 
early stages of my study, I am sure it would have been a source of 
inspiration and an influence upon my work. As it turned out, Westerstahl 
relied on a series of "intuitions about logic," while I set out to investigate 
the bounds of logic as a function of its goal, drawing upon Tarski's early 
writings on the foundations of semantics. 

Chapter by chapter, I proceed as follows: In chapter I, I set down the 
issues the book attempts to resolve and I give an outline ofmy philosophical 
approach to logic. Chapter 2 analyzes Mostowski's original generalization 
of quantifiers, tracing its roots to Frege's conception of statements of 
number. The question then arises of how to extend Mostowski's work. I 
discuss a proposal by Barwise and Cooper (1981) to create a system 
of nonlogical quantifiers for use in linguistic representation. Pointing to 
weaknesses in Barwise and Cooper's approach, I advocate in its place 
a straightforward extension of the logical quantifiers, as in Lindstrom 
(1966a), and show how this can be naturally applied in natural-language 
semantics. It is not clear, however, what the philosophical principle behind 
Moslowski's work is. To determine the scope of logical quantifiers in 
complete generality, we need to analyze the notion of "logicality," This 

leads to chapter 3. 
For a long time I thought I would not be able to answer the questions 

posed in this work. I would present the issues in a sharp and, I hoped, 
stimulating form, but as for the answers, I had no idea what the guiding 
principle should be. How would I know whether a given term, say "being 
a well-ordering relation," is a logical term or not? What criterion could be 
used as an objective arbiter? The turning point for me was John Etche
mendy's provocative essay on Tarski. Etchemendy's charge that Tarski 
committed a simple fallacy sent me back to the old papers, and words that 
were too famiJiar to convey a new meaning suddenly came to life. My 
answer to the question of logicality has three sides: First, it is an analysis 
of the ideas that led Tarski to the construction of the syntactic-semantic 
system that has been a paradigm of logic ever since. Second, it is an 
argument for the view that the original ideas were not fuJly realized by the 
standard system; it takes a far broader logical network to bring the Tars
kian project to true completion. Finally, the very principJes that underlie 
modern semantics point the way to a simple, straightforward criterion of 
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logicality. I spell out this criterion and I discuss the conception of logic 
that ensues. As a side note I should say that although chapter 3 was not 
written as a defense of the historical Tarski, it contains, I believe, all that 
is needed to prove the consistency of Tarski's approach. 

Chapter 4 presents a formal semantics for the "unrestricted" first-order 
logic whose boundaries were delineated in chapter 3. The semantic system 
is essentially coextensional with Lindstrom's, but the method ofdefinition 
is constructive-a semantics "from the ground up." What I try to show, 
first informally and later formally, is how we can build the logical terms 
over a given universe by starting with individuals and constructing the 
relations and predicates that will form the extensions of logical terms over 
that universe. Chapter 4 also investigates the enrichment of logical vocab
ulary as a tool in linguistic semantics, pointing to numerous applications 
and showing how increasingly "stronger" quantifiers are required for 
certain complex constructions. 

Chapter 5 was the most difficult chapter to write. Whereas the book in 
general investigates the scope and limits of logical "particles," this chapter 
inquires into new possibilities ofcombining particles together. My original 
intent was to study the new, "branching" structure of quantifiers to deter
mine whether it belongs to the new conception of logic. But upon reading 
the literature I found that in the context of "generalized" logic it has never 
been determined what the branching structure really is. Jon Barwise's 
pioneer work pointed to several partial answers, but a general semantics 
for branching quantifiers had yet to be worked out. My search for the 
branching principle led to a new, broader account than was given in earlier 
writings. I introduce a simple first-order notion of branching, "indepen
dence"; I universalize the existent definitions due to Barwise; and I point 
to a "family" of branching structures that include, in addition to "in
dependent," Henkin, and Barwise quantifiers, also a whole new array of 
logico-Iinguistic quantifier constructions. 

In chapter 6, I draw several philosophical consequences of the view of 
logic developed earlier in the book. I discuss the role of mathematics in 
logic and the metaphysical underpinning of semantics, I investigate the 
impact of the new conception of logic on the logicist thesis and on Quine's 
ontological-commitment thesis, and I end with a proof-theoretical out
look. This chapter is both a summation and, I hope, an opening for further 
philosophical inquiries. 

The bounds of logic, on my view, are the bounds of mathematical 
reasoning. Any higher-order mathematical predicate or relation can func
tion as a logical term, provided it is introduced in the right way into the 
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syntactic-semantic apparatus of first-order logic. Logic provides a special 
framework for formalizing theories, a framework that draws out their 
necessary and formal consequences. Every formal and necessary con
sequence is identified by some logic, and only necessary and formal con
sequences pass the test of logicality. This view is accepted in practice by 
many logicians working in "abstract" first-order logic. My view also 
stands in basic agreement with that of natural-language logicians. Ex
tended logic has made a notable contribution to linguistic analysis. Yet 
logical form in linguistics is often constrained by conditions that have no 
bearing on philosophy. To my mind, this situation is natural and has no 
limiting effect on the scope of logic. 

On the other side of the mat stand two approaches to logic: First and 
obviously, there is the traditional approach, according to which standard 
logic is the whole of logic. No more need be said about this view. But 
from another direction some philosophers see in the collapse of traditional 
logic a collapse of logic itself as a distinctive discipline. With this view I 
adamantly disagree. Logic is broader than traditionally thought, but that 
does not mean anything goes. The boundaries of logic are based on a 
sharp, natural distinction. This distinction serves an important methodo
logical function: it enables us to recognize a special type of consequence. 
To relinquish this distinction is to give up an important tool for the 
construction and criticism of theories. 

The writing of this work was a happy experience, and I am very thankful 
to teachers, colleagues, friends, and family who helped me along the way. 

I was very fortunate to work with Charles Parsons throughout my years 
at Columbia University. His teaching, his criticism, the opportunity he 
always gave me to defend my views, his expectation that I tackle problems 
I was not sure I could solve-all were invaluable not only for this book 
but for the development of my philosophical thought. I am most grateful 
to him. 

My first dissertation committee was especially supportive and enthu
siastic, and I would like to thank Robert May and Wilfried Sieg for this 
and for their continuing interest in my work after they left Columbia. 
Robert May was actively involved with my book until its completion, and 
I am very thankful to him for his constructive remarks and for urging me 
to explore the linguistic aspect of logic. Isaac Levi and Shaugan Lavine 
joined my dissertation committee at later stages. Levi taught me at Colum
bia, and his ideas had an impact on my thought. I thank him for this and 
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for his conversation and support. Shaughan Lavine contributed numerous 
useful comments on my thesis, and I am very thankful to him. 

John Etchemendy sent me his works on Tarski. These were most impor
tant in developing my own views, and I am grateful to him. 

During the academic year 1987/1988 I was a visiting scholar at MIT, 
and I would like to thank the Department of Linguistics and Philosophy 
for its hospitality. I had interesting and stimulating conversations with 
George Boolos, Jim Higginbotham, Richard Larson, and Noam Chomsky, 
and I am particularly thankful to Richard Cartwright for his contribution 
to my understanding of Tarski. 

While writing the dissertation I was teaching first at Queens College and 
later at Barnard College. I would like to thank the members of the two 
philosophy departments for the supportive environment. To Alex Oren
stein, Sue Larson, Hide Ishiguro, Robert Tragesser, and Palle Yourgrau I 
am thankful for their conversation and friendliness. 

The thesis developed into a book while I was at my present position at 
the University of California, San Diego. I am very grateful to my new 
friends and colleagues at UCSD for the stimulating and friendly atmo
sphere. I am especially indebted to Philip Kitcher for his conversation and 
advice. I am also very thankful to Oron Shagrir for preparation of the 
indexes. 

Betty Stanton of Bradford Books, The MIT Press, encouraged me to 
orient the book to a wider audience than I envisaged earlier. I am very 
thankful for her suggestions. 

As editor of Linguistics and Philosophy Johan van Benthem commented 
on my "Ways of Branching Quantifiers," and his comments, as well as 
those of two anonymous referees, led to improvements that were carried 
over to the book. I appreciate these comments. I am also thankful for 
comments by referees of The MIT Press. 

Hackett Publishing. Company allowed me to cite from Tarski's works. 
I am thankful for their pennission. 

I gave several talks on branching quantifiers, and I would like to thank 
the audiences at the Linguistic Institute (1986), MIT (1987), and the 
University of Texas at Austin (1990). 

My interest in the philosophy of logic arose when I was studying philo
sophy at the Hebrew University ofJerusalem. I am grateful to my teachers 
there, especially Eddy Zemach and Dale Gottlieb, whose stimulating dis
cussions induced my active involvement with issues that eventually led to 
my present work. 
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I could not have written this book without the abounding support given 
to me by my family. My sons, Itai and Shlomi, were very young when I 
started by studies at Columbia University, and they grew up with my 
work. I thank you, Itai and Shlomi, for your patience with a busy mother, 
for your liveliness and philosophical thoughts, for rooting for me, and for 
much much more. My mother took over many of my duties during the last 
months of preparing the book. I am most grateful to her for this and for 

her support throughout my studies. 
It is too late to thank my father, Shlomo Yoffe. He was a staunch 

rationalist who believed in straight, honest reasoning. He taught me to 
think and enjoy thinking. He respected intellectuals but not academic 
titles. His influence, more than anyone else's, led to my career in 

philosophy. 
I am dedicating this book to my husband, Peter Sher, with love and 

gratitude. He followed my work closely from its beginning, and his sugges
tions regarding style and presentation of ideas left their marks on every 
page of this book. With great generosity he encouraged me to resume my 
studies in philosophy some time ago, and with great generosity he has 

supported me in my work since then. 
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.. Logic," Russell said, "consists of two parts. The first part investigates 
what propositions are and what fonns they may have .... The second part 
consists of certain supremely general propositions which assert the truth 
of all propositions of certain fonns.... The first part ... is the more 
difficult, and philosophically the more important; and it is the recent 
progress in this part, more than anything else, that has rendered a truly 
scicntific discussion of many philosophical problems possible."l 

The question underlying this work is, Are generalized quantifiers a case 
in qucstion'? Do they give rise to new, philosophically significant logical 
forms of propositions "enlarging our abstract imagination, and providing 
... [new] possible hypotheses to be applied in the analysis of any complex 
fact"?2 Does the advent of generalized quantifiers mark a genuine break
through in modern logic? Has logic, in Russell's turn of expression. given 
thought new wings once again? 

Generalized quantifiers were first introduced as a "natural generaliza
tion of the logical quantifiers" by A. Mostowski in his 1957 paper "On 
a Generalization of Quantifiers,,3. Mostowski conceived his generalized 
quantifiers semantically as functions from sets of objects in the universe of 
a model for first-order logic to the set of truth values. {truth, falsity}. 
and syntactically as first-order formula-building operators that, like the 
existential and universal quantifiers. bind well-formed formulas with in
dividual variables to form other, more complex well-formed formulas. .Mostowski's quantifiers acquired the name "cardinality quantifiers," and 

"llsome typical examples of these are "there are finitely many x such that 
... ," "most things x are such that ... ," etc. 

Mostowski's paper opened up the discussion of generalized quantifiers 
in two contexts. The first and more general context is that of the scope and 
subject matter of logic. Although Mostowski declared that at least some 
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generalized quantifiers belong in any systematic presentation of symholic 
logic, this aspect~ with the foundational issues it raises, was not thorollghly 
investigated either by him or by other muthematicians who took lip the 
subject. The second, more specific context has to do with the properties 
of formal first-order systems with generalized quantifiers, particularly in 
comparison to "classical" first-order logic and its characteristic properties: 
completeness, compactness, the Lowenheim-Skolem property, etc. This 
was the main concern of Mostowski's research, and it became the foctls of 
the ensuing surge of mathematical interest in the subject. 4 

In contrast to the extensive and prolific treatment that generalized 
quantifiers have received in mathematics, the philosophical yield has heell 
rather sparse. The philosophical significance of generalized quantifiers was 
examined in a small number of contemporary papers by sllch authors as 
L. H. Tharp (1975), C. Peacocke (1976), I Hacking (1979), T. McCarthy 
(1981) and G. 80010s (1984b) as part of an attempt to provide a general 
characterization of logic and logical constants. The mathematical descrip
tions of generalized quantifiers and the numerous constructions by llIathe
maticians of first-order systems with new quantifiers prompted the ques
tion of whether such quantifiers are genuinely logical. Although the dis
cussions mentioned above are illuminating, they reach no definite or COlll

pelling conclusions, and, to the best of my knowledge and judgemcnt, 
the question is still open. 

To inquire whether "generalized" quantifiers are logical in complete 
generality, we have to ascend to a conceptual linguistic scheme that is 
independent of, or prior to, the determination of logical constants and, 
in particular, logical quantifiers. We will then be able to ask, What 
expressions in that Ti'figuistic scheme are logical quantifiers? What are all 
its logical quantifiers? The scheme has to be comprehensive enough, of 
course, to suit the general nature of the query. 

A conceptual scheme like Frege's hierarchy of levels naturally suggests 
itself. In such a scheme the level of a linguistic expression can be deter
mined prior to, and independently of, the determination of its status 
as a logical or nonlogical expression. 5 And the principles underlying the 
hierarchy-namely the characterization of expressions as complete or 
incomplete and the classification of the latter according to the number and 
type of expressions that can complete them-are universally applicable. 
From the point of view of Frege's hierarchy of levels, the system of stan
dard first-order logic consists of a lirst-Ievellanguage plus certain second
level unary predicates (Le., the universal and/or existential quantifiers) and 

New Bounds'! 

a "complete" set of truth-functional connectives. Our question can now 
be formulatcd with respect to Frege's linguistic scheme as follows: Which 
sccoml-Ievcl predicates and relations can combine with first-level predi
cates, relations, functional expressions, proper names and.S.~I1tential con
nectives to make up a first-order logic? What makes a second-level pre
dicate or relation into a first-order logical quantifier? (analogously for 

higher-order quantifiers.) 
To ask these questions is to investigate various criteria for logical 

"quantifierhood" with respect to their philosophical significance, formal 
rcsults, and linguistic plausibility. At the two end points of the spectrum 
of possible criteria we find those that allow any second-level predicate and 
relation as a logical quantifier (this is possible within Frege's scheme 
because of the syntactic structure of second-level expressions) and those 
that allow only the universal and existential quantifiers as logical quanti
fiers. While the former amount to a trivialization of logic, the latter 
preclude extension altogether. For that reason, the area in-between is the 

most interesting for a critical investigator. 
The formal scheme whose extension is considered in this book is Fregean

HlIsscllian mathematical logic with Tarskian semantics. More specifically, 
the investigation concerns Tarski's model-theoretic semantics for first
order logic. With respect to Tarski's semantics one may wonder whether 
it makes sense at all to consider its extension to a logic with new quanti
fiers. To begin with, we can see that the structure of a first-order Tarskian 
model does allow for a definition of truth (via satisfaction) for a language 
richer than that of standard first-order logic. One line of reasoning point
ing to the natumlness of extension is the following: If Tarskian model
thcoretic semantics is philosophically correct, then a first-order model 
oilers a faithful and precise mathematical representation of truth (satis
faction) conditions for a first-order extensional language. The formal 
correctness of this semantics ensures that no two distinct (Le., logically 
Ilolleqllivalent) scts of sentences have mathematically indistinct classes of 
models. But ideally, a semantic theory would also be nonredundant, in the 
scnse that no two distinct semantic structures would represent the same 
(i.e., logically equivalent) sets of sentences. Standard first-order logic does 
not measure up to this ideal, because it is unable to distinguish between 
llonisolllOrphic structures in general. That is, "elementary equivalence," 
cquivalence a~ far as first-order theories go, does not coincide with equiv
alence up to isomorphism, a relation that distinguishes any two non
isomorphic structures. 6 This inadequacy can be "blamed" either on the 



5 Chapter I 
4 

excesses of the model~theoretic semantics or on the scantiness (expressive 
"poverty") of the standard first-order language. Accordingly, we can 
either make the semantic apparatus less distinctive or strengthen the 
expressive power of the standard language so that the model-theoretic 
semantics is put to full use. In any case, it is clear that Tarskian semantics 
can serve a richer language. 

The study of extensions of logic has philosophical, mathematical, and 
linguistic aspects. Philosophically, my goal has been to find out what 

distinguishes logical from nonlogical terms, and, on this basis, determine 
the scope of (core) logic. Once the philosophical question has been decided, 
the next task is to delineate a complete system of first-order logic, in a 
sense analogous to that of the expressive completeness of various systems 
of truth-functional logic. In the early days of modern logic, truth

functionality was identified as the characteristic property of the "logical" 
sentential connectives, and this led to the semantics of truth tables and to 
the correlation of truth-functional connectives with Boolean functions 
from finite sequences of truth values to a truth value. That in turn enabled 
logicians to answer the question, What are all the truth~functional 
sentential connectives? and to determine the completeness (or 
incompleteness) of various sets of connectives. We cannot achieve the 
same level of effectiveness in the description of quantifiers. But we can try 
to characterize the logical quantifiers in a way that will reHect their 
structure (meaning), show how to "calculate" their value for any set 
of predicates (relations) in their domain, and describe the totality of 

quantifiers as the totality of functions of a certain kind. This task takes the 
form of construction, description, or redefinition, depending on whether 
the notion of a logical term that emerges out of the philosophical in vest i
gations has been realized by an existing formal system. 

A further goal is a solid conceptual basis for the generalizations. I n his 
Introduction to Mathematical Philosophy (1919) Russell says, "It is a prin
ciple, in all formal reasoning, to generalize to the utmost, since we therehy 
secure that a given process of deduction shall have more widely applicable 
results.'" One of the lessons I have learned in the course of studying 
extensions of logic is that it is not always clear what the unifying idea 
behind a given generalization is or which generalization captures a gi ven 
idea. In the case of generalized quantifiers, for example, it is not immedi
ately clear what generalization expresses the idea of a logical quantifier. 
Indeed, the need to choose among alternative generalizations has been one 
of the driving forces behind my work. 

New Bounds? 

Another angle from which I examine new forms ofquantification is that 

of the ordering of quantifier prefixes: Why should quantifier prefixes be 
linearly ordered? Are partially~ordered quantifiers compatible with the 
principles of logical form? In his 1959 paper "Some Remarks on Infinitely 
Long Formulas," L. Henkin first introduced a new, nonlinear quantifier 
prefix (with standard quantifiers). Henkin interpreted his new quantifiers, 
branching or partially-ordered quantifiers, by means of Skolem functions. 8 

An example of a branching quantification is 

(Vx)(3y) 

(I) 	 )<I>(X,y, z, w), 

(Vz)(3w) 

which is interpreted, using Skolem functions, as 

(2) (~ll )(3g 1 )(Vx)(Vz)<J>[X,/l (x), z, gl (z)]. 

However, attempts to extend Henkin's definition to generalized quanti
fiers came upon great difficulties. Only partial extensions were worked out, 
and it became clear that the concept of branching requires clarification. 
This is another case of a generalization in need ofelucidation, and concep
tual analysis of the branching structure is attempted in chapter 5. 

The philosophical outlook underlying this work can be described as 
follows. Traditionally, logic was thought of as something to be discovered 
once and for all. Our thought, language, and reasoning may be improved 

in certain respects, but their logical kernel is fixed. Once the logical kernel 
is known, it is known for all times: we cannot change-improve or enrich 
-the logic of our language, reasoning, thought. On this view, questions 
about the logical structure of human language have definite answers, the 
same for every language. As the logical structure of human thinking is 

unraveled, it is encoded in a formal system, and the logical forms of this 
system are all the logical forms there are, the only logical forms. End of 
slory. 

This approach is in essence characteristic of many traditional philo
sophers, e.g., Kant in Critique of Pure Reason (1781/1787) and Logic 
(1800). The enterprise of logic, according to the Critique;consists in mak
ing an "inventory" of the "formal rules of all thought." These rules are 
simple, unequivocal, and clearly manifested. There is no questioning their 
content or their necessity for human thought. Because of the limited 
nature of its task, logic, according to Kant, "has not been able to advance 
a single step [since Aristotle], and is thus to all appearances a closed and 
completed body of doctrine."9 That this view of logic is not accidental to 
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Kant's thought is, I think, evident from the use he makes of it in establish
ing the Table of Categories. The Table ofCategories is based on the Table 
of the Logical Functions of the Understanding in Judgments, and the 
absolute certainty regarding the latter provides, according to Kant, an 
"unshakeable" basis for the former. 

I" for one, do not share this view of logic. Even if there are "eternal" 
logical truths, I cannot see why there should be eternal conceptual (or 
linguistic) carriers of these truths, why the logical structure of human 
thought (language) should be "fixed once and for aiL" I believe that new 
logical structures can be constructed. Some of the innovations of modern 
logic appear to me more of the nature of invention than of discovery. 
Consider, for instance, Frege's construal of number statements. Was this 
a discovery of the form that, unbeknownst to us, we had always used to 
express number statements, or was it rather a proposal for a new form that 
allowed us to express number statements more fruitfully? 

The inteHectual challenge posed by man-made natural language is, to 
my mind, not only that of systematic description. As with mathematics or 
literature, the enterprise of language is first of all tha t ofcreating language, 
and this creative project is (in all three areas) unending. Even in contem
porary philosophy of logic, most writers seem to disregard this aspect of 
language, approaching natural language as a "sacred" traditional institu
tion. But does not the persistent, intensive engagement of these same 
philosophers with~.Y.~f new alternative logics point beyond a search for 
new explanations to a search for new forms? 

The view that there is no unique language of logic can also be based on 
a more conservative approach to human discourse. Defining the field of 
our investigation to be language as we currently use it, we can invoke the 
principle of multiformity of language, which is the linguistic counterpart 
of what H. T. Hodes called Frege's principle of the "polymorphous com
position of thought."lO Consider the following sentences: 11 

(3) There are exactly four moons of Jupiter. 

(4) The number of moons of Jupiter = 4. 

It is crucial for Frege, as Hodes emphasizes, that (3) and (4) express the 
same thought. The two sentences "differ in the way they display the 
composition of that thought, but according to Frege, one thought is not 
composed out of a unique set of atomic senses in a unique way." 12 
Linguistically, this means that the sentence 

(5) Jupiter has 4 moons,13 
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which can be paraphrased both by (3) and by (4), has both the logical 
form 

(6) (!4x)Ax 

and the logical form 

(lx)Bx = 4. 

I think this principle is correct. Once we accept the multiformity of lan
guage, change in the "official" classification of logical terms is in principle 
licensed. 

The logical positivists, unlike the traditional philosophers, made change 
in logic possible. Indeed, they made it too easy. Logic, on their view, is 
nothing more than a linguistic convention, and convention is something 
to be kept or replaced, at best on pragmatic grounds ofefficiency (but also 
just on whim). I sympathize with Carnap when he says, "This [conven

view leads to an unprejudiced investigation of the various forms of 
new logical systems which differ more or less from the customary form ... , 
and it encourages the construction of further new forms. The task is not 
to decide which of the different systems is 'the right logic' but to examine 
their formal properties and the possibilities for their interpretation and 
application in science." 14 Furthermore, I agree that ac<;epting a new logic 
is adopting a new linguistic framework and that such "acceptance cannot 
be judged as being either true or false because it is not an assertion. It can 
only be judged as being more or less expedient, fruitful, conducive to the 
aim for which the language is intended." 15 What I cannot agree with is the 
insistence on the exclusively practical nature of the enterprise: "the intro
duction of the new ways of speaking does not need any theoretical justifi
cation ... to be sure, we have to face at this point an important question; 
but it is a practical, not a theoretical question."16 

In my view, revision in logic, as in any field of knowledge, should face 
the "trial of reason" on both fronts, practice and theory. The investiga
tions carried out in this essay concern the theoretical grounds for certain 
extensions of logic. 

Generalized quantifiers have attracted the attention of linguists, and 
some of the most interesting and stimulating works on the subject come 
from that Held. Quantifiers appear to be the closest formal counterparts of 
such natural-language determiners as "most," "few," "half," "as many 
as," etc. This linguistic perspective received its first elaborate and systema
tic treatment in Barwise and Cooper's 1981 paper "Generalized Quanti
fiers and Natural Language." Much current work is devoted to continuing 
Barwise and Cooper's enterprise. 17 The discovery of branching quantifiers 



9 
Chapter I 8 

in English is credited to J. Hintikka in "Quantifiers vs. Quantification 
Theory" (1973). Hintikka's paper aroused a heated discussion and steps 
towards a systematic linguistic analysis of branching quantifiers were 
taken by Barwise in "On Branching Quantifiers in English" (1979). 

The work on generalized and branching quantifiers in linguistics, though 
answering high standards of formal rigor, has a strong empirical orienta
tion. As a result, study of the "data" is given precedence over "pure" 
conceptual analysis. The task of formulating a cohesive empirical theory 
is particularly difficult in the case of branching quantifiers because evi
dence is so scarce. In fact, while the branching form appears to be gram
matical, it is arguable whether it has, in actual languages, a clear semantic 
content. To me, this grammatical form appears to be "in search of a 
content." In any case, my own work emphasizes the conceptual aspect of 
the branching form. The direction of analysis is from philosophy to logic 
to natural language. This has the advantage, if the attempt is successful, 
that the theory is not piecemeal and the applications follow from a general 
conception. On the other hand, since empirical evidence is not given 
precedence, the proposals for linguistic applications are presented merely 
as theoretical hypotheses, and their empirical value is left for the linguist 
to judge. 

My search for new logical forms is prompted by interests on several 
levels. For one thing, it is a way of asking the general philosophical 
questions: What is logic? Why should logic take the form of standard 
mathematical logic? For another, it is an attempt to understand more 
deeply the fundamental principles of modern logic. Mathematical logic, in 
particular first-order logic, has acquired a distinguished, paradigmatic 
place in contemporary analytic philosophy. This situation has naturally 
led to attempts to extend the range of its applicability, especially to various 
intensional contexts. It has also led to attacks on the basic principles of 
the standard system and to the consequent construction of alternative 
logics. Thus the philosophical scene abounds in modal, inductive, epi
stemic, deontic, and other extensions of "classical" first-order logic, as 
well as in intuitionistic, substitutional, free, and other rival logics. How
ever, few in philosophy have suggested that the very principles underlying 
the "core" first-order logic might not be exhausted by the "standard" 
version. The present work ventures such a philosophical view, inspired 
by recent mathematical and linguistic developments. These have not 
yet received the attention they warrant in philosophical circles, and the 
opportunity they provide for a reexamination of fundamental principles 
underlying modern logic has largely passed unnoticed. The realization of 
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this opportunity motivates my work. Logic, I believe, is a vehicle of 
thought. This work is done with the hope of contributing to the under

standing of its scope. 
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Chapter 2 

The Initial Generalization 


Mostowski and Frege 

In the 1957 paper "On a Generalization of Quantifiers," A. Mostowski 
introduced linguistic operators of a new kind that, he said, "represent a 
natural generalization of the logical quantifiers. ,,1 Syntactically, Mostow
ski's quantifiers are formula building, variable binding operators similar 
to the existential and universal quantifiers of standard first-order logic. 
That is, if cb is a fonnula, the operation of quantification by a Mostow
skian quantifier Q and an individual variable x yields a more complex 
formula, (Qx)cb, in which x is bound by Q. Semantically, Mostowski's 
operators are functions that assign a truth value to any set of elements in 
the universe of a given model in such a way that the value assigned 
depends on the cardinalities of the set in question and its complement in 
the universe and on nothing else. Since the standard existential and uni
versal quantifiers can also be defined in that manner, the new operators 
constitute a generalization of quantifiers in the semantic sense too. There 
thus exist, according to Mostowski, a great many operators on formulas 
with syntactic and semantic features similar to those of the standard 
quantifiers. These constitute a genuine extension of the logical quantifiers. 

To understand Mostowski's generalization more deeply, I will begin 
with a short regression to Frege. Frege construed the existential and 
universal quantifiers as second-level quantitative properties that hold (or 
do not hold) of a first-level property in their range due to the size of its 
extension. This characterization of quantifiers is brought out most clearly 
in Frege's analysis of existence as a quantifier property in The Foundations 
ofArithmetic (1884): "Existence is a property of concepts."2 UAflIrmation 
of existence is in fact nothing but denial of the number nought."3 "The 

proposition that there exists no rectangular equilateral rectilinear triangle 
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... state[s] a property of the concept 'rectangular equilateral rectilinear 
triangle'; it assigns to it the number nought."4 

Within Frege's hierarchy of levels a (first-order) quantifier is a I-place 
second-level predicate the argument place of which is to be filled by a 
I-place I1rst-Ievel predicate (the argument place of which is in turn to be 
filled by a singular term). A sentence of the form (3x)cbx is true if and only 
if (henceforth, "iff") the extension of the I-place predicate (or proposi
tional function) <I>~ is of cardinality larger than O. And a sentence of the 
form (Vx)<I>x is true iff the extension of cb~ is the whole universe, or its 
counterextension has cardinality O. S 

This Fregean conception of the standard quantifiers underlies Mostow
ski's generalization. In Mostowski's model-theoretic terminology, the 
standard quantifiers are interpreted as functions on sets (universes of 
models) as follows: 

(J) 	The universal quantifier is a function V such that given a set A, V(A) 
is itself a functionf: P(A) -+ {T, F}, where P(A) is the power set of 
A and for any subset B of At 

. {T Bl =0iflA
1(8) = . 
. F otherWise. 

(2) 	The existential quantifier is a function 3 such that given a set A, 
3(A) is a function g : P(A) -+ {T, F}, where for any subset B of A, 

T 	 iflBI > 0
g(B) .{ F 	 otherWise. 

On the basis of this definition we can associate with each quantifier Q 
or 3) a function IQ that tells us, given the size of a universe A, under 

what numerical conditions Q gives a subset B of A the value "true." Thus, 
the function IQ may be defined as a function on cardinal numbers (sizes of 
universes) assigning to each cardinal number ex another function I~ that 
says how many objects are allowed to fall under a set B and its comple
ment in a universe of size ex in order for Q(B) to be "true." Since the 
"cardinality image" of each set in a universe of size ex can be encoded by 
a pair of cardinal numbers (fl, y), where fl represents the size of Band y 
the size of its complement in the given universe, t~ is defined as a function 
from all pairs ofcardinal numbers fl and y, the sum of which is ex, to {T, F}. 
So the universal quantifier function, IV, is defined, for each ex, by t!, which 
assigns to any given pair (fl, y) in its domain a value according to the rule 

V ify 0{T
(3) 	t,,(fl, y) = F h . 

01 	 erWlse. 
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The rule for the existential quantifier is 

{T ifP> 0
(4) Icz(P, y) = F th . 

o erwlse. 

We can now define the standard quantifiers in terms of their t-functions as 
follows: Given a set A and a subset B of A, 

(5) V (B) = {T if I~I(I ~I, IA BI) = T 
... F otherwIse. 

Similarly, 

(6) 3... (B) = {T if 11~,(I~I, IA - BI) = T 
F otherwIse. 

However, V and 3 are not the only quantifiers that can be defined by 
cardinality functions like those above. Any function I that assigns to each 

cardinal number a a function Icz from pairs of cardinal numbers (P, y) 
such that P+ Y = a to {T, F} defines a quantifier. Given a set A and a 
subset B of A, this quantifier is defined on A exactly as V and 3 are. For 
example, suppose that the cardinality function 16 is defined, for any car
dinal number a and pair <p, y) such that p+ y = a, by 

& ifP ={T b
(7) tcz(P, y) = F th . 

o erwlse. 

Then (6 determines the cardinal quantifier (!bx): "for exactly b elements x 

in the universe." Similar functions define the quantifiers "for at least b 

elements x in the universe" and "for at most b elements x in the universe." 

Cardinality statements in general, "b things have property P," can thus be 

formalized as first-order quantifications 

(8) (!eS x)Px, 

which assert that the extension of P has b elements. In Frege's conceptual 
scheme, (8) would be a second-level statement that assigns a second-level 
numerical property to the extension of the first-level predicate P. But this 
is exactly Frege's own analysis of statements of number: "The content of 
a statement of number is an assertion about a concept. ... If I say 'Venus 

has 0 moons' ... what happens is that a property is assigned to the concept 
'moon of Venus,' namely that of including nothing under it. If I say 'the 
King's carriage is drawn by four horses,' then I assign the number four to 
the concept 'horse that draws the King's carriage.'''6 We see that Mostow
ski's generalization is indeed in the spirit of Frege. 

Yet numerical quantifiers (finite and infinite) do not exhaust Mostow
ski's definition. Consider the function I defined (relative to a cardinal 
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number a and any pair (P, y) such that p+ y = a) as 

T ifP > y
(9) t<l({1, y) = { F th . 

o erwlse. 

This function defines the quantifier (Mx), "most of the objects in the 
universe are such that ... " (where we take "Most things are B" to mean 
"There are more Bs than non-Bs"). Consider also 

T ifPis a finite even number 
(10) (,( {1,y) h'{ F ot erwlse. 

This function defines the quantifier (Ex): "an even number of objects in 
the universe are such that ...." Another quantifier is defined 

T if {1 = a 
(11) t<l(P,y) = F h .{ at erwlse. 

This is the Chang or equicardinal quantifier: "as many objects as there are 
elements in the universe are such that ...."7 And so on. 

Among the totality of cardinality functions 1 are functions that assign 
to dillerent cardinals a different functions 1<1' Such a "vacillating" function 
t might be defined for two distinct cardinal numbers (Xl and (X2 by 

T ifP = m 
(12) t<lI(P,y) = { F th . 

• 0 erWlse, 

T if{1=n 

{
(13) t<ll ({1, y) F th . o erWlse, 

where 111 ::I n. The function 1 expresses cardinality properties of sets rela

tive to the size of the universe: "m out of (Xl' n out of a2' ...." Some 
vacillating functions are reducible to "simple" functions like the ratio 
function "1/2," which is fixed for all universes. (Thus, 1/2 = lout of 2, 2 
out of 4, 3 out of 6, etc., where some conventional rule is given for 
universes with an odd number of elements.) Other vacillating functions 
represent irregular ratios ("2 out of 3, 3 out of 6, 19 out of 19, ... "), and 
these are genuinely "manifold" cardinality functions. 

According to Mostowski, any formula-binding operator defined by 
some cardinality function (simple or vacillating) as described above is a 
generalized quantifier. 

2 A Criterion For Logical Quantifiers 

Are Mostowski's quantifiers logical quantifiers? Are they aI/the logical 
quantifiers? From a Fregean point of view, standard first-order logic is a 
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first-level system with one or two I-place second-level predicates: the 
existential and/or universal quantifiers. Mostowski's logic is, from this 
point of view, a first-level system with an arbitrary number of I-place 
second-level predicates of the same lype as the standard quantifiers (i.e., 
I-place second-level predicates of I-place first-level predicates). However, 
not all second-level predicates of that type are logical quantifiers, accord
ing to MOSlowski's definition. The predic~lte "P is a (first-level) attribute 
of Napoleon" is not. More generally, all noncardinality predicates are 
excluded from this category. The question naturally arises as to why the 
distinction between logical and nonlogical predicates should coincide with 
the distinction between cardinality properties and noncardinality prop
erties. What does cardinality have to do with logicality? 

Mostowski's answer is that there are two natural conditions 01) logical
quantifiers: 

CONDITION LQI "Quantifiers enable us to construct propositions from 
propositional functions."8 

CONDITION LQ2 . A logical quantifier "does not allow us to distinguish 
between different elements of [the universe}."9 

The first requirement is clear. Syntactically, a quantifier is a formula
building expression that operates by binding a free variable in the formula 
to which it is attached and thus in finitely many applications generates a 
sentence, i.e., a closed formula. 

The second, semantic requirement Mostowski interprets as follows: a 
I-place first-level Propositional function cJJx satisfies a quantifier Q in a 


given model '11 only if any I-place first-level Propositional function whose 

extension in '11 can be obtained from that of «I>x by Some permutation of 

the universe satisfies it as well. More succinctly, logical quantifiers are 

invariant under permutations of the universe in a given model for the

language. 

It is interesting to note that (LQ2) is also suggested by Dummelt in 

Frege: Philosophy ofLanguage (1973): 


Let us call a second-level condition any condition which, for some domain of 
objects, is defined, as being satisfied or otherWise, by every predicate which is in 
turn defined over that domain of objects. Among such second-level conditions, we 
may call a quantifier condition any which is invariant under each permutation of 
the domain of objects: i.e. for any predicate 'F(,), and any permutation ((), il 
satisfies 'F(O' just in case it satisfies that predicate which applies to just those 
objects cp(a), where 'F(,), is true of a. Then we allow as also being a logical 
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constant any expression which ... allows us to express a quantifier condition which 

could not be expressed by means of ... (the universal and existential] quantifiers 

and the sentential operators alone. 1o 


Now it is a metatheoretical fact about first-order models that given a 
model'll with a universe A and a I-place second-level property gp, gp 
satisfics (LQ2) with respect to the elements of A iff gp is a cardinality 
property. And this explains why Mostowski identifies logical quantifiers 
with cardillality quantifiers. (A theorem establishing the one-to-one corre
spondence between quantifiers satisfying (LQ2) and cardinality quantifiers 
was proved by Mostowski. See the appendix.) 

To sum up, syntactically, a quantifier is an operator binding a formula 
by means of an individual variable. Semantically, it is a function that 
assigns to every universe A an A-quantifier (or a quantifier on A), QA' Q A is 
itself a function from subsets of A into {T, F}. We will call the cardinality 
function t associated with a given A-quantifier QA the cardinality counter
part of QA and symbolize it by tJ (or sometimes simply by t). Quantifiers 
satisfying (LQ I) and (LQ2) are Mostowskian quamijiers. More precisely, 
a Mostowskian quantifier is a quantifier Q satisfying (LQ) and such that 
for every set A, QA satisfies (LQ2), and if AI' A2 are sets of the same 
cardinality, then QAI and QAl have the same cardinality counterpart. For 
exact definitions, see the appendix. 

It is worthwhile to note that Mostowski's system of generalized quanti 
fiers exhausts the I-place second-level predicates that satisfy (LQ2) only 
relative to the standard semantics for first-order logic. Disregarding the 
particular features of this semantics, we can say that any second-level 
predicate embodying some measure of sets and insensitive to the identity 
of their members satisfies this condition. Mostowski's quantifiers express 
measures of a particular kind, namely measures that have to do with the 
cardinality of sets, and as we have seen, these are all the second-level 
I-place "measure predicates" satisfying (LQ2) relative to standard model 
theory. Rut these are not the only second-level measures conforming to 
(LQ2). Other quantifier measures of first-level extensions have been devel

'I 
oped involving more elaborate model structures. Barwise and Cooper 
() (81) describe two such cases. The first is a quantifier Q, studied by Sgro 
(1977), where "(Qx)«I>x" says that the extension of «I>x contains a non
empty open set. This quantifier requires that models be enriched by some 
measure of distance (topology). The second has to do with measures of 
infinite sets: "Measures have been developed in which (a) and (b) make 
perfectly good sense. 

'f 
"~l 
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(a) 	More than half the integers are not prime. 

(b) 	More than half the real numbers between 0 and I, expressed in decimal 
notation, do not begin with 7." 11 

Under the same category fall probability quantifiers, defined over non
standard models in which probability values are assigned to extensions of 
predicates. 12 We will not take up quantifiers for nonstandard models here. 

We will also limit ourselves to finitistic logics. This is because the extension 
to infinitely long formulas is not necessary to investigate the generalized 
notion of a logical term, which is what interests us in this work. 13 

To return to Mostowski, the syntax of a first-order logic with (a finite 
set of) Mostowski's generalized quantifiers is the same as the syntax of 
standard first-order logic with two exceptions: (I) The language includes 

finitely many quantifier symbols, Ql' Q2' "', Qn (among them possibly, 
but not necessarily, V and 3). (2) The rule for building well-formed quanti 

fied formulas is, ffef> is a well-formed formula, then (QI x)<I>, (Q2x)<I>, '" , 
(Qnx)ef> are all well-formed formulas (for any individual variable x). 

We can extend the Tarskian definition of satisfaction to cardinality 
quantifiers by replacing the entry for quantified formulas by the following. 

Let ~ be a (standard) first-order model, and let A be the universe of VI. 

Let g be an assignment of members of A to the variables of the language. 

• ffef> is a formula and Q a quantifier symbol, 2( 1= (Qx)ef>[g] iff for some 

a and Psuch that a + P= /A I and ':l(a, P) = T, there are exactly a 

elements a E A such that 2( 1= ef>[g(x/a)] and exactly {I elements hE A 

such that 21 t= -ef>[g(x/h)], 

where "~ t= ef>[g]" is to be read, Hef> is satisfied in 21 by g" and g(x/lI) is an 

assignment of members of A to the variables of the language that assigns 


a to x and otherwise is the same as g. Informally, the definition now Sl:tys 

that (Qx)ef>x is true in 21 iff the number of elements in A satisfying cl>x and 


the number of elements in A not satisfying ef>x are as tJ allows. Note the 

following: 

• The definition of satisfaction above is a schema that, for any 
quantifier, instantiates differently. In the cases of V and 3 the schema 

instantiates in the standard way. In the case of the quantifier "most" the 

if ef> is a formula, then (Mx)ef>x is true in VI iff the number of 
ef>x's in ~ is larger than the number of non-ef>x's in 21. (Formally, 21 1= 
(Mx)ef>[g] iff for some a, P such that Ct + II = IA I and a > {I, there are 

exactly a elements a in A such that VI 1= ef>[g(x/a)] and exactly II elements 
!J in A such that VI 1= -ef>[g(x/h)J.) 
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• The definition of a model for first-order logic with Mostowskian gener

alized quantifiers is the same as that for standard first-order logic. A model 
for the extended logic does not contain any new "entities" not found in 

models for standard logic. The only difference is in the computation of 

truth values for quantified formulas, given a model and an assignment of 

in the universe to the variables of the language. 

An important difference between Mostowski's system and standard 

first-order logic is that the former is not in general complete. Thus, for 
example, Mostowski proved that if the quantifiers of a generalized first

order logic include the existential or universal quantifier and at least one 

quantiller Q satisfying condition (.) below, then the logic is incom
plete: not all logically true sentences of this system are provable, or, 

the set of sentences true in all models for the logic isnQLr~~ursively 

enulIlerable. 

CONDITION (.) The cardinality function t 
Q associated with Q assigns 

to ~o a function t~o such that both {Il: t~o(n, ~o) F} and 

{m: t2u(m. ~o) = T} are denumerable. 14 

An example of a quantifier satisfying condition (.) is Q, where, given a 

denumerable universe, "(Qx)<I)x" means "The number of <1>x's is even." 
On the other hand some generalized logics are complete. For example, 

H. J. Keisler (1970) proved that the logic obtained from standard first

order logic with identity by adding the quantifier "there are uncountably 

many" and a modest set of axiom schemas is complete. 
Referring to the incompleteness of first-order logic with generalized 

quantifiers in general, Mostowski says, "In spite of this negative result we 

believe that some at least of the generalized quantifiers deserve a closer 

study and some deserve even to be included into systematic expositions of 

logic. This belief is based on the conviction that the construction 
of formal calculi is not the unique and even not the most important goal 

of svmbolic logic." 15 

for which completeness appears to be immaterial is the charac

terization of the structure of natural language. 

3 	 (;cllcralized Quantifiers and Natural Language 

III their seminal paper "Generalized Quantifiers and Natural Language" 
J. Harwise and R. Cooper examined Mostowski's theory from a linguistic 
perspective. Mostowski's logic, Barwise and Cooper observe, is superior 
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to standard first-order logic in its account of natural-language quantifica

tion. "The quantifiers of standard first-order logic are inadequate for 
treating the quantified sentences of natural languages" in part because 
"there are sentences which simply cannot be symbolized in a logic which 
is restricted to ... V and 3."16 Mostowski's method, on the other hand, 
allows us to encode the structure of such sentences as defy the standard 
analysis. Let me give a few examples: 

(14) 	There are only a finite number of stars. 

(15) 	No one's heart will beat an infinite number of times. 17 

(16) 	There is an even number of letters in the English alphabet. 

(17) 	The number of rows in a (full) truth table is a power of 2. 

(18) 	There are 2N
o reals between any two nonidentical integers. 

The formal structure of(14) to (18) is analyzed in Mostowski's logic as 
follows: 

(19) (Finite x) star x, 


where for each model'21 with universe A, t~inite(lX, fJ) T iff IX < t{o; 


(20) ",(3x) (3y) [y is a heart of x & (lnf z) z is a beat of y], 

where t~nr (ex, fJ) T iff IX ~ No~ 

(21) (Even x) x is a letter in the English alphabet, 

where t~ven is defined by (10) above; 

(22) (Vy) [y is a (full) truth table -. (Power-of-2 x) x is a row in y], 

where t~ower.or'2(1X, fJ) = T iff IX is a power of 2; 

(23) 	 (Vx)(Vy)[x is an integer & y is an integer & x ¥- y -. (2 NoZ)(Z is a real 
number & z is between x and y)], 

where t~MO(IX, fJ) = T iff IX = 2No, 

What about (24) to (29)? 

(24) 	 More than one third of the population of the world suffers from 
hunger. 

(25) 	94% of all Americans believe in God. 

(26) 	Some recipients of a Nobel prize are known to most people in the 
world. 

(27) 	Most people are not hostile to most people. 

(28) As many Israelis are liberals as are not. 

(29) 	No natural numbers are prime, and the same number are not prime. 
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Do these resist a first-order symbolization? No, say Barwise and Cooper. 
By inserting nonlogical, "domain-fixing" axioms of the form (Vx)cI>x, by 
introducing many-sorted variables, or by limiting consideration to partic
ular models, one can use Mostowski's quantifiers to analyze natural
language sentences like (24) to (29). Thus we might formalize (24) to (29) 

as follows: 

(30) (More-than-1/3 x) x is suffering from hunger, 


where t~lore.(han.1/3(1X, fJ) = T iff IX > 1/3(1X + P), both ex and p are finite, 


and the range of x is the set of all people in the world (at the present, say). 


(31) 	(94% x) x believes in God, 

where t~4 ~·(IX, fJ) = T iff IX 94% (ex + P), IX, fJ are finite, and the range of 

x is the set of all American people (at the present). 

(32) (3x) [x is a recipient of a Nobel prize & (Most y) x is known to y] 

lIere t:OSI is defined by (9) above. The range of x is as in (30). 

(33) 	a. -(Most x)(Most y) x is hostile to y 

b. (Most x) "" (Most y) x is hostile to y 

c. (Most xHMost y) '" (x is hostile to y) 

whether the analysis is (a), (b), or (c) depends on how you read the 

negation in (27). Both t~lOSI and the range of x are as above.18 


(34) (As-many-as-not x) x is a liberal, 


where IAs.many.as.nol(lX, {3) T iff ex ~ p, and the range of x is the set of 


Israelis. 


(35) (t{o/No x) x is prime, 


where d~o/NO(IX, {3) T iff IX = fJ No, and the range of x is the set of 


natural numbers. 

Clearly, the natural-language "most," "almost all," "few," "a few," 

"many," etc. can be construed as Mostowskian quantifiers only to the 
extent that they can be given absolute cardinality values (or ranges of 
values). Under such a construal, we read "most" as "(cardinalitywise) 
more than a half," just as in standard logic we read "some" as "at least 

one. " 
What are the limitations of Mostowski's system from the point of view 

of the logical structure of natural language? Consider the following 

sentences: 

(36) 	 Most of John's arrows hit the target. 19 

(37) 	60% of the female students in my class are A-students. 

:.. 
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(38) 	The majority of children who do not communicate with anyone 


during the first two years of their lives are autistic. 


(39) 	Most of the students in most colleges are not exempt from tuition 
fees. 

Delimiting the range of the bound variables, which enahled us to analyze 
(24) to (29), is inadequate for the formalization of (36) to (39). Restricted 
or sorted domains are useful up to the point where they become utterly 
artificial, as they would if they were used to analyze (36) to (39) with 

Mostowski's quantifiers. Mostowski's system is rich enough to analyze 
sentences of the form 

Such and such a quantity of all the objects that there are, are B, 

but in general is inadequate for the analysis of sentences of the form 

(41) 	Such and such a quantity of all As are Bs. 

This verdict was reached both by Barwise and Cooper and by N. Rescher 
in "Plurality-Quantification" (1962) and elsewhere. 20 Clearly, statements 
of type (41) cannot be ~ymbolized as 

(42) 	(Qx)(Ax -+ Bx), 

as can be seen by the following counterexample: Suppose that OlllY one 
third of the things that satisfy Ax in a given model ~l satisfy Bx in ~1. 
Suppose also that most of the things in the universe of ~l do not satisfy 

Ax. Then (Mx)(Ax - Ox) will come out true in ~{(most things in ~I satisfy 
"Ax - Ox" by falsifying the antecedent), although it is plainly false that 
most of the As in 21 are Os. 

In general, a statement of the form (41) cannot be formalized by a 
formula of the form 

(43) 	(Qx)<I>x. 

(A theorem to the effect that "more than half of the As" cannot be defined 
in terms ofumore than halfofall things that there are" using the apparatus 
of standard first-order logic was proved by Barwise and Cooper for tinite 
universes and by D. Kaplan for the infinite case. 21) Rescher concludes, 

Textbooks often charge that traditional logic is "inadequate" because it cannot 
accommodate patently valid arguments like (I) [All A's are B's r All parts of A's 
are parts of B's). But this holds equally true of modern quantificationallogic itself, 
which cannot accommodate (2) [Most things are A's; Most things are B's r Some 
A's are B's] until supplemented by something like our plurality-quantification 
{Mostowski's "most"). And even such expanded machinery cannot accommodate 
(3) [Most C's are A's; Most C's are B's r Some A's are B's}. Powerful tool though 
it is, quantificational logic is unequal to certain childishly simple valid argu
ments. 22 
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Barwise and Cooper's strategy in the face of the alleged inexpediency of 

quantiJicational logic is to give up logical quantifiers altogether. The idea 
this move seems to be the following: There is no absolute 

meaning to such expressions as "more than half." The quantities involved 
in "more than half the natural numbers between 0 and 10" are different 

from those involved in "more than half the natural numbers between 0 and 
100." Hence "more than half" cannot be interpreted independently of the 

interpretation of the set expression attached to it. Thus in the-schema 

(44) 	More than half the As are Bs, 
"'more than half' is not acting like a quantifier, but like a determiner. It 
combines with a set expression to produce a quantifier.,,23 "Quantifiers 

correspolld to noun-phrases, not to determiners."24 The quantifier in (44) is 

the whole noun phrase "more than half the As," and (44) is rendered 

(45) 	(More-than-half-A x)Bx. 2S 

In this way the indeterminacy inherent in determiners is resolved by the 

set expressions attached to them. and the difficulty indicated above dis
appears: "more than half the natural numbers between 0 and 10" and 
"more than half the natural numbers between 0 and JOO" are two distinct 
quantifiers, each with its own meaning. And in general •. quantifiers are 
pairs, (D, S), of a determiner D and a set expression S. If S, Sf denote 

different sets, DS and DS f are different quantifiers. 
What about "every" and "some"? According to Barwise and Cooper, 

the situation is indeed different in the case of "every." The schema 

(46) 	Every A is B 
call be expressed in terms of the quantifier "every" independently of the 

interpretation of A: 

(47) (Every x)(Ax -+ Bx). 
However, they say, the syntactic dissimilarity of (46) and (47) indicates 

that even in this case the "true" quantifier is "every A ," "Every" is but a 
determiner, although, unlike "more than half," it is a logical determiner. 

Sentence (46), then, is to be symbolized not as (47) but rather as 

(48) 	(Every-A x)Bx. 

4 Nonlogical Quantifiers 

As a theory of quantification, Barwise and Cooper's theory is evidently 

very hloated ...Every man," "every woman," "every child," "every son 

of mine," etc. are all different quantifiers. So are "most men," "most 

http:ments.22
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women," "most children," and so on. Two questions present themselves: 
Is such an excessive theory of quantifiers necessary to account for the 
diverse patterns of quantification in natural-language discourse? Is what 
this theory explains quantification? 


Barwise and Cooper address the following questions: 


• 	What is the role of quantifiers and how are they interpreted in a 
model? According to Barwise and Cooper, we use quantifiers to 
attribute properties to sets. "3xtp(x)" asserts that the set of things 
satisfying tp(x) is not empty. "'v'xtp(x)" says that the set of tps contains 
all the objects in the universe ofdiscourse. "Finite xtp(x)" states that this 
set is finite. And so on. Model-theoretically, a quantifier partitions the 
"family" of all subsets of the universe of a given model into those that 
satisfy it and those that do not. When combined with the former, it 
yields the value T, when combined with the latter, the value F. Thus a 
quantifier can be identified with the family of all sets to which it gives 
the value T. (Note that according to this account all properties of sets 
are quantifier properties.) 

What is the syntactic category of the natural-language expressions 
that function as quantifiers? Barwise and Cooper observe that noun 
phrases in general behave like quantifiers. Given a noun phrase, some 
verb phrases will combine with it to produce true sentences, and others 
to produce false sentences. Semantically, this means that each noun 
phrase divides the family of verb-phrase denotations in a given model 
into two groups: those that satisfy it and those that do not. Therefore, 
Barwise and Cooper conclude, "the noun phrases of a language are all 
and only the quantifiers over the domain of discourse. "26 To make their 
treatment of noun phrases uniform, Barwise and Cooper have to show 
that proper names can also be treated as quantifiers. But this is 
not difficult to show. We can treat a proper name like "Harry" as 
partitioning all the sets in the universe into those that contain Harry and 
those that do not. Thus "Harry" can be semantically identified with the 
family of all sets that include Harry as a member. "In our logic," 
Barwise and Cooper say, "(a) may be translated as (b), or rather, 
something like (b) in structure. 

(a) Harry knew he had a cold. 

(b) Harry x[x knew x had a cold]."27 

In sum, "Proper names and other noun-phrases are natural language 
quantifiers."28 

The linguistic logic developed by Barwise and Cooper and based on the 
above principles differs from standard first-order logic and its Mostowskian 
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extension in several substantive ways. We can outline its main features as 
follows: 

Syntactically, the logic excludes logical quantifiers altogether. Instead, 
it includes logical and nonlogical determiner symbols (the logical deter
miners include "some," "every," "no," "both," "I" (in the sense of "at 
least I"), "2," "3," ... , "! I" ("exactly one"), "!2," ... , "the I," ... ; the 
nonlogical determiners include "most," "many," "few," "a few," ... ). 
Quantifiers are nonlogical complex tenns representing noun phrases in 
general: "John," "Jerusalem," "most people," "five boys," etc. Formally, 
quantifiers are defined terms of the form D('l), where D is a determiner and 
'1 	 is a (first-level) predicate with a marked argument place called a "set 
term." A quantified formula is of the form Q('l), Q being a quantifier and 
'1 a set term. The language also includes the distinguished I-place first-level 
prcdicate (set term) "thing." 

Semantically, a model (f for the logic provides, in addition to the stan
dard universe of objects, interpretations:J for the truth-functional connec
tives, "thing," and the logical as well as nonlogical determiners. "Thing" 
is interpreted as the universe of the model, E; each (logical or nonlogical) 
determiner is interpreted as a function that assigns to every set in the 
model a family of sets in the model. :J(!n) !n : peE) :-t> P(P(E)) such 
that for each A s; E, !n(A) = {X s; E: IA n XI = n}; :J(Most) = most: 
P(E)-+P(P(E» such that for each As; E, most(A) {Xs E: IA nXI > 

A - XI}; etc. The truth-functional connectives are interpreted in the 
usual way (although Barwise and Cooper favor a trivalent logic to allow 
for determiners denoting partial functions). Quantifiers (nonlogical tenns) 
-D('l) for some determiner D and set term 'l-are interpreted in each 
model as the family of sets assigned in this model by the denotation of D 
to the denotation of". For example, :J(!n(man» = {X s E: I{x: x is a 
man} nXI = n} and 3(John) {X s E: John E X}. If ct> and 'P are 1
place predicate symbols (set terms), "(Dct>)['P]" is true in (f iff the denota
tion of "II in (f is a member of the family of sets assigned to D<1> in (t. 

Barwise and Cooper posit a universal semantic constraint on natural
language determiners: "It is a universal semantic feature of detenniners 
that they assign to any set A a quantifier (i.e. family of sets) that lives on 
A,"where Q lives 011 A iff for any set X, X E Q iff A n X E Q.29 The 
following equivalences illustrate this notion: 

Many mcn run +-+ Many men are men who run 

Few women sneeze +-+ Few women are women who sneeze 

John loves Mary +-+John is John and loves Mary 30 
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"The quantifiers represented by the subjects of the sentences," Barwise 
and Cooper explain, "live on the set of men, women and the singleton set 
containing John, respectively."31 And they conclude, "When we turn to 
non-logical determiners, [the living on constraint] is the only condition we 
impose as part of the /ogiC."32 This condition on determiners is ipso facto 
a condition on quantifiers. 

Is what Barwise and Cooper's theory explains quanl(/icalioll? To resolve 
this issue, let us consider several intermediate questions: In what sense is 
Barwise and Cooper's logic a first-order system, given that quantiflers are 
nonlogical second-level predicates? Quantifiers. in Barwise and Cooper's 
system, are I-place predicates. Is being I-placed an essential property of 
quantifiers? If so, why? How does Barwise and Cooper's criterion for 
"quantifierhood" compare with Mostowski's? Does their theory account 
for all natural-language quantifiers intuitively satisfying Mostowski's 
principles? Does it account only for such quantifiers? 

Obviously, Barwise and Cooper's requirements on quantifiers are al
together different from. those of Mostowski (and Dummett). In particular, 
Barwise and Cooper's quantifiers do not satisfy the semantic condition 
(LQ2). These quantifiers do in general distinguish elements in the universe 
ofa model for their system. Consider the following two pairs of sentences: 

(49) 	a. Einstein x[x is among the ten greatest physicists of all time] 

b. Einstein x[x is among the ten greatest novelists of all time] 

(50) 	a. Most (natural numbers between I and 10) x [x < 7J 

b. Most (natural numbers between I and 10) x [9 < x < 17J. 

Although the extension of "x is among the ten greatest physicists of all 
time" can be obtained from that of "x is among the ten greatest novelists 
of all time" by a permutation of the universe of discourse, the quantifier 
"Einstein" assigns the two sets different truth values. Similarly, "Most 
natural numbers between I and 10" assigns different truth values to the 
extensions of "x < 7" and "9 < x < IT' in spite of the fact that the one 
extension can be obtained from the other by some permutation of the 
(intended) universe. 

Moreover, not all quantity properties, properties that satisfy Mostowski's 
criterion, are quantifiers (or constituents of quantifiers, i.e., determiners) 
on Barwise and Cooper's view. Thus the requirement that quantifiers "live 
on" the sets in their domain excludes some linguistic constructions that we 
would expect to be analyzed by means of cardinality quantifiers: 

(51) 	Mostly women have been elected to Congress. 
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(52) Only human beings have brains. 

(53) Not only men are allowed in the club. 

Sentence (51) cannot be formalized as 

1(54) Mostly (women).i [x has been elected to Congress], 
I 

since (54), unlike (51), comes out true in the intended model: the require	 I 
j 

ment of "living on" implies that for any set X, "Mostly (women)" is true 
of X ifit is true of {x: x is a woman} 11 X. But clearly, "Mostly women are 'I 
women elected to Congress" is true. Similar problems occur if we want to I 
formalize (52) as I(55) Only (human beings) x [x has a brain], 

or (53) as 

(56) Not only (men) x [x is allowed in the club]. 

The requirement of "living on" determines that (55) is true and (56) is 
false. while (52) is clearly false, and (53) is sometimes true. Barwise and 
Cooper can get over the difficulty by rephrasing (51) to (53) with deter
miners other than "mostly," "only," and "not only," respectively, but 
only at the expense of giving up the desideratum of transparent analysis 

of linguistic structures. 
The requirement that only norlll phrases be construed as quantifiers also 

blocks "natural" candidates for natural-language quantifiers. Consider 
the following sentences involving quantitative comparison of extensions, 
which, by Dummett's and Mostowski's criterion, have a good claim to 

being analyzed as statements of quantification: 

(57) There are fewer men than women. 

(58) More people die of heart disease than die of cancer. 

(59) They arc outnumbered by us. 

(60) 	The same percentage of boys and girls who took the test received a 


perfect score. 


Clearly, the operation of quantification in (57) to (60) is not carried out by 

noun phrases. 

To sum up, Barwise and Cooper's theory is clearly not based on 


Mostowski's ideas of the nature of quantifiers. In particular, Mostowski's 

semantic condition, (LQ2), is violated by Barwise and Cooper. Their 

theory also docs not olfer an alternative principle to (LQ2) of the same 

gencral import as Mostowski's. In my opinion, Barwise and Cooper's 

analysis explains some linguistic regularities, but what it explains is not the 
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structure of quantifiers. Their account is at once too particular to explain 
the notion of quantification in all its generality-witness (51) to (53) and 
(57) to (60)-and too general to focus on the unique features ofquantifiers 
-see (49) and (50).33 

Logical Quantifiers 

Can we increase the expressive power of Mostowski's logical system so 
that it is no longer subject to Barwise and Cooper's criticism, without 
betraying its underlying principles? 

I think the "inadequacy" of Mostowski's system can be analyzed along 
lines different from those taken by Barwise and Cooper. The problem is 
neither with the "logicality" of Mostowski's quantifiers nor with his crite
rion for second-level predicates expressing quantifier properties (a crite
rion shared, as we have seen, by Dummett). The problem is that Mostowski 
explicitly considered only i-place second-level predicates as candidates for 
quantifiers. Progress ~n logic was made after the indispensability of rela
tions was acknowledged. Frege's revolution was in part in recognizing 
relations for what they are: irreducibly many-place predicates. Mostowski's 
requirements on quantifiers-that they turn propositional functions into 
propositions and that they do not distinguish elements in a model for the 
language-contain nothing to exclude many-place second-level predicates 
from being first-order quantifiers. On the contrary, the failure of Mostow
ski's theory to display the quantificational structure of sentences such as 
(36) to (39) is testimony only to the "incompleteness" of that theory. 
Mostowski's theory of cardinality quantifiers includes all the "predica
tive" quantifiers that express cardinality measures, but none of the "rela
tional" quantifiers that express such measures. And there is no reason to 
believe that Mostowski would have rejected many-place quantifiers. 

With this observation the solution to Barwise and Cooper's problem 
becomes very simple: Both "most" in "most things are A" and Hmost" in 
"most As are Bs" are quantifiers, although, as was proved by Barwise and 
Cooper, the second is not reducible to the first. The first is a I-place 
quantifier, M I, i.e., a property of first-level properties (or a I-place func
tion from first-level properties to truth values). It appears in formulas of 
the form 

(M 1x)~x. 

and for any given model \ll with universe A it is defined by the funtion t!I' 
as in (9) above. That is, for all pairs of cardinals a, p whose sum is IA I, 
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II) = T iff a > p. 
The second "most" is a 2-place quantifier, M 2, i.e., a 2-place relation 
between first-level properties.(or a 2-place function from pairs of first-level 
properties to truth values). It appears in formulas of the form 

(M 2X)(<I>x, \fix), 

and for any given model \l( with universe A it is definable by a function t:1 2 

, 

which I will presently characterize. 
What kind of relation is M2? It is a relation that in any given universe 

A holds between two subsets B, 0' of A (in that order) iff IB n HI > 
IB - B'I. M~ is defined by the function t from quadruples of cardinals a, 
/1, y, <5 such that a + p + y + (j = IAI to {T. F} as follows: 

(~2(a, p, )', <5) = T iff a > p, 

where, intuitively, (X = IB n B'I, P IB - 0'1, Y = 10' BI, and (j = IA 
(B u B' )1. Using a Venn diagram, we can form a visual image of the 
relation between the cardinal numbers a, p, y, <5 and parts of the universe 

A as in figure 2.1. 
I t is easy to see that whereas M 2 is not definable in terms of M 1 , M 1 is 

definable in terms of M2. Thus, 
~ ~ . 
"(M1x)<I>x iff (M 2x)(x = X, <l>x). 
';·t

Our analysis provides a rationale for extending Mostowski's original 
system in a way that was first proposed by Per Lindstrom in "First order ,:l 
Predicate Logic with Generalized Quantifiers" (1966). This extension has .:" 

been widely adopted by logicians and mathematicians, including Barwise 
in his purely logical writings. (Barwise later also expressed misgivings about 
treating proper names as quantifiers in natural-language analysis.34

) Lind-
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strom did not discuss the reasons underlying his extension of MOSlowski's 
system, but as we have just seen, philosophico-Iinguistic considerations 
support his approach. In accordance with Lindstrom's proposal we add to 
Mostowski's original quantifiers all second-level 2-ptace relations of first
level I-place predicates satisfying (LQ2). The one-to-one correlation be
tween Mostowski's quantifiers and cardinality functions is preserved under 
the new extension. (See the appendix.) 

The syntax and the semantics of first-order logic with I and 2-place 
generalized quantifiers is a natural extension of the syntax and the seman
tics of section 2 above. Again, a model for a language of this logic is the 
same as a model for a language of standard first-order logic: the Henrich
ment" is expressed by the rules for computing the truth values of formulas 
in a model (relative to an assignment of elements in the universe to the 
individual variables of the language). 

I will now present a formal description of the extended logic. 

First-Order Logic wit~ 1- and 2-Place Generalized Quantifiers 

Syntax 

Logical symbols In addition to the logical symbols of standard flrst

order logic (but with the possible omission of V and/or 3) the language 

includes 1- and 2-pJace quantifier symbols: Q:, ... , Q~ and Qi, ... , Q; 

for some positive integers m and n. (If V and/or 3 belong in the language, 

they fall under the category of I-place quantifiers, and we add to them 

the superscript "I.") 

Punctuation The usual punctuation symbols for first-order logic plus 

the symbol",". 


Nonlogical symbols The same as in standard first-order logic. 
Terms The same as in standard first-order logic. 


Formulas The same definition as for standard first-order logic, but the 

definition of quantified formulas is replaced by the following: 


(I) 	If <I> is a formula and Q1 is a I-place quantifier symbol, then (QIX)<J) 
is a formula. 

(II) 	If <1>, 'f' are formulas and Q2 is a 2-placc quantifier symbol, then 
(Q2x)(<I>, 'f') is a formula. 

Semantics 

The semantics is the same as that for standard first-order logic, but the 
definition of satisfaction of quantified formulas in a model'll with a 
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universe A relative to an assignment g for the variables of the language is 

changed to the following: 

(A) 	If<l> is a formula and Q1 is a I-place quantifier symbol, 
'11 t= (QI x)(NgJ iff for some cardinal numbers ex and psuch that 
ex + If = IAI and 1:{(Ct., {J) = T, there are exactly Ct. elements a E A 
such that'll t= <1>[g(x/a)] and exactly pelements b E A such that 

'11 t= "'(Ng(x/b)]. 

(B) 	 If <1>, 'f' are formulas and Q2 is a 2-place quantifier symbol, 
'11 t= (Q2x)(<I>, 'f')[g] iff for some cardinal numbers Ct., p, y, b such 

that ex + {J + y + 0 = IAI and IJ\ex, p, y, b) = T, 
• there are exactly ex elements a E A such that ~ t= (<I> & 'f')[g(x/a)], 

• there are exactly {Jelementsb E A such that ~ t= (<1>& -'f')[g(x/b)], 


there are exactly y elements c E A such that ~( t= (-<I> & 'f')[g(x/c)], 


• there are exactly 0 elements dE A such that 

'll t= (",<1> & "" 'f')[g(x/d)]. 


Applications 
Within the system defined above we can easily analyze the logical structure 
of sentences that eluded Moslowski's original devices, like (36) to (39) 
above. We choose a language that includes, in addition fo 31 and MI, the ill 
2-place quanlifier "60%," defined by I(ex, p, y, b) = T iff Ct. + p < No and 
ex = 60%(a + {J). We then symbolize (36) to (39) as given below: 

(61) 	(M 2x)(x is an arrow of John's, x hits the target) if 
111

(62) (60%2x)(x is a female student in my class, x is an A student) I! 
(63) 	(M 2x)[x is a child & - (3 1y)(x communicates with y during the first 

two years of x's life), x is autistic] 

(64) (M 2x)[x is a college, (M2y)(y is a student at x, -(y is exempt from 

tuition fees at x)] 

By adding to the language the 2-place quantifiers 

S2, defined hy 1(Ct., fl, y, t5) = T iff a > y, 

()2, defined by l(a, /1, )', 0) = T iff y = 0, 

N 2 , detilled hy t(ex, /1, y, 0) Tiff y i= 0, 

,-;2. defined hy t(ex, fl, y, 0) T iff {J < y, and 

R 2, defined hy I(a, /1, )1,0) T iff {J > y, 


we can encode the logical structure of sentences (51) to (53) and (57) to 


(59), which were prohlematic for Barwise and Cooper: 


(65) (S2 X)(X is a woman, x has been elected to Congress) 

tl 
') 

, r 
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(66) 	(02X )(X is a human being, x has a brain) 

(67) 	a. _(02X ){X is a man, x is allowed in the club) 

b. (N2x)(x is a man, x is allowed in the club) 

(68) 	(F 2x)(x is a man, x is a woman) 

(69) 	(R
2
x)(x is a person & x dies of heart disease, x is a person & x dies 

of cancer) 

(70) 	(F2x)(x is one of them, x is one of us) 

Within the new system we can also represent the logical structure of (50.a) 
and (50.b) without violating (LQ2): 

(71) 	(M 2x)(I < x < 10, x < 7), 

(72) 	(M 2x)(1 < x < 10,9 < x < 

We have seen an example of nested 2-place generalized quantifiers 
in (64). A more concise example is 

(73) 	Most men love most women, 

sym boJized as 

(74) 	(M 2x)[x is a man, (M2y)(y is a woman, x loves y)J. 

To formalize (60), we need to include 3-place quantifiers in the system. 
The reason is that (60) involves comparison between (subsets of) three 
sets: the set of all boys who took the test, the set of all girls who took the 
test, and the set of all those who received a perfect score in the test. We 
have not defined 3-place quantifiers for our formal system, but it is easy 
to see how this would· be done. 

A 3-place quantifier is a function that assigns to each universe A a 
3-place quantifier on A, Q]. Q] is defined by a cardinality function IA that 
takes into account all the "atoms" of Boolean combinations (intersec
tions, unions, and complements) of triples, (B, D), of subsets of A. 
Since there are eight such atoms: B n C n D, (B n C) - D, (C n D) B. 
(Dfl B) - C, B (Cu D), C - (Bu D), D - (Bu C), and A - (Bu Cu 
D), I~t is a function from 8-tuples, (a, {I, y, <5, c, (, '1, U), of cardinal num
bers whose sum is IAI to {T, F}. We need to decide on the order in which 
a, {I, y, <5, e, " '1, 0 represent (sizewise) the atoms generated by B, C, and 
Din A. I use a Venn diagram to fix a correlation (figure 2.2). 

We can now formalize (60) as 

(75) 	(S3 X )(X is a boy who took the test, x is a girl who took the test, 
x received a perfect score in the lest), 

where S3 is defined by a function I such that when IA I is finite, 
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I(a, fl. )'. J. c, " '1, 0) = T iff _.... a_+_~ _____ = - ........----- 
a+/1+<5+f: a+ 

The present theory enables us to explain the syntactic differences be
tween logical and linguistic quantifications. e.g., the linguistic 

Every A is B 
t,! 

and the logical ~! 
1"-' 

(Every x)(A x Bx), 	 I' ~ 

by conjecturing that natural language frequently employs quantifiers that, t: 

from a purely logical perspective, are redundant. Thus. whereas "12 (de I"' 

fined by: I(a, /1, y, J) = T iff /1 = 0) is logically superfluous, it may very 

well be the quantifier used in natural language in sentences of the fonn ti
', ."I(46). The logical form of (46) is, on this conjecture, 	

~ I 

t', I, 

(76) (Every 2 x)(Ax, Bx). 	 I:, 

r.' 
Likewise, we obtain a structure similar to that of 	 I=,: 

~r n, 

(77) Fewer men than women live to be 80 ~J: 
by employing a 3-place quantifier, F3, rather than the 2-place quantifier :: 

fl" 

F2. Sentence (77) is then rendered 

(78) (F 3x)(x is a man, x is a woman, x lives to be 80) 

instead of the logically simpler 

(79) (F 2 x)(x is a man & x lives to be 80, x is a woman & x lives to be 80). 

F3 is defined, I(a, fl, y, <5, t, (, 'I, 0) = T iff <5 < y. Logic with redundant 
many-place quantifiers can be seen as a bridge between the logical and the 

grammatical analysis of language. 
The linguistic merits of the logical, as opposed to nonlogical. quantifier 

approach have been noted by linguists working in Logical Form (LF) 
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research. An anonymous referee for this book indicates that the category 
of logical quantifiers (without the "living on" constraint) is significant not 
only semanticalJy but also syntactically. Extensive research on LF has 
shown that "there are systematic syntactic differences between NPs de
pending upon whether they are logical or non-logical terms." Thus trans
parency between syntax and semantics favors logical, as opposed to non
logical, quantifiers. Among linguists whose work exemplifies the logical
quantifier approach are Higginbotham and May (1981) and May (1989, 
1990). In addition, May (1991) cites reasons pertaining to language learn
ability for identifying quantifiers with cardinality operators and cate
gorizing all quantifiers as logical terms. May writes, 

In distinguishing the logical elements in the way that we have, we are making 
cleavage between logical items whose meanings are formally, and presumably 
exhaustively, determined by UG (Universal GrammarJ---the logical terms and 
those whose meanings are underdetermined by UG-the non-logical, or content, 
words. This makes sense, for to specify the meaning of quantifiers, all thal is 
needed, formally, is pure arithmetic calculation on cardinalities, and there is no 
reason to think that such mathematical properties are not universal. For other 
expressions, learning their lexical meanings is determined causally, and will be 
effected by experience, perception, knowledge, common-sense, etc. Rut none of 
these factors is relevant to the meaning of quantifiers. The child has to learn the 
content of the lexical entries for the non-logical terms, but this is not necessary for 
the entries for the logical terms, for they are given innately. JS 

The considerations adduced by May open a way to empirically ground not 
only the notion of quantifier developed so far but also the philosophical 
demarcation of logic in general as presented in this book. 

A few words about the limitations of Mostowskian quantifiers. Some 
predicates of natural language are such that a proper representation of 
their extension is not possible in standard first-order model theory. 
tifier expressions do attach to such predicates, however. Here are two 
examples: 

(80) Most of the water in the lake has evaporated. 

(81) M ore arms than we have are needed to win this war. 

"Water in the lake" and "arms needed to win this war" do not sort the 
objects in a universe into those that fall, and those that do not fall under 
them. Hence the present theory, which does not change the standard 
structure of first-order models, cannot account for their logical form. 

In addition to predicates that defy first-order symbolization, we also 
find in natural language a use of quantifiers that exceeds the resources of 
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Mostowski's logic. This is the collective, as opposed to the usual, distribu

tive use of quantifiers. Thus the sentence 

(82) Five children ate the whole cake 

cannot be formalized 

(83) (!5x)(x is a child, x ate the whole cake), 

which says that t:lere are exactly five children each of which ate the whole 
cake. Collective and nonsortal quantifications will not be dwelt on in this 

book. 

6 From Predicative to Relational Quantifiers 

The generalized logic with I· and 2-place quantifiers defined in the last 
section can easily be extended to a logic with n-place quantifiers for any 
positive integer II (Lindstrom, 1966). With each n-place quantifier Q" we 
associate a family of cardinality functions I 

Q
", which, given a cardinal (x, 

assigns a truth value to each 2"-tuple of cardinals whose sum is (x. Then, 
given a model ~( with a universe A and a sequence of n subsets of A, 

(BI' ... , BII ), the value ofQ~(BI' ... , Bn) depends on whether the atomic 
Boolean algebra generated by B1 , ••• , Bn in A is such that 

I.?"({fl' ... , fJ2") = T, 

where fJI' ... , 1l2" are the cardinalities of all the atoms of this Boolean 
algebra ordered in some canonical manner. I will call the n-place quanti
fiers described above predicalive quantifiers because such quantifiers con
stitute II-place relations among first-level (I -place) predicates. 

The next step is to consider quantifiers on relations, or relational quanti-
Syntactically, a I-place relational quantifier is an operator that binds 

a formula by a sequence ofn bound variables, (Xl'·.·. XII)' for some finite 
Il > I. If we change the symbolization of 1- and 2-place predicative quanti
fiers to QI and QI.I respectively, we will naturally symbolize I-place 

relational quantifiers in n variables by Q". Thus if 

<Nx, y) 

is a formula with x and y free, then 

(Q 2x, y)<1>(x, y) 

is also a formula, generated from <»(x, y) by binding the free variables X 

and)' with Q2. (The superscript "2" indicates that Q is a I-place quantifier 
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over 2-place first-level relations. For 2-place relational quantifiers over 
n- and m-place relations, in that order, we will use the superscript "n, m.") 

Semantically, however, the characterization of logical relational quanti
fiers is an involved matter. The question is how to interpret the semantic 
condition (LQ2) with respect to these quantifiers. Recall that (LQ2) stipu
lates that quantifiers should not distinguish the identity of particular 
individuals in the universe of a given model. Mostowski construed this 
condition as requiring that quantifiers be invariant under permutations of 
the universe. But Mostowski dealt with predicative quantifiers, which 
semantically are functions on subsets of the universe, and the quantifiers 
we are dealing with now are relational quantifiers, i.e., functions on subsets 
of Cartesian products of the universe. If, following Mostowski, we again 
interpret (LQ2) as invariance under permutations, the question arises, 
invariance under permutations of what? Should relational quantifiers over 
a universe A, say I-place quantifiers over binary relations on A, be in
variant under permutations of A? Permutations of A x A? Permutations 
of Ax A induced in some specified manner by permutations of A? Or 
should we not interpret (LQ2) in terms of permutations of the universe at 
all when it comes to relational quantifiers? This question was raised by 
Higginbotham and May in "Questions, Quantifiers, and Crossing" (1981). 
From another angle Higginbotham and May ask what is implied by the 
requirement that quantifiers should not distinguish the identity of elements 
in the universe of discourse. 

Yet another question is the relationship between logicality and cardinal
ity. When I earlier discussed Mostowski's generalization, I said that this 
question could be avoided because on a very natural interpretation of 
(LQ2), the requirement that logical quantifiers not distinguish the identity 
of elements in the universe coincides with the requirement that logical 
quantifiers be definable by cardinality functions. Since (LQ2) is a natural 
condition on logical quantifiers, the identification of logical-predicative 
quantifiers with cardinality quantifiers appeared to be justified. However, 
now that the interpretation of (LQ2) is no longer straightforward, the 
question of cardinality and logicality has to be tackled directly. 

But the question we have to confront first concerns (LQ2) itself. Why 
should (LQ2) be the semantic condition on logical quantifiers'? Neither 
Mostowski nor Dummett (nor, as I have already indicated, Lindstrom) 
have justified their "choice" of invariance under permutations as the 
characteristic trait of logical quantifiers. So far I too have uncritically 
accepted their criterion. But in view of the questions we are now facing 
and in light of the general inquiry we have undertaken in this work, it is 
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now time to rethink the issue of logicality. Without a clear answer to the 
question of what makes a term logical, I doubt that we will be able to 
resolve the uncertainty regarding the correct definition of relational quan
tifiers. Moreover, a critical analysis of logicality will enable us to evaluate 
Mostowski's claim-most central to our query-that symbolic logic is not 
exhausted by standard mathematical first-order logic. 
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