Chapter 3
To Be a Logical Term

Since the discovery of generalized quantifiers by A. Mostowski (1957), the
question “What is a logical term?” has taken on a significance it did' not
hfave pefore. Are Mostowski’s quantifiers “logical” quantifiers? Do they
differ in any significant way from the standard existential and universal
quantifiers? What logical operators, if any, has he left out? What, in
all, are the first- and second-level predicates and relations that c:m' be
construed as logical?

One way in which I do not want to ask the question is, “What, in the
nature of things, makes a property or a relation logical?” On this road lie
the controversies regarding necessity and apriority, and these, I believe
should be left aside. Although some understanding of the modalities i:;
essential for our enterprise, only their most general features come into
play. A detailed study of complex and intricate modal and epistemic issues
would just divert our attention and is of little use here. But if “the nature
of things” is not our measure, what is? What should our starting point be?
What strategy shall we decide upon? ‘

'A promising approach is suggested by L. Tharp in “Which Logic Is the
Right Logic?” (1975). Tharp poses the question, What properties should a
system of logic have? In particular, is standard first-order logic the “right”
logic? To answer questions of this kind, he observes, it is crucial to have a
clear idea about “the role logic is expected to play.” ' Tharp’s point is
worth taking, and it provides the clue we are searching for. If we identify
a cen?ral role of logic and, relative to that role, ask what expressions can
funct{on as logical terms, we will have found a perspective that makes our
question answerable, and significantly answerable at that.

The mf)sl suggestive discussion of the logical enterprise that I know of
appea-rs in A. Tarski’s early papers on the foundations of semantics
Tarski’s papers reveal the forces at work during the inception ofmodern.
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logic; at the same time, the principles developed by Tarski in the 1930s are
still the principles underlying logic in the early 1990s. My interest in Tarski
is, ncedless to say, not historical. I am interested in the modern conception
of logic as it evolved out of Tarski’s early work in semantics.

1 The Task of Logic and the Origins of Semantics

In “The Concept of Truth in Formalized Languages” (1933), “On the
Concept of Logical Consequence” (1936a), and “The Establishment of
Scientific Semantics™ (1936b), Tarski describes the semantic project as

comprising two tasks:

. Definition of the general concept of truth for formalized languages
2. Dctinition of the logical concepts of truth, consequence, consistency,
ete.

The main purpose of (1) is to secure metalogic against semantic para-
doxes. Tarski worried lest the uncritical use of semantic concepts prior to
his work concealed an inconsistency: a hidden fallacy would undermine
the entire venture. He therefore sought precise, materially, as well as
formally, correct definitions of *“truth” and related notions to serve as a
hedge against paradox. This aspect of Tarski’s work is well known, In
“Model Theory before 1945 R. Vaught (1974) puts Tarski’s enterprise in
a slightly different light:

[During the late 1920s] Tarski had become dissatisfied with the notion of truth as
it was being used. Since the notion “a is true in 2" is highly intuitive (and perfectly
clear for any definite g), it had been possible to go even as far as the completeness
theorcm by treating truth (consciously or unconsciously) essentially as an unde-
fined notion-—one with many obvious properties. ... But no one had made an
analysis of truth, not even of exactly what is involved in treating it in the way just
mentioned. At a time when it was quite well understood that ‘all of mathematics’
could be done, say, in ZF, with only the primitive notion €, this meant that the
theory of models (and hence much of metalogic) was indeed not part of mathe-
matics. 1t scems clear that this whole state of aftairs was bound to cause a lack of
sure-footedness in metafogic. ... [Tarski’s] major contribution was to show that
the notion “a is true in " can simply be defined inside of ordinary mathematics,

for example, in ZF.2

On both accounts the motivation for (1) has to do with the adequacy of
the system designed to carry out the logical project, not with the logical
project itself. The goal of logic is not the mathematical definition of “true
sentence,” and (1) is therefore a secondary, albeit crucially important, task
of Tarskian logic. (2), on the other hand, does reflect Tarski’s vision of the
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role of logic. In paper after paper throughout the early 1930s Tarski
described the logical project as follows:? The goal is to develop and study
deductive systems. Given a formal system ¥ with language L and a
definition of “meaningful,” i.e., “well-formed,” sentence for 1, a (closed)
deductive system in & is the sct of all logical consequences of some set X
of meaningful sentences of L. *Logical consequence” was defined proof-
theoretically in terms of logical axioms and rules of inference: if .o/ and A4
are the sets of logical axioms and rules of inference of &, respectively, the
set of logical consequences of X in & is the smallest set of well-formed
sentences of L that includes X and .o/ and is closed under the rules in
. In contemporary terminology, a deductive system is a formal theory
within a logical framework .#. (Note that the logical framework itself can
be viewed as a deductive system, namely by taking X to be the set of logical
axioms.) The task of logic, in this picture, is performed in two steps: (a)
the construction of a logical framework for forma! (formalized) theories;
(b) the investigation of the logical properties - consistency, completeness,
axiomatizability, etc.—of formal theorics relative to the logical frame-
work constructed in step (a). The concept of logical consequence (together
with that of a well-formed formula) is the key concept of Tarskian logic.
Once the definition of “logical consequence” is given, we can ecasily
obtain not only the notion of a deductive system but also those of a
logically true sentence; logically equivalent sets of sentences; an axiom
system of a set of sentences; and axiomatizability, completeness, and con-
sistency of a set of sentences. The study of the conditions under which
various formal theories possess these properties forms the subject matter
of metalogic.

Whence semantics? Prior to Tarski’s ““On the Concept of Logical Con-
sequence” the definitions of the logical concepts were proof-theoretical.
The need for semantic definitions of the same concepts arose when Tarski
realized that there was a serious gap between the proof-theoretic defini-
tions and the intuitive concepts they were intended to capture: many
intuitive consequences of deductive systems could not be detected by the
standard system of proof. Thus the sentence “For every natural number
n, Pn” seems to follow, in some important sense, from the set of sentences
“Pn,” where n is a natural number, but there is no way to express this fact
by the proof method for standard first-order logic. This situation, Tarski
said, shows that proof theory by itself cannot fully accomplish the task of
logic. One might contemplate extending the system by adding new rules of
inference, but to no avail. Gédel’s discovery of the incompleteness of the
deductive system of Peano arithmetic showed,
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In every deductive theory (apart from certain thec?rics ofa partlcpl?rly clen;en:‘aerz
nature), however much we supplement the ordinary rules of ?nhc;etslce )i/n ow
purely structural rules, it is possible to construct sentf:nces whic! 1o owl,mOl be
usual sense, from the theorems of this theory, but whlch.neverthe Sss ca

proved in this theory on the basis of the accepted rules of inference.

sion was that proof theory provides only a p'fmial acl~
lled for that will permit
itive content of these

Tarski’s conclu ‘
count of the logical concepts. A new method is f:a
a more comprehensive systematization of the intu

concepts.

The intuitions underlying our informal notion of logical consequence

(and derivative concepts) are anchored, according to Tarski, m' certa:fn
relationships between linguistic items and objects 1n (cor'lﬁg?u'atfons ? 3
the world. The discipline that studies relationships of this kind is calle

semantics. .
We . .. understand by semantics the totality of considcrglions concerning thos:
concepts which, roughly speaking, express certain connex!(?ns bctwegn thc;cx{a‘::se
sions of a language and the objects and states of affairs referred to by
expressions.® '
The precise formulation of the intuitive content of.(he logical co;:ceplls |sr
therefore a job for semantics. (Although the relation be’t'ween the set o
» and the universal quantification “(¥x)Px,” where x ranges
stands for a name of a natural num-
ill be able to characterize it ac-
in terms of @

sentences “ P’
over the natural numbers and “n”
ber. is not logical consequence, we W .
curately within the framework of Tarskian semantics, €.g.,

completeness.)

2 The Semantic Definition of “Logical Consequence” and the Emergence

of Models

M 1
Tarski describes the intuitive content of the concept “logical consequence
as follows: . .
an intuitive nature will form our starting-point. Consndgr
e Y which follows from the sentences of this
cluss. From an intuitive standpoint it can never h'appen that both the cis:sa:
consists only of truc sentences and the sentence X is false. Morcover,d. ;fms  are
concerned here with the coneept of logical, i.e. formal, consequence, an hus wiih
a relation which is to be uniquely determined t?y t!xc form of the sentences Aween
which it holds. ... Thetwo circurnstances just indicated ... scem to be very ¢
teristic and essential for the proper concept of conscquence.

Certain considerations of
any class K of sentences and a sentenc

We can express the two conditions set by Tarski on a correct definition

of “"logical consequence” by (C1) and (C2) below:
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CONDITION C1 lf‘X 1s a logical consequence of K, then X is a necessary
consequence of K in the following intuitive sense: it is impossible that all
the sentences of K are true and X is false.

lc()r?iDl]TI()N C2 Not all necessary consequences fall under the concept of
ogical consequence, only those in which the consequence relation between
a 4 . ~, H p

set of sentences K and a sentence X is based on formal relationships
between the sentences of K and X do. |

To provide a formal definition of “logical consequence™ based on (G D]
a?d (C2), Tarski introduces the notion of model. In current terminolog
glvc?n a fqrmal system . with a language L, an Z-model, or a model i))/r
Z,1s a pair, W = (A, D), where 4 is a set and D is a function that 'wsi"n‘
to the nonlogical primitive constants of L,t,,1,, ... elements ((;:j cﬁnf
struct§ of elements) in 4: if f; is an individua) constant, D(t;) is 1 member
F)f A5 if 1 is an n-place first-level predicate, D(r;) is an nfpluce relation
mcludeq in A" etc. We will say that the function D assigns to r t‘
denota}lons in 4. Any pair of a set 4 and g dcnolutﬁm f‘lllll(:‘ll‘(il‘l'))-
determines a model for %. Given a theory Tin a formal system ¢ with a
language L, we say that a model 91 for £ isa model of 7 iﬂ"cvcry' ﬂcnlcnc“
'ofﬂ' is true in U (Similarly, 91 is a model of a scnlcn.lcc Yol Lifr ‘\' is tr L
}n ‘)F.) 'ﬁ?c definition of *“the sentence X of Listruein a mod;l ‘)l' f'oAr ‘Jl"‘t‘
is given in terms of satisfaction: X is true in 9 ifr every ussigmnem. of
c?lerr'lem.s In A4 to the variables of L satisfies X in 91 The notion of satis-
laf:uon is based on Tarski 1933. T assume that the reader is famili; ‘1'\
i 5 © amiliar with

The formal definition of “logical consequence” in terms of model
proposed by Tarski is: i

D;F.FINITI‘ON LC  The sentence X follows logically from the sentences of the
class K ifT every model of the class X is also a model of the sentence Y.’

The definition of “logical truth™ immediately follows:

DEFINITION LTR  The sentence X is logically true ifv every model is a
model of X. (

To be more precise, (LC) and (LTR) should be relativized o a logical
system #. “Sentence” would then be replaced by “3’~sc:1lc11cc“;:' ‘
“model” by “ #-model.” e

(A blstorical remark is in place here. Some philosophers claim that
Tarski’s 1936 definition of a model is essentially different from the m‘lc
currently used because in 1936 Tarski did not require that models vary
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with respect to their universes. This issue does not really concern us here,
since we are interested in the legacy of Tarski, not this or that historical
stage in the development of his thought. For the intuitive ideas we go to
the carly writings, where they are most explicit, while the formal construc-
tions are those that appear in his mature work.

Notwithstanding the above, it seems to me highly unlikely that in 1936
Tarski intended all models to share the same universe. This is because such
a notion of model is incompatible with the most important model-theoretic
results obtained by logicians, including Tarski himself, before that time.
Thus, the Lowenheim-Skolem-Tarski theorem (1915-1928) says that if a
first-order theory has a model with an infinite universe A4, it has a model
with a universe of cardinality o for every infinite «. Obviously, this theorem
does not hold if one universe is common to all models. Similarly, Godel’s
1930 completeness theorem fails: if all models share the same universe,
then for every positive integer n, one of the two first-order statements
“There are more than »# things” and “There are at most » things™ is true
in alt models, and hence, according to (LTR), it is logically true. But no
such statement is provable from the logical axioms of standard first-order

logic.® Be that as it may, the Tarskian concept of model discussed here
does include the requirement that any nonempty set is the universe of some
model for the given language.)

Does (LC) satisfy the intuitive requirements on a correct definition of
“logical consequence” given by (C1) and (C2) above? According to Tarski

it does:
It scems to me that everyone who understands the content of the above definition
must admit that it agrees quite well with common usage. ... It can be proved, on

the basis of this definition, that every consequence of true sentences must be true,
and also that the consequence relation which holds between given sentences is
completely independent of the sense of the extra-logical constants which occur in
these sentences.’

In what way does (L.C) satisfy (C1)? Tarski mentions the existence of a
proof but does not provide a reference. There is a very simple argument

that, 1 believe, is in the spirit of Tarski:'®

Proof  Assume X is a logical consequence of K i.e., X'is true in all models
in which all the members of K are true. Suppose that X is not a necessary
consequence of K. Then it is possible that all the members of K are true
and Y is false. But in that case there is a model in which all the members
of K come out true and X comes out false. Contradiction.

The argument is simple. However, it is based on a crucial assumption:
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ASSUMPTION AS  If K'is a set of sentences and X is a sentence (of a formal
language L of #) such that it is intuitively possible that all the members of
K are true while X is false, then there is a model (for &) in which all the
members of K come out true and X comes out false.

'Assumption (AS) is equivalent to the requircment that, given a logic %
with a formal language L, every possible state of affairs relative (o lh‘e
expressive power of L be represented by some model for ¥, (Note that
(AS) does not entail that every state of affairs represented by a model for
<& is possible. This accords with Tarski’s view that the notion of logical
possibility is weaker than, and hence different from, the general m;tion
of possibility [see (C2)].) Is (AS) fulfilled by Tarski's model-theoretic
semantics?

We can show that (AS) holds at least for standard first-order logic. Let
& be a standard first-order system, L the language of %, K a set of
sentences of L, and X a sentence of L. Suppose it is intuitively possible that
all lhe members of K are true and X s false. Then, if we presume lh"il
the rules of inference of standard first-order logic are necessarily lrull‘l-
preserving, K'u {~ X} isintuitively consistent in the proof-theoretic sense:
for no first-order sentence Y are both ¥ and ~ Y provable from K u { ~ Xl}-
It follows from the completeness theorem for first-order logic that (hcr4c i;
a model for .& in which all the sentences of K are true and X is false.

As for (C2), Tarski characterizes the formality requirement as follows:
Since we are concerm?d here Awilh the concept of logical, i.c., formal consequence
and thus with a relation which is to be uniquely determined by the form of tho.:
senlt':r{ces between which it holds, this relation cannot be influenced in any way b
empirical knowledge, and in particular by knowledge of the objects to whichythz
sentence X or the sentences of the class K refer. The consequence relation cannot

be affected by re_placing the designations of the objects referred to in these sen-
tences by the designations of any other objects. !

The condition of formality, (C2), has several aspects. First, logical
conscqueqces, according to Tarski, are based on the logical form of the
scn}ences involved. The logical form of sentences is in turn determined by
their logical terms (see Tarski’s notion of a well-formed formula in “The
Concept of Truth in Formalized Languages”). Therefore, logical con-
sequences are based on the logical terms of the language. Second, logical
conseqfxences are not empirical. This means that logical terms, which
determine logical consequences, are not empirical either. Finally, logical
cor.lsequences “cannot be affected by replacing the designations of the
objects.... by other objects.” In “The Concept of Logical Consequence”
Tarski first attempted a substitutional interpretation of the last require-
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ment. This led to a substitutional definition of “logical consequence.”
According to this definition, consequences preserved under all (uniform,
type preserving) substitutions of the nonlogical terms of the language are
logical. However, Tarski soon realized that the substitutional definition
did not capture the notion of logical consequence in all its generality.'?
The substitutional test depends on the expressive power of the language in
question. In particular, languages with a meager vocabulary of singular
terms let intuitively nonlogical consequences pass for genuinely logical
ones. Tarski’s reaction to the shortcomings of the substitutional test was
to drop the idea of substitutivity altogether. Instead, Tarski turned to
semantics, a new discipline devoted to studying the relation between lan-
guage and the world, whose basic notions are “satisfaction” and “model.”
On the basis of these concepts Tarski proposed the model-theoretic defini-
tion of logical consequence, (LC). Although Tarski did not explain what
“indifTerence of the consequence relation to replacement of objects” meant
semantically, 1 think we can offer the following analysis inspired by Mos-
towski. There are terms that take the identity of objects into account and
terms that do not. Terms underlying logical consequences must be of the
second kind. That is to say, logical terms should not distinguish the
identity of objects in the universe of any model. (By “identity of an object™
[ here mean the features that make an object what it is, the properties that
single it out.)

Now clearly Tarskian consequences of standard first-order logic satisfy
the formality condition. First, only entirely trivial consequences (X follows
logically from K just in case X € K) obtain without logical terms. There-
fore, logical consequences are due to logical terms of the language.
Second, the truth-functional connectives, identity, and the universal and
existential quantifiers are nonempirical functions that do not distinguish
the objects in any given model. The substitution test, which is still neces-
sary (though not sufficient), is also passed by standard logic.

We see that (C2), the condition of formality, sets a limit on (Cl), the
condition of necessity: necessity does not suffice for logicality. While all
logical consequences are necessary, only necessary consequences that are
also formal count as genuinely logical. An example of a necessary con-
sequence that fails to satisfy the condition of formality is,

(1) bis red all over; therefore b is not blue all over.

This consequence is not logical according to Tarski’s criterion, because
it hangs on particular features of color properties that depend on the
identity of objects in the universe of discourse. (Try to replace “blue” with
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“smooth,” a -replacement that has no bearing on the formal relations
between premise and conclusion, and see what happens.) Later we wi‘!l als k
see that (C1) sets a restriction on the application of (('2) o
I think conditions (Cl) and (C2) on the key concept of logical co
sequence delineate the scope as well as the limit of Tarski’s cnlef)r(isc-ulllll:
development of a conceptual system in which the concept of l(,)g'ica‘vl ;m:
sequenf:e ranges. ovc?r. all formally necessary consequences and nothing
else. Since our intuitions leave some consequences undetermined with
respect to formal necessity, the boundary of the enterprise is somewhat
vague. But the extent of vagueness is limited. Formal ncccxsil): isar ‘f’d
tively l.n'}problemalic notion, and the persistent contr(wcrsicx: invn!h "‘ ’le:
modalities are not centered around the formal. | et
We have St?en that at least in one application, namely, in stand: d
first-order logic, Tarski’s definition of logical consequence s’umd; ;h g l(“(
of (Cl) and (¢2): all the standard consequences that fall undcr‘'l"a:‘;kﬁ'f’;t
definition are indeed formal and necessary. We now ask, Does qm‘n ‘I' lj
first-order logic yield a/l the formally necessary L‘()nsequc;lcc% wtil~h"| ; ‘"‘ It(
level (extensional) vocabulary? Could not the standard syslcn; be cx; : “; ;
:‘;o l!}:?t Tarski's definition encompasses new consequences satisfyi ’*‘,“ Iu'
n?tumve conditions but undetected within the standard ;;yls‘tc'ln‘il"l]‘% IBZL
himself all but asked the same question. He ended “On t‘h;* C v‘ ‘~(”h l’
Logical Consequence” with the following note: et o
(:?::Lesglg/:fnﬁ]:)olli,:il;z:c;ﬁ;lslrw':!i'on'is thc‘ d.ivis.io_n.of all terms of the language
bitray. If, for example, we were 1 ncluc smeen - oY 101 duite ar-
. ; . A e extra-logjc: H >
L?S:;:a‘:;?:;esifglj&rlg;z1:niversal qua.nliﬁcr, }hcn oufdclin?t):([:n‘ o(;%;::”u?:ﬁt:ﬂ[:lv‘;
ihe ther hand 1o objectiv grounds e g v i Ty Usige On
' € which permit usg AW
Zt:lorﬁgblcg;g:{{c::::::;éh;j:;z?, irr(zups f){"llerms. It seems m.bfpossihlc ::: i:illc‘::dz
without rommine s comsequens 1::;.:;:'y rf.:gardf:d by logicians as extra-logical
1 stand in sharp contrast (o ordinary

W:he'quesuo.n, “Wha‘l is the full scope of logic?” I will ask in the form:
! al;i:he* widest notion of a logical term for which the Tarskian dcﬁni-'
lon of “logical consequence™ gives resulls compatible with (C1) and (c2y

3 Logical and Extralogical Terms: An Unfounded Distinction?
What is the widest definition of “logical term” compatible with Tarski's

2 .
Il(!)lef)r);. In 1936 Tdr.s’kI‘ did not know how to handle the problem of new
gical terms. Tarski's interest was not in extending the scope of “logical
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consequence” but in defining this concept successfully for standard logic.
From this point of view, the relativization of “logical consequence” to
collections of logical terms was disquieting. While Tarski’s definition pro-
duced the right results when applied to standard first-order logic, there
was no guarantee that it would continue to do so in the context of wider
“logics.” A standard for logical terms could solve the problem, but Tarski
had no assurance that such a standard was to be found. The view that
Tarski’s notion of logical consequence is inevitably tied up with arbitrary
choices of logical terms was advanced by J. Etchemendy (1983, 1990).
Etchemendy was quick to point out that this arbitrary relativity under-
mines Tarski's theory. T will not discuss Etchemendy’s interpretation of
Tarski here, but  would like to examine the issue in the context of my own
analysis. Is the distinction between logical and extralogical terms founded?
If itis, what is it founded on? Which term falls under which category?
Tarski did not see where to draw the line. In 1936 he went as far as
saying that “in the extreme case we could regard all terms of the language
as logical. The concept of formal consequence would then coincide with
that of material consequence.” '* Unlike “logical consequence,” the con-
cept of material consequence is defined without reference to models:

DEFINTHON MO The sentence X is a material consequence of the sentences

of the class K ifl at least one sentence of K is falsc or X is true.'®

Tarski's statement first seemed to me clear and obvious. However, on
second thought 1 found it somewhat puzzling. How could al/l material
consequences of a hypothetical first-order logic % become logical con-
sequences? Suppose ¥ is a logic in which “all terms are regarded as
logical.” Then evidently the standard logical constants are also regarded

as logical in %, Consider the #-sentence:

(2) There is exactly one thing,

or, formally,

(3) A)(Vy)y =y

This sentence is {alse in the real world, hence -

(4) There are exactly two things

follows materially lrom it (in .¢7). But Tarski’s semantics demands that for
cach cardinality «, there be a model for . with a universe of cardinality
a. (This much comes from his requirement that any arbitrary set of objects

constitute the universe of some model for .#). Thus in particular & has a
model with exactly one individual. It is therefore not true that in every
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model in which (2) is true, (4) is true too. Hence, according to Tarski’s
definition, (4) is not a logical consequence of (2).

So Tarski conceded too much: no addition of new logical terms would
trivialize his definition altogether. Tarski underestimated the viability of
his system. His model-theoretic semantics has a built-in barrier that pre-
vents a total collapse of logical into material consequence. To turn all
material consequences of a given formal system .¥ into logical conse-
quences requires limiting the totality of sets in which ¢ is to be inter-
preted. But the requirement that no such limit be set is intrinsic to Tarski’s
notion of a model.

It appears, then, that what Tarski had to worry about was not total but
partial collapse of logical into material consequence. However, it is still
not clear what ““regarding all the terms of the language as logical”” meant.
Surely Tarski did not intend to say that if all the constant terms of a logic
& are logical, the distinction between formal and material consequence
for & collapses. The language of pure identity is a conspicuous counter-
example. All the constant terms of that language are logical, yet the defi-
nition of “‘logical consequence” yields a set of consequences different (in
the right way) from the set of material consequences.

We should also remember that Tarski’s definition of “logical conse-
quence” and the definition of “‘satisfaction™ on which it is based are
applicable only to formalized languages whose vocabulary is essentially
restricted. Therefore, Tarski could not have said that if we regard all terms
of natural language as logical, the definition of “logical consequence” will
coincide with that of “material consequence”. A circumstance concerning
natural language in its totality could not have any effect on the Tarskian
concept of logical consequence.

Even with respect to single constants it is not altogether clear what
treating them as logical might mean. Take, for instance, the term “‘red.”
How do you construe “red” as a logical constant? To answer this question
we have to find out what makes a term logical (extralogical) in Tarski’s
system. Only then will we be able to determine whether any term what-
soever can be regarded as logical in Tarski’s logic.

4 The Roles of Logical and Extralogical Terms

What makes a term logical or extralogical in Tarski's system? Considering
the question from the “functional” point of view I have opted for, I ask:
How does the dual system of a formal language and its model-theoretic
semantics accomplish the task of logic? In particular, what is the role
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of logical and extralogical constants in determining logical truths and

consequences?

Extralogical constants
Consider the statement

(5) Some horses are white,
formalized in standard first-order logic by

(6) (A)(J1x & Wx). .
How does Tarski succeed in giving this statement truth condi.tlons‘that,
in accordance with our clear pretheoretical intuitions, rendt?r it loglca!iy
indeterminate (i.e., neither logically true nor logica!ly‘ falf:e)?jl‘he.cr’?cxal
point is that the common noun “horse” and t'he' adjectw'e ‘whlte are
interpreted within models in such a way that their intersection 1S empty in
some models and not empty in others. Similarly, for any natural number
n, the sentence
(7) Therecaren white horses )
is logically indeterminate because in some bu.t not all fnodcls “hqrs:f: ‘ and
“white” are so interpreted as to make their mlersecl.lm} of g:ardmahtx n.
Were “finitely many” expressible in the logic, a similar configuration
would make
(8) Finitely many horses are white
ically indeterminate as well. o
‘08]'1: ;lh)(()rt. what is special to extralogical terms like “horse” anfi white
in Tarskian logic is their strong semantic variability. Exlral.og‘lcal tem‘\s
have no independent meaning: they are interpreted only within models.
Their meaning in a given model is nothing more than the value that the
denotation function D) assigns to them in that model. We cz{nnot' speak
about the meaning of an extralogical term: being extralogical lm’phes that
nothing is ruled out with respect to such a term. E.very dcnolafton of l}.le
extralogical terms that accords with their syntactic category appears m1
some model. Hence the totality of interpretations of any given extralogica
term in the class of all models for the formal system is e)factly the same as
that of any other extralogical term of the same syntactic catc?gory. Smcc;
every set of objects is the universe of some Tnodel, any pos'SIble slafc o
affairs  any possible configuration of individuals, propértles, relatrc.)ns,
and functions via-a-vis the extralogical terms of.a glVfﬁn formalm;d
language (possible, that is, with respect to their meaning prior to formali-
zation) is represented by some model.
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Formally, we can define Tarskian extralogical terms as follows:

DEFINI'TION ET {e,,e,,...}is the set of primitive extralogical terms of a
Tarskian logic . iff for every set A4 and every function D that assigns to
e, €. denotations in 4 (in accordance with their syntactic categories)
there is a model A for % such that 9 = (A, D>. -

It follows from (ET) that primitive extralogical terms are semanticall
unrelated to one another. As a result, complex extralogical terms pro)j
duced by intersections, unions, etc. of primitive extralogical lerms’(e y
“horse and white”) are strongly variable as well. &
Note that it is essential to take into account the strong variability of
extralogical terms in order to understand the meaning of various claims of
logicality. Consider, for instance, the statement \

(9) (3x)x = Jean-Paul Sartre,

which is logically true in a Tarskian logic with “Jean-Paul Sartre” as an
extralogical individual constant. Does the claim that (9) is logically tr‘uc
mean that the existence (unspecified with respect to time) of the deceased
French philosopher is a matter of logic? Obviously not. The logical ll‘;llh
of (9) reflects the principle that if a term is used in a language (0 name
objects, then in every model for the language some object is named by that
term.' Bu}rzince “Jean-Paul Sartre” is a strongly variable term, what )
says i1s “There is a Jean-Paul §; ” “ i

Yo paut oo 5 @ Jea I Sartre,” not “The (French philosopher)

Logical constants
It has been said that to be a logical constant in a Tarskian logic is to have
the same interpretation in all models. Thus for “red” to be a logical
constant in logic %, it has to have a constant interpretation in all the
models for . I think this characterization is faulty because it is vague
How (‘10 you interpret “red” in the same way in all models? “In the samc;
way™ in what sense? Do you require that in every model there be the same
number'ofobjects falling under “red’*? But for every number largcr‘than
I there is a model that cannot satisfy this requirement simply because it
_does not have enough elements. So at least in one way, cardinalitywise, the
interpretation of “red” must vary from model to model. ’
The same thing holds for the standard logical constants of Tarskian
logic. Take the universal quantifier. In every model for a first-order logic
the universal quantifier is interpreted as a singleton set (i.e., the set of the
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universe).'® But in a model with 10 elements it is a set of a set with 10
clements, whereas in a model with 9 elements it is a set of a set with 9 ele-
ments. Are these interpretations the same?!’

I think that what distinguishes logical constants in Tarski’s semantics is
not the fact that their interpretation does not vary from model to model
(it does!) but the fact that they are interpreted outside the system of
models.'® The meaning of a logical constant is not given by the definitions’
of particular models but is part of the same metatheoretical machinery
used to define the entire network of models. The meaning of logical
constants is given by rules external to the system, and it is due to the
existence of such rules that Tarski could give his recursive definition of
truth (satisfaction) for well-formed formulas of any given language of the
logic. Syntactically, the logical constants are “‘fixed parameters’ in the
inductive definition of the set of well-formed formulas; semantically, the
rules for the logical constants are the functions on which the definition of
satisfaction by recursion (on the inductive structure of the set of well-
formed formulas) is based.

How would diflerent choices of logical terms affect the extension of
“logical consequence”? Well, if we contract the standard set of logical
terms, some intuitively formal and necessary consequences (i.e., certain
logical consequences of standard first-order logic) will turn nonlogical. If,
on the other hand, we take any term whatsoever as logical, we will end up
with new “logical” consequences that are intuitively not formally neces-
sary. The first case does not require much elaboration: if “and” were
interpreted as “or,” X would not be a logical consequence of “X and Y.”
As for the second case, let us take an extreme example. Consider the
natural-language terms “Jean-Paul Sartre” and ““accepted the Nobel Prize
in literature,” and suppose we use them as logical terms in a Tarskian logic
by keeping their usual denotation “fixed.” That is, the semantic counter-
part of “‘Jean-Paul Sartre™ will be the existentialist French philosopher
Jean-Paul Sartre, and the semantic counterpart of “‘accepted the Nobel
Prize in literature” will be the set of all actual persons up to the present
who (were awarded and) accepted the Nobel Prize in literature. Then

(10) Jean-Paul Sartre accepted the Nobel Prize in literature

will come out false, according to Tarski’s rules of truth (satisfaction), no
matter what model we are considering. This is because, when determining
the truth of (10) in any given model 2% for the logic, we do not have to look
in N at all. Instead, we examine two fixed entities outside the apparatus of
models and determine whether the one is a member of the other. This
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renders (10) logically false, and according to Tarski's definition. an $
tence o{“ the language we are considering follows logicall l‘r‘om){t\ ef"
contradiction with the pretheoretical conditions (Cl)and (C);) o
) The above example violates two principles of Tarskian s‘.cn;'mliu' ]
Je:an~Paul Sartre” and “accepted the Nobel Prize in liicr;.llur;:” (]:.l( )
satisfy the requirement of formality. (2) The truth conditions for ;Zl
bypas:c, the very device that serves in Tarskian semantics 1o disti v(' l)
material from logical consequence, namely the apparatus of m ) i '!l]%mS]
wond‘er the definition of “logical consequence” fails! » e o
TalrtSklli CSS?( t.o_ see that each violation by itself suflices to undermine
- Nosbele ;’r::;:or:n Iathe case of (1), “Jean-Paul Sartre” and “accepted
iterature™ are empiric: ¢ istingui
betwe(?n different objects in the universepl)rtl"tdlilsctsg:;j: (/I\hs”ﬁ;lro(;;mmgmm
we dehn.e logical terms in accordance with (C2) but ;)vithnul rct”‘s?p‘pvuse
tht:- totality of models. Say we interpret the universal quantifier fo(’r‘uu"L tI0
}fn:verse, that of the natural numbers. In that case “for every” ;)‘l ‘Smg .
for every natural number,” and the statement v

(11) Every object is different from at least three other objects

tur . L .
\ ns ogt»logtcall):‘truc, in violation of the intuition embedded in (C1)

y regumng that “every” be defined over all models, we circumve -
undesirable result.

We can no arski’ i
i w see how Tarski’s method allows us to identify
(12) Everything is identical with itself

as the logical truth that jt intuitively is.
Intuitive meanings of “‘is identical with”

nt the

a scntence

The crucial point is that the
and “everything” are captured by

rules si airs ¢ )
objec':ts that share certain formal features \Svlsl::ﬁlfl::ur:o?‘\:r:r M:"d o
posstle state of affairs to another. Thus in all models (repr::qe);n:;)'m 0"‘;
po‘ssnt?le slu‘les of-g{Tairs), the set of self-identical objects is u;liVC‘ -'”l)ntq 0

C().lllCldCS with the universe), and in cach model the uﬁivl @ I f“ o
thing” for that particular model. T ey

5 [he D‘St"lc“ t n [40 ralo lca! l erm
on l)e wee g'ca! and Ext l
g S:

The di . I .
he discussion of logical and extralogical terms enables us (o

! . . answer the
questrons posed in section 3. We understand what it means (

o regard all
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terms of the language as logical. Within the scheme of Tarski’s logic it
means to allow any rule whatsoever to be the semantic definition of a
logical constant. In particular, the intuitive interpretation of any term
becomes its semantic rule qua a logical term. Our investigation clearly
demonstrated that not every interpretation of logical terms is compatible
with Tarski’s vision of the task of logic.

We can now turn to the main question of section 3. Is the distinction
between logical and extralogical terms founded? Of course it is! The dis-
tinction between logical and extralogical terms is founded on our pre-
theoretical intuition that logical consequences are distinguished from
material consequences in being necessary and formal. To reject this in-
tuition is to drop the foundation of Tarski’s logic. To accept it is to pro-
vide a ground for the division of terms into logical and extralogical.

But what is the boundary between logical and extralogical terms?
Should we simply say that a constant is logical if adding it to the standard
system would not conflict with (C1) and (C2)? This criterion is correct but
not very informative. It appears that consequences like

(13) Exactly one French philosopher refused the Nobel Prize in
literature; therefore, finitely many French philosophers did
are formal and necessary in Tarski’s sense. Therefore “finitely many™ is a
reasonable candidate for logical constanthood. But can we be sure that
“finitely many” will never lead to a conflict with (C1) and (C2)? And will
our intuitions guide us in each particular case? By themselves, (C1) and
(C2) do not provide a usable criterion. Let us see if their analysis in the
context of Tarski’s systent will not lead us to the desired criterion.

The view that logic is an instrument for identifying formal and necessary
consequences leads to two initial requirements (based on (CI) and (C2)):
(1) that every possible state of affairs vis-a-vis a given language be
represented by some model for the language, and (2) that logical terms
represent formal features of possible states of affairs, i.e., formal prop-
erties of (relations among) constituents of states of affairs. To satisfy these
requirements the Tarskian logician constructs a dual system, each part of
which is itself a complex, syntactic-semantic structure. One constituent
includes the extralogical vocabulary (syntax) and the apparatus of models
(semantics). [ will call it the base of the logic. (Note that only extralogi-
cal terms, not logical terms, play a role in constructing models.) In a
first-order logic the base is strictly first-level: syntactically, the extralog-
ical vocabulary includes only singular terms and terms whose argu-

ey e s een e

s
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::f:,ls are snr?gu!ar; scméntically, in any given model (he extralogical
indiv?da:;:smgned only individuals or sets, relations, and functions of
. The second part consists of the logical terms and their semantic definj
l}ox\s. Its task is to introduce formal structure into the sysl;m S( \ ""f‘
tlcally,‘ logical terms are formula-building operators; scmanlica'l! )’“:""‘
are assngned pre-fixed functions on models that expre;s formal m}’- [ ]ey
of,’ relations among, and functions of “elements of models™ (Ob;'Sclspiinlllu?
universe and constructs of these). Since logical terms are mcalﬁ tor ]-L
lsen‘t 'f(l)rmal properties f)f elements of models corresponding to the ci?rr::
t:i:: ,]Y;)S:?:lsz:;);,dg:zrﬁlevcl is gener'all.y hig'hcr than that of nonlogical
o Thus. : rst-order l'oglc, 1der?t)ty is the only first-level log-
. - Ihe universal and existential quantifiers are sccond level, sem;
tically as well %15 syntactically, and the logical connectives oo are (;l:l i r;"‘]-
Fev;l. As for-smgular terms, these can never be construed as ‘Iogicalln't;‘ll\‘;;-
;sm::i:zléf::ns;gi:irs t;;:?,s, ’repre'si:nl atomic components of models, and
Wil s onent ,S ’g, alo‘mn.,.have no structure (formal or informal).
. ystem of logical terms constitutes a superstructure
for the log.c. Persiruciyre
ap:::a‘\:iu;!e tsg'stem is ?ioug'ht togelher»by superimposing the logical
‘ n the nonlogical base. Syntactically, this is done by rules fo
formm'g well-formed formulas by means of the logical operators, : A
semantically, by rules for determining truth (satisfaction) in apmod rlsb -
on the formal denotations of the logical vocabulary. (Note that s?nc af;:d
§ystems we are considering are extensional, “interpretation” has th Cj .
Import as “denotation.”) e
. No;w, to satisfy the conditions (Cl) and (C2), it is essential that no
abgl;c?‘ro:]rr:n;estr;f:n(:ﬁ rF'r.opcrly or a relation that is intuitively vari-
ot oo o affairs u? lunotillcr. Furthermore, it is important
g erms be formal entitjes. Finally, the denotations of logical
::T;S I;‘ee?f 1.0 bf’ defined over models, all models, so that every posi’l?lc
v s} ] « N . M i ~
Consequ;czgs 1s taken into account in determining logical truths and
SiVLtI;ZESerh;hUaSItife\;veszinﬁsze;ify a ser{es or conditions that are excly-
ey and ex y Lisfie ‘ )'flernlsiglﬁlllngllle requircments above,

! ‘ su?cefade(l in defining “logical term” in accordance witl
Tarski’s basic principles. In particular, the Tarskian definition of “Jogic, ;
consequence” (and the other metalogical concepts) will give correct ol
all the correct results, in agreement with (C1) and (C2) et resules
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6 A Criterion for Logical Terms

My central idea is this. Logical terms are formal in a sense that was
specified in section 2. There we already interpreted the requirement of
formality in the spirit of Mostowski as “‘not distinguishing the identity of
objects in a given universe.” Why don’t we take another step in the same
direction and follow Mostowski’s construal of “not distinguishing the
identity of objects” as invariance under permutations (see chapter 2).
Generalizing Mostowski, we arrive at the notion of a logical term as
formal in the following sense: being formal is, semantically, being in-
variant under all nonstructural variations of models. That is to say, being
formal is being invariant under isomorphic structures. In short, logical
terms are formal in the sense of being essentially mathematical. Since,
intuitively, the mathematical parameters of reality do not vary from one
possible state of affairs to another, the claim that logical consequences are
intnitively necessary is in principle satisfied by logics that allow mathe-
matical terms as logical terms. My thesis, therefore, is this: all and only
formal lerms, terms invariant under isomorphic structures, can serve as
logical terms in a logic based on Tarski’s ideas. 1 must, however, add
the proviso that new terms be incorporated in the logical system “‘in the
right way.”

I will now proceed to set down in detail the criterion for logical terms.
But first let me make a few preliminary remarks. My analysis of Tarski’s
syntactic-semantic system did not depend on the particulars of the meta-
theoretic language in which the syntax and the semantics are embedded.
In standard mathematical logic the metalanguage consists of a fragment
of natural language augmented by first-order set theory or higher-order
logic. In particular, models are set-theoretic constructs, and the definition
of “satisfaction in a model” is accordingly set-theoretical. This feature of
contemporary metalogic is, however, not inherent in the nature of the
logical enterprise, and one could contemplate a background language
different from the one currently used. Without committing myself to any
particular metatheoretical mathematics, I will nevertheless use the ter-
minology of standard first-order set theory in the formal entries of the
criterion for logical terms, as this will contribute to precision and clarity.

For transparency 1 will not include sentential connectives in the cri-
terion. While it is technically easy to construe the connectives as quan-
tifiers (see Lindstrom 1966), the syntactic-semantic apparatus of Tarskian
logic is superfluous for analyzing their scope. The standard framework
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of sentential logic is perfectly adequate, and relative to this framework
the problem of identifying all the logical connectives that there arc h: ’
already been solved. The solution clearly satisfics Tarski’s rec uirc‘:m lds‘
the §tandard logic of sentential connectives has a bznsé that ul)neisi .
tactlf:ally of extralogical sentential letters and semantically of a iisls :‘ynli
posgble' asFigflmcnts of truth values to these letters. Any possi;ﬂc gtiziej)f
affairs st-aows the sentential language is represented by some assignme
Thf: logical s_upers(ructurc includes the truth-functional conng:g:tibves ‘ ”;
their s§mant1c definitions. The connectives are both syntacticall ‘(md
Zetga.n'tlcaHy of a higher level than the sentential letters. Their s‘cn):a;ll?ic
wemin:!m:;-?re pre-ﬁxed: logical connectives are semantically identified
ru unc%nonal operators, and the latter are delined by formal
(Boolean) functions whose values and arguments, i.e., truth V’l);ll(:‘; 'md
sequences of truth values, represent possible states ot"uf‘Tairs Th‘is er;e o
that truths and consequences that hold in all “models".'lre fc ~"‘r‘35
necessary in Tarski’s sense. ‘ ormally
. As for modal operators, they too are outside the scope of this investig:
tion, though for different reasons. First, iy criterion for lugic"al tcr‘n:‘%‘i‘-
based on analysis of the Tarskian framework, which is insuflicient lt‘):
Fnodals. Second, we cannot take it for granted that the task of modal lo :i :
is the same as that of symbolic logic proper. To determine the s;o cELf
fnodal logic and characterize its operators, we would have to set u ) 'O
independent inquiry into its underlying goals and principles e

Conditions on logical constants in first-order logics
The criterion for logical terms based on the Tarskian conception of formal
first-order logic will be formulated in a series of individually ne '; ‘r‘"m
a.nd collectively sufficient conditions. These conditions will syccifL 55;"”’
snmple' and/or complex terms from an initial pool of cons!an?s c't: ::“”
as logical constants in a first-order logic. In stating these cond‘iti » ”T
place a higher value on clarity of ideas than on ecconomy. As a r*‘(lns‘l
conditions are not mutually independent. . ot
A A logllcal constant C is syntactically an n-place predicate or functor
(funct.mnal expression) of level 1 or 2, n being a positive integer
B. A loglcal constant C is defined by a single extensional function ;ind i
identified with its extension. )
C. A !f)gi(,jal constant C is defined over models. In each model N over
Wthh.lt is defined, C is assigned a construct of elements of A corre-
sponding to its syntactic category. Specifically, I require that C be
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defined by a function £, such that given a model 2 (with universe 4)

in its domain:
a. If Cis a first-level n-place predicate, then £(21) is a subset of A"

b. If Cis a first-level n-place functor, then f() is a function from

A" into A.
¢. If Cis a second-level n-place predicate, then f,(2) is a subset of

B, x --- x B,, where forl <i<gn,
{A if i(C)is an individual

B, =
P(A™) ifi(C)isan m-place predicate

{(i(C') being the ith argument of C).
d. 1f C is a second-level n-place functor, then f,(N) isa function

from B, x -+* x B,into By, where for | <i<n+1,Bis

defined as in (c).

¢

D. A logical constant C'is defined over all models (for the logic).

A logical constant € is defined by a function f, which is invariant

under isomorphic structures. That is, the following conditions hold:

4. 16 Cis a first-tevel n-place predicate, % and 9N’ are models with
universes A and A’ respectively, (hy, ... by €A by, by e
A", and the structures (AL, by and (A", (by, ..., by are
isomorphic, then {hyo..ns b,y € fAW) T LbY, ooy by e f().

b. If Cis a second-level n-place predicate, 2 and 2’ are models with
universes A4 and A’ respectively, {Dy, -+ -» DyeB x X B,,
Dy, ... Dye By x X B, (where for 1 <i<mn, B; and B;

as in (C.c)), and the structures CA, Dy - Dads
.., D)y e f(A)iff

are
A, Dy, ..., Dy are isomorphic, then (D, .
(D, DYy e L)

¢. Analogously for functors.

Some explanations are in order. Condition (A) reflects the perception of
logical terms as structural components of the language. In particular, it
rules out individual constants as logical terms. Note, however, that al-
though an individual by itself cannot be represented by a logical term
(since it lacks “inner” structure), it can combine with functions, sets, or
structure representable by a logical term. Thus, below
1 deline a logical constant that represents the structure of the natural
numbers with their ordering relation and zero (taken as an individual).
‘The upper timit on the level of logical terms is 2, since the logic we are
considering is a logic for first-level languages, and a first-level language
can only provide its logical terms with arguments of level 0 or 1.

relations to form a
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Condition (B) ensures that logical terms are rigid. Each logical term has
a pre-fixed meaning in the metalanguage. This meaning is unchangeable
and is completely exhausted by its semantic definition. That is to say, from
the point of view of Tarskiun logic, there are no *'possible worlds™ of log-
ical terims. Thus, qua logical terms, the expressions “the number of planets”
and *9” are indistinguishable. If you want to express the intuition that
the number of planets changes from one possible “world” to another, you
have to construe it as an extralogical term. If, on the other hand, you
choose to use it as a logical term (or in the definition of a logical term),
only its extension counts, and this is the same as the extension of *9.”

Condition (C) provides the tie between logical terms and the apparatus
of models. By requiring that logical terms be defined by fixed functions
from models to structures within models, it allows logical terms to repre-
sent ““fixed”” parameters of changeable states of affairs. By requiring that
logical terms be defined for each model by clements of this model, it
ensures that the apparatus of models is not bypassed when logical truths
and consequences are determined. Condition (C) also takes care of the
correspondence in categories between the syntax and the semantics.

The point of (D) is to ensure that aff possible states of affairs are taken
into account in determining logical truths and consequences. Thus truth-
in-all-models is necessary truth and consequence-in-all-models is necessary
consequence. Conditions (B) to (D) together express the requirement that
logical terms are semantically superimposed on the apparatus of models.

With (E) I provide a general characterization of formality: to be formal
is not to distinguish between (to be invariant under) isomorphic structures.
This criterion is almost universally accepted as capturing the intuitive
(semantic) idea of formality. I will trace the origins of condition (E) and
discuss its significance separately in section 7 below. It follows from (E)
that if 9, and 9, are models with the same universe A4, then for cvery
logical term C, f(A,) = f(A,). Therefore, we can treat logical terms as
functions on universes (sets) rather than models, i.e., use f.(4) instead of
(). T will do so in chapter 4, using C, and Cy, as abbreviations.'®

I can now give a semantic definition of (Tarskian) logical terms:

DEFINITION LT  Cis a (Tarskian) logical term fl Cis a truth-functional
connective or C satisfies conditions (A) to (E) above on logical constants.

I will call logical terms of the types (C.a) and (C.b) above logical
predicates and logical funciors respectively. Logical terms of type (C.¢) |
will call logical quantifiers, and logical terms of type (C.d) logical quantifier
Junctors.
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what kind of expressions satisfy (LT)? Clearly, all the logical Cf.)nstams
of standard first-order logic do. Identity and the standard qtfanuﬁers Zri
defined by total functions f;, fv, and f3 on models such that, given a modae

91 with universe A,
(14) /(W) = {Ca, by a,be A & a=bh},

(15 f,(M) = {B:B= A}, o
(16) _/;(x?l):{lfzngA&Baé@‘}. '

nitions of the truth-functional connectives remain un
ard terms satisfying (LT) are all Mostowskian quan-
r 2, these are n-place predicative quantifiers,
(where # is a positive integer,
ong these are the following,

The defi changed.
Among the nonstand
lifiers. As explained in chapte
i.c., quantifiers over n-tuples of predicates
and a 1-tuple of predicates is a predicate). Am
redetined in the style of conditions (A) to (E).

(17) Yhe I-place scardinal” quantifiers, defined, for any cardinal a by

L) ={B:BS A&|Bl=a} )
(18) The l-place quantitiers “finitely many” and “uncountably many,
defined by
My ={B:8c A4 & | Bl < Ny}
’;lllct)\llllﬂh}y nmny(qn = {B B & A & IB! > NO}
(19) The I-place quantifier “‘as many as not,” defined by
. ) _B

jz\smanyasnnl(‘gl) = {B B < A & lB! 2 1A ‘}
(20) The I-place quantifier “most,” defined by

fin(@) = {B:B< A &|B| >4~ B}
(21) The 2-place quantifier “‘most,” defined by

frpra () = (B, C) B,CcA&|BNC|>|B— Cl}
‘ sfying (LT). One of these is,
-place quantifier over 2-place
A? & R is a strict linear
) has a minimal

./(.ini(c

We also have relational quantifiers sati

(22) The «well-ordering” quantifier (a ]
relations), defined by fwo(20) = {R:R<
ordering such that every nonempty subset of FId{(R
clement in R}.

1 will call the logical terms below “ret

23) The second-level set-membership relation (a ‘2~place quantifier over
pairs of a singular tcrm and a predicate), defined by

{<a, B>:aeA&BgA&aeB}

ational quantifiers” as well:

. Y —
A/mcmhel.ﬁhip( *)‘)
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(24) The q}lantiﬁer “ordering of the natural numbers with 0 (a 2-place
quantifier over pairs of a 2-place relation and a singular tcrm)I ‘
defined by £, o) = {(R,a): RS A& ac 4 &and (A4, R a!) isa
structure of the natural numbers with s ‘

their ordering relation ;
zero} g relation and

Among functors and quantifier functors we have the following:

(25) Th'e n-place “first” functors (over n-tuples of singular terms)
defined, for any n, bY fries (A1) = the function &: A" - A such that for
any n-tuple {a,, ..., a,> e A", glay, ..., a,) =aq,

(26) The Al—place “complement” quantifier functor (over I-place
predicates), defined bY foompiement () = the function
g: P(A)— P(A) such that for anyBc A, g(B)=A4 - B

Examples of constants that do not satisfy (LT):

(27) The 1-place predicate “identical with a™ (a is a singular term of the
language), defined by £ (91) = {b:beAd&b=a") where a™js
the denotation of a in 9N ’

(28) The 1-place (predicative) quantifier “pebbles in the Red Sea.™
defined !JYfpcbhnes,..(Q() ={B:BS A& Bisa nonempty sct of
pebbles in the Red Sea)

(29) The first-level—membership relation (a 2-place first-level relation

whose arguments are singular terms), defi :
) » defined by £ () = b
beAd&bisaset &aisa member of b} {<a bz,

‘The c?eﬁnitions of these constants violate condition (E). To see wh (29
fails, think of two models, 9 and 91’ with universes {0, {0 1}} and {);c'm)
Paul Sartre, Albert Camus} respectively. While the first—(‘)rdcr slruc‘(u‘rc;
<{0, {0, 1}}, <0, {0, 1} and ({Jean-Paul Sartre, Albert Camus}, (Jea A
F’aul Sartre, Albert Camus) are isomorphic (when taken as tirs,t-a ;]]
1.e., when the first elements are treated as sets of atomic ob';:cls) ‘0“ 0
1}) € (W) but Jean-Paul Sartre, Albert Camus) ¢ £, () : Ak

Another term that is not logical under (LT)is lhéedcﬁnhilc-dcscri i
operator u. If we define 1 (a quantifier functor) by a function / that lv'v(:"
fl model U with a universe A, assigns to U 3 partial function Alz fr:m; &1”1’(:“
into A, l.hen condition (C.d) is violated. If we make & universal using so A )
?onventlon to define the value of / for subsets of A that are no’t sin flact )”‘L
it has to be shown that the convention does not violate (li)h V%/c :_:]:
however, construct a 2-place predicative logical quantifier “tll‘c " wh‘i ~l’
expresses Russell’s contextual definition of the description operut'or‘ -

G0 fne) = {<B,CY: B Cc 4 & Bis a singleton set}
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7 A New Conception of Logic

The definition of logical terms in section 6 gives new meaning to ‘‘first-
order logic™ based on Tarski’s ideas. “First-order logic” is now a
schematic title for any system of logic with a complete collection of truth-
functional connectives and a nonempty set of logical constants. It is open
to us, the users, to choose which particular set of constants satisfying (LT)
we want to include in our first-order system. The logic itself is an open
framework: any term may be plugged in as a logical constant, provided
this is done in accordance with conditions (A) to (E). Any first- or second-
level formal term is acceptable, so long as it is incorporated into the
system “in the right way.” The general framework of logic based on this
conception | will call Unrestricted Logic or UL. I will also refer to it as
Tarskian Logic, since it is based on Tarski’s conception of the task and
structure of logic. A particular system of Tarskian logic is simply a logic.
Both syntactically and semantically the new logic preserves the form of
definition characteristic of standard mathematical logic: syntactically, the
Jogical constants serve as “formula-building operators™ on the basis of
which the set of well-formed formulas is defined by induction; seman-
tically, the logical constants are associated with pre-fixed rules, to be used
in the recursive definition of satisfaction in a model. Thus, for example,
the syntactic definition of the 2-place quantifier “‘most™ is given by the
following clause:

o Ifdand ¥ are well-formed formulas, then (Most''! x)(®, ¥)is a well-
formed formula.

The rule associated with “‘most’ is expressed in the corresponding seman-
tic clause:

o b and W are well-formed formulas, %1 is a model with a universe A4,
and g is an assignment of individuals in A4 to the variables of the
language, then

N k= (Most'! x) (b, ¥)|g] ifT

ae A W= dlg(x/a)]}, lae AU = W[g(x/a)]}D € fura (2N).

I will give a precise account of UL in chapter 4. In the meantime, |

proposce this provisional definition:

pEFINIION UL % is a logic in UL iff ¢ is a Tarskian first-order system
with (1) a complete set of truth-functional connectives and (2) a nonempty
set of logical terms, other than those in (1), satisfying (LT).
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I will now show (what should be clear from the foregoing discussion)
}hat _UL satisfies the pretheoretical requirements (C1) and (C2). Namel
if & is a first-order system in UL, then the Tarskian definition of“logic?\ll’
cong:quence” for ¥ gives results in agreement with (C1) and (C2) ‘

F'nrst the case for (Cl). It suffices to show that the ussmnplioﬁ (/.\S) (of
section 2) holds for UL. Let ¥ be any system of UL with new logical
constants, let € be the logical vocabulary of &, and let L be its extralo ic;l
vocabulary. The claim is that if @ s a well-formed formula of & c%er
possible extension of @ relative to the vocabulary of . is rcprcsen,tcd by
some model for & (where the extension of a sentence is taken to be a lrully
value, T or F). ‘ l

I will sketch an outline of a proof. Suppose that ® is an atomic formula
oft?le form “Px,” where Pis an extralogical constant. The strong scm'mli;
vanz?blhty of P and the other primitive terms in L ensures that ;ver

possible state of affairs relative to these terms is represented by sor .

model A for #. So the claim holds for @, Now let @& be of lh)é ll':)r]::

“(Qx)¥x,” where Qis a quantifier and “Wx" is (for the sake of simplicity)
a ljormula with one free variable x. Assume the claim holds for *“yx.» (§

being .a member of €, is semantically rigid. Furthermore, its rigid- i.ntcr-‘
pretation is formal. But formal properties and relations intuitively do not
change from one possible state of affairs to another. That is, while the
number of, say, red things does vary among possible states of;ﬂ'airs the
secopd-level formal property “having n objects in X’s extension™ docs’nm

Having »n objects in a property’s extension is always the same thing no.
matter what property and what state of affairs we are considering 'I‘h’cre-
fore, the variability of situations with respect to “(Qx)W¥x” is ;cduccd
to the variability of situations with respect to “Wx.” [t isA possible that
“(Qx)f}’x” has the extension T/F iff it is possible that “yy» has ':11
extension representable by a subset B of the universe of some model “II
such' that B € fo(A)/B ¢ /o(U). But by (the inductive) assumption, ever
possible extension of “Wx” (relative to the vocabulary of %) is’re rc)-,
sented. by some model for £ So if it is possible for “Wx> o ]mvcp’m
extension as required, there is a model that realizes this possibility. In tI;iq
model Vthe extension of “(Qx)Wx” is T/F. We can carry on this in'ductivé
reasoning with respect to any type of logical terms under (LT).

. The (Ease for (C2) is straightforward. Condition (E) expresses an inlui-
.uve notion of formality: to be formal is, intuitively, to take only structure
into ?CCOUHL Within the scheme of model-theoretic semantics, to be for-
mal is to be invariant under isomorphic structures. Now in'UL as i
standard logic, logical consequences depend on the logical vocabul,a‘ry ol]"
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the language. The formality of logical terms ensures that logical con-
sequences do not rest on empirical evidence and do not distinguish the
identity of objects in any given universe. Hence logical consequences of
UL arc formal in Tarski’s sense.

Logics equivalent or similar to UL are often called in the literature
“generalized logics,” ‘‘extended logics,” “‘abstract logics,” or “model-
theoretic logics.” These labels may, however, convey the wrong message.
Driving a wedge between ““core” logic and its new ‘‘extensions,” they seem
to intimate that the “tight” and “lean” standard system is still the true
logic. Such an interpretation of UL would, however, be wrongheaded. UL
is not an abstract generalization of real logic. UL is real logic, full-fledged.
As we have seen earlier in this chapter, the basic semantic principles of
“core” logic (formulated by Tarski in the mid 1930s) are not fully mate-
rialized in the “standard” system. This system fails to produce all the
formally necessary, i.c., “‘logical,” consequences with a first-level vocabul-
ary. it takes the full spectrum of UL logics to carry out the original
program.

I have answered the question posed at the end of section 2. The broadest
notion of logical term compatible with the intuitive concept of “logical
consequence’ is that of (LT). (LT) redefines the boundaries of logic,
leading to the unrestricted system of UL. Condition (E) is especially
important in determining the full scope of logic. It is worthwhile to trace
the origins of this condition.

8 Invariance under Isomorphic Structures

The condition of invariance under isomorphic structures first appeared, as
a characterization of logicality, in Lindenbaum and Tarski 1934-1935.
Referring to a simple Russellian type-theoretic logic, Lindenbaum and
Tarski proved a theorem that informally says, “Every relation between
objects (individuals, classes, relations) which can be expressed by purely
logical means [i.e., without using extralogical terms] is invariant with
respect to every one-one mapping of the ‘world’ (i.e., the class of all
individuals) onto itself.”2°

Now the metalanguage from which we draw the pool of logical terms is
roughly equivalent to a subsystem of “pure” higher-order logic with Rus-
sellian simple types. For this language, Lindenbaum and Tarski’s theorem
shows that all definable notions satisfy the isomorphism condition with
respect to “the world” (a “‘universal” model, in our terminology). The
Lindenbaum-Tarski theorem appears to assume a notion of logicality that

e e, ot .
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depend§ on the classification of the standard logical operators of a simple
Russellian type theory as *‘purely logical.”” However, it follows l"r();nl tlrl)is
very theorcm that the standard operators themselves are invariuant under
xs?morphlc substructures, i.e., given any mode! 9 (a sitbmodel relative 1o
‘[:mdenbe’x’ulm and 'Tarslt(i’s “universal” model) and a I-place ﬁmn:nla hx
Q((ﬁ:)d;: .IS true in A ifl fon:‘zmy I-place formula Wx whose extension 1n
2 o :f,lr?ed from that of “®x” by some permutation of the universe
(Vx)¥x” is true in N, and similarly for the other Russellian ()per'|t<);s’
So the theorem shows (relative to a simple type-theoretic language 'n: t ‘
standard rules of logical proof) that Russellian logical terms ‘ll;(?‘l;l l(" ”
lh.’fll cafl be defined from them are “purely logical.” S
F!le idea that logical notions are distinguished by their invariance pro-
perties next appeared in Mautner’s “An Extension of Klein's Frl'nll rer
Program: .Logx_c,as.Inwriaanheory”( 1946). Inspired by Kicin’s )lm"rf
of classifying geometrical notions in terms of invariance condilioni Ni' .
nerA showed that standard mathematical logic can be cunstrucd ’aq (l:]r:
valt:an't-?heory of the symmetric group...of all permutations of the d~ ai
of individual variables,” 2! "
In his pﬁloneering 1957 paper “On a Generalization of Quantifiers.”
Mos%owskl use‘d the invariance property, for the first time, to !iccxm;.'n
genume extension of standard first-order logic by adding new lo ;iC'x‘l
tgrms. Mostowski’s condition technically was invariance under Cl‘lll&l’lt't
tions of sets induced by permutations of the universe (of a givenpmo 1 ’Id-
lnforrpally, it was to be construed as the claim, (LQ2) of chapter 2 (tltr)t.
qu?nllﬁcrs do not take into account the identity of individuals :n IIT*
universe of discourse. Mostowski’s criterion included rct’crcncc; to tlt
aforementioned papers of Lindenbaum and Tarski (1934 ]9%‘5 : |
Mautner (1946).22 » )
l‘n 1966 Per Lindstrém generalized Mostowski’s condition to full in
variance t.mder isomorphic (relational) structures, augmenting Mos(owsk"-
system with many-place predicative and relational quantifiers ol'tu; 'I'S
fe.rred l? as “Lindstrém quantifiers.” There is a4 minor dil]‘crcncjc hclwc‘c‘:
ljmdstrom’s definition and (E) above: Lindstrom’s structures are rel; ‘
tional, and 0-place relations are not individuals but truth valucs( T )Cld
Thus mathematical structures involving indvividuals cannol he, dir('l'll'
rf:presented by logical terms, as in (24). Lindstrém, unlike Mostowski N Y
S|l‘enl regard'ing the philosophical significance of his gcncrzll;Y;llit;nz ‘(\;Iz‘:t
might say his remarkable theorems solidify the distinguishe;i sta[‘us 0?'
stlandard first-order logic, but here again, it is unclear whether Lindstro
himself considers compactness and the Lowenheim-Skolem property looll;;
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essential ingredients of logicality or mere mathematically interesting fea-
tures of one among many genuinely logical systems. This philosophical
disengagement is characteristic of the abundant literature on *‘abstract
logic™ that has followed Lindstréom’s work.?3
[ often wondered what Tarski would have thought about the conception
of Tarskian logic proposed in this book. After the early versions of the
present chapter had been completed, I came upon a 1966 lecture by
Tarski, first published in 1986, that delighted me in its conclusion. In the
lecture “What are Logical Notions?” Tarski proposed a definition of
“togical term™ that is coextensional with condition (E):
Consider the class of all one-onc transformations of the space, or universe of
discourse, or “world™ onto itself. What will be the science which deals with the
notions invariant under this widest class of transformations? Here we will have ...

notions, all of a very general character. I suggest that they are the logical notions,
thiat we call a notion “logical” if #t is invariant under all possible one-one trans-

formations ol the world onto itself.2*

The difference between Tarski’s 1966 lecture and the earlier Linden-
baum and Tarski paper is that here Tarski explicitly talks about the scope
of logical terms for a first-order framework. (Indeed, in his introduction
to the posthumously published lecture, J. Corcoran suggests that we see it
as a sequel to Tarski’s 1936 ““On the Concept of Logical Consequence,” in
which the scope of logical terms was left as an open question.) It follows
from the above definition, Tarski now says, that no term designating an
individual is a logical term; the truth-functional connectives, standard
quantificrs, and identity are logical terms; Mostowski’s cardinality quan-
tificrs are logical, and in general, all predicates definable in standard
higher-order logic are logical. Tarski emphasizes that according to his
definition, any mathematical property can be seen as logical when con-
strued as higher-order. Thus, as a science of individuals, mathematics is
different from logic, but as a science of higher-order structures, mathe-
matics is logic.

The analysis that led to the extension of “logical term™ in Tarski’s
lecture is, however, different from that proposed here. Tarski, like Maut-
ner, introduced his conception as a generalization of Klein’s classification
of geometrical disciplines according to the transformations of space under
which the geometrical concepts are invariant. Abstracting from Klein,
Tarski characterized logic as the science of all notions invariant under
one-to-one transformations of the universe of discourse (“space” in a
generalized sense). My own conclusions, on the other hand, are based on
analysis of Tarski’s early work on the philosophical foundations of logic.


http:1946).22
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;l;i};:slsp:z;(r)::zo;eihgt, ‘lehke in lﬁe later Tarski, the criterion for logical
be & legtort e € mt. udes, but is r.mt exhausted by, condition (E). To
o be oo & ir:,ofjtft to be a hrgher-lcvcl, mathematical term: it js
Ao neorporated 'd L.crta‘u‘l synmcl.nc—scmunlic system in a way that

: s to identify ali Intuttively logical consequences b rans ol ¢
given rule, e.g., Tarski’s (LC). Y e ofa

lo:;::;:;nfotg;?,':;o(rg)(fari,kl s 1966 lecture remained unknown for a
on f(;, oon (E) 138 been treated by mathematical logicians as a
oo for ¢ [}]ereof Oé;ncal terms. In the last decade condition (E), and
oy anants U mera,t eganfto appear dS a L:rilerion of logicality in the

o semantic %lre, Ao .ten In combination with other criteria, like

ativity. rruy analysis is correct, conservativity and other linguistic
pr%)lemes constraining (E) have nothing to do witl logicality neste
knoweO(;n;);)pt::rl;o;JngthhlIo'sophxczll discussion of condition () that |

Losteal Coappears in, r\1dm(()‘t hy Mc(?arthy’s 1981 paper “The Idea of a

Tt [].w gmutl:]d.:rgl‘y rgects (E) as a suflicient condition for

ot e mlt it does not prevent the definition of

y means of “contingent” expressions. To illustrate Me-

y p y ConSldel t“e qu ""” Cr th numbe )
Calth S oint lCt us l < I l(, ll]lbr (‘ pI

ancts,”

Jihe number of planes (W) = {B:Bc 4 & |B] = the number of plancts}.

Clearly, the quantifier “the number of planets™ satisfies (E). Now
(31) The number of planets = 9 |

is conti i ¢ Le, i

“possn;gg(:vnotrllg”t?’e m;t.dl:nguage. L.e, 1ts extension changes from one
In-which we interpret the : age

Coridet e tin p metalanguage) to another.

(32) (The number of planets x)(Px & ~ Px)

3:": 'semence is logically false as a matter of fact, McCarthy would sa
Zefo.lsr,{s\sv:v:'ati::rt:f the fact that thg mm‘rber of planets is larger lh‘a):;
oesliten oy , ]dc counterfaclpal situation in which our sun had no
l > | >) would turn out logically true. Therefore, “the numb
planets x” will not do as a logical quantifier. ot
MccCarthy’s objection, however, does not affect my criterion

meta .. .
nm:ﬂ;heorfy the def?nmons of logical terms are rigid. Qua quantifiers “the
oo ;rto p}dnets and “9” are indistinguishable. Their {actual) c;xlen
o c - M )
ermine one and the same formal function over models and this
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function is a legitimate logical operator. In another world another descrip-

tion (and possibly another symbol) may designate this function. But that

has no bearing on the issue in question. Inscription (32) may stand for
different statements in different worlds. But the logical statement (32) is
the same, and false, in all worlds. For that reason logic— Unrestricted

Logic or any logic-- is invariant across worlds. From the point of view of
logic presented here, McCarthy’s demand that the meaning of logical
terms be known a priori is impertinent. The question is not how we come
to know the meaning of a given linguistic expression, but how we set out
to use it. If we set it up as a rigid designator of some formal property in
accordance with conditions (A) to (E), it will work well as a logical constant
in any Tarskian system of logic. Set differently, it might not. Switching
perspectives, we may say that the only way to understand the meaning of
a term used as a logical constant is to read it rigidly and formally, i.e., to
identify it with the mathematical function that semantically defines it.

9 Conclusion

We have arrived at a general theory of the scope and nature of logical
termis based on analysis of the function of logic and the philosophical
guidelines at the basis of modern semantics. Given the breadth of the
logical enterprise, we discovered that the standard terms alone do not
provide an adequate superstructure. Yet in view of its goal, not every term
can be used as a constant in Tarskian logic. There exists a clear, unequi-
vocal criterion for eligible terms, and the terms satisfying this criterion far
exceed those of “standard” logic.

We can now answer the questions posed at the end of chapter 2. Mos-
towski's claim that standard mathematical logic does not exhaust the
scope of first-order logic has been vindicated. His semantic criterion on
quantifiers, namely, “not distinguishing the identity of individuals in the
universe,” is most naturally interpreted as not discerning the difference
between isomorphic structures. As for logicality and cardinality, the in-
variance condition implies that the two coincide in the case of predicative
quantifiers, but in general, these notions are not essentially connected.

The next task is to outline a complete system of first-order logic with
logical terms satisfying (LT). The series of conditions proposed in the
present chapter constitute a definition of logical terms “from above”: one
can understand the conditions without thereby knowing how to construct
all constants possessing the required properties. In the next chapter I will
give a constructive definition of logical constants, inspired by Mostowski.

T S e e—




Chapter 3
66

Mostowski’ ati i i
wski’s correlation of quantifiers with cardinality functions did 1o

Bzroccl:;(;a:Lvih ?ener?llzed lo.gic v'vhat the association of connectives with
poolean| u' unctions earlier did to sententjal logic. It provided a highly
“Whataa;ve c'llnswer to t.hf: guestions,‘ “‘What is a predicative quantifier?”
ey ea tlhe' predlcaluYe quantifiers?” Following Mostowski, I will
Presen kamcdo;r)e;:;)r:h:f;(l)?f;sz;l(::;‘Ln:c:\.zith mfuhematica! functions of 4
! on ine i
loglca.f terms and each function will embez“ll:::t(ff:ilne:]r]l::tci;::i‘t()I‘M‘hl‘y "
structing one logical term from the total list. e

Chapter 4

Semantics {rom the Ground Up

Our philosophical analysis in the last chapter has led to the conclusion that
any second-level mathematical predicate can be construed as a logical
quantifier under a semantic definition satisfying the metatheoretical con-
ditions (A) to (E). Since the predicative quantifiers defined in chapter 2
satisfy these conditions, they are genuine logical quantifiers, and Mos-
towski's claim that they belong in a systematic presentation of symbolic
logic is justificd. Our analysis also provides an answer to the question
“Which second-level predicates on relations are logical quantifiers?” Rela-
tional quantifiers are simply logical terms of a particular type: second-level
predicates or relations whose arguments include at least one first-level
relation (many-place predicate).

On my analysis, Mostowski’s semantic condition on predicative quan-
tifiers, (LQ2), the requirement that quantifiers should not distinguish
the identity of elements in the universe of a given model, corresponds
to Tarski’s (C2), the requirement that logical terms (and hence logical
quantificrs) be formal. Like Mostowski, I interpret (C2) as an invariance
condition, and this condition, when applied to predicative quantifiers,
coincides with his. More accurately, Mostowski’s rendering of (L.Q2) as
invariance under permutations of sets induced by permutations of the
universe is generalized to condition (E), which says that logical terms
in general are invariant under isomorphic structures. In terms of Mos-
towski's definition of quantifiers as functions from sets to truth values, |
say that a logical term over universe A4 is a function ¢ from sequences of
relations (predicates, individuals) of the right type to truth valtues, T or F,
such that if s is a sequence in Dom(g) and m is a permutation of 4,

gisy =T ilf gim(s)) =T,

where m(s) is the image of s under m.
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The characterization of logical constants in terms of invariance under
permutations of the universe is still not very informative, however. T the
case of predicative quantificrs, Mostowski was able to establish a one-to-
one correspondence between quantifiers satisfying (LQ2) and cardinality
functions of a specified kind, and this resulted in a highly informative
characterization of predicative quantifiers: predicative quantifiers attri-
bute cardinality properties (relative to the cardinality of a given universe)
to the extensions of l-place first-level predicates in their scope; the func-
tions 7 associated with predicative quantifiers constitute “rules™ for con-
structing predicative quantifiers over a universe A. Although cardinality
functions can be extended to logical terms other than predicative quan-
tifiers, they evidently will not cover all the logical terms over a universe A.
The latter express structural properties of sets, relations, and individuals
in general, not just cardinality propertics.

My main goal in the present chapter is to develop a semantic defini-
tion of logical terms that captures the idea of formal structure in a way
analogous to that in which Mostowski’s definition captures the idea of
cardinality. Mostowski's definition distinguishes sets according to their
size relative to the size of a given universe. | want to characterize all formal
patterns of individuals standing in relations within an arbitrary universe
A and then distinguish relations according to the formal patterns they
exhibit. This will be the basis for my “constructive” definition of logical
terms over A. But first I will examine the original characterization of
logical terms satisfying (E), due to Per Lindstrom.

1 Lindstrom’s Definition of “Generalized Quantifiers”

In “First Order Predicate Logic with Generalized Quantifiers” Lindstrom
(1966a) associates generalized quantifiers with classes of structures
(models) closed under isomorphism. More precisely, his semantic defini-
tion goes as follows:

DEFINITION LQ A quantifier is (semantically) a class Q of relational struc-
tures of a single type 1 € ", n > 0, closed under isomorphism,

where a relational structure is a sequence consisting of a universe (a set)
and a series of constant relations on, or subsets of, the universe
{but not individuals). The type of structure 2t is an ordered n-tuple,
{my, ..., m,>, where n is the number of constant relations R; in 2 and m;,
! < i < n, is the number of arguments of the relation R;. (A truth value is
considered by Lindstrom a relation with no arguments. There are only two
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0-place relations, T and F.) Each semami? qganuf}:r Qis rsr);?l:c:‘l:jz;(; l:z
a syntactic quantifier Q; different syntactllc qxianln.lcr‘s.:j:o X pofthe o
different semantic quantifiers. IfQ syg‘ubohzes Q, Q is sal t.(} € hewpe
 common to all the structures in Q. A syntactic quantiher i:;)bles [);‘;;t
=My, ..., M) s a quantifier in ?:‘R-Llr:z 40+ m, var
attac \las to form a new lor . .
du"l“;‘::estrt:t: fs(:rT(;itions for formulas with Li.ndstrém quantifiers are
defined as follows: Let Q be a Lindstrom quanhﬁer gf typectl-:- (zl,uan:
my. Let®y, oo, &, be formulas of ﬁrst-‘or(.ier I(‘)g‘lC.Wlth Linds r(:Vhec:e "
tifiers. Let ¥,, ..., X, bea series of n pairwise d}Sjomt e.lemems‘,d e
| <i<n, the clement & is 2 series of i distinct v'fmabies. 'c et
m;dcl with universe A, and let g be an assignment of elements 1n
individual variables of the language. Then
Xy @,)[ g} ifl the structurc

DN, [g]) is a member of Q,

M= (Qyy, - -
A gl
where for 1 <i<sn,

T ifx, = ¢ Yand Uk .l g}
drxlgl =4 F if %, = ¢ and A @,lg)
o {a;: N ,[g(¥,/a)]}  otherwise :

i ; of Ad,a;, ..., a
(“a" stands for an arbitrary sequence of m; elements b oo Qi
i m

and “g(x,/a;)" abbreviates el fag, ...(:\‘,»m./aig”), o

(“lc};xrly{ the quantifiers definable in Lindstrom's lqglc mclu‘;ic lal:.::;
tifiers of chapter 3 over (sequences of) pred.m.ates and rela 1’ ‘
luding individuals). In addition, all the Ioglca
definable as Lind-

logical quan
(but not over sequences inc
predicates and all the truth-fur .
hus we have the following: )
ifier of standard logic is defined as E =
here A isaset, P € A, and P is not empty.

1ctional connectives are

sirom quantifiers. T
A the class

(1) The existential quant
of all structures (A4, P>, W :
ve quantifier R? of chapter 2 (‘“‘there are more. ... than

7} The predicati
* - -‘— "f;iw defined as R? = the class of all structures {4, Py, P2, where

Adisasel, P, P, €A, and |P,| > | P, ). ‘
(3) The «well-ordering” relational quantifier of chapter 3, WO/; is i
defined as WO = the class of all structures (A, R), where A4 1s a sel,
R < A%, and R well-orders FId(R).
’ ntial logic is defined as N = the class of all

The negation of sente ‘ )
W e A is a set. (The structure (A, Fyisnon

structures (A, F), where sds
isomorphic to (4, TS by definition.)
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(5) The disjunction of sentential logic is defined as [) — the class of all
structures (4, §,, S, ), where 4 is a set and Sy, 8, are truth valiues
at least one of which is T. N
-My df:ﬁnition of logical terms in chapter 3 essentially coincides with
Lindstrém’s. There are some small differences in the construction of
models: Lindstrém’s models include the two truth values T and I as
comp911ents. This allows him to construe the truth-functional connectives
as logical quantifiers. {Indeed, 1 could incorporate the same device in m \
l}}eory.) In addition, Lindstrém does not consider structures with indi:f
vgduals. It is easy, however, to extend his definition to structures of this
kind, and given such an extension, all logical terms of (L) .will fall
ur.lder Lindstrom’s definition. There is also a minor difference bclwc::n
ljmdstr('im’s syntax and mine: whereas I constructed an n-place predica-
tive quantifier as binding a single individual variable in any n-tuple ;)l‘
well-formed formulas in its domain, Lindstrom’s predicative quantifiers
bind n distinct variables. Thus what | symbolize as ‘

(Qx)(D,x, ..., 0,x)
Lindstrom symbolizes as
(Qx,, ..., X ) (@ xy, ..., D, x,).

How?ver, since the two quantifications express exactly the same statement
the difference just amounts 1o a simplification of the notation. ‘

In ci.laplcr I, I pointed out that the apparatus of Tarskian odel-
theoretic semantics is “too rich” for standard first-order logic. We never
use the model-theoretic apparatus in its entirety to state the truth condi-
tions of sentences of standard logic, to determine standard logical truths
and consequences, to distinguish semantically between noncquivalcu;
standard theories, etc. In particular, the collection of infinite models is o
'a large extent redundant because any sentence or theory represented by an
infinite model is represented by uncountably many distinct infinite modecls
(th? Léwenheim-Skolem-Tarski theorem). The new conception of Iugicl
which cheivcd its first full-scale expression in Lindstrom, enriches ilu.z
expressive power of the first-order language so that the model-theoretic
uppara.lus is put to full use. The extended logical vocabulary allows (he
for.mauon of new sentences and theories, so evey model becomes the
unique representation (up to isomorphism) of some theory of the new
language. Put otherwise, every structure, up 1o isomorphism, is describ-
able by a theory of the generalized language, indeed, in Lindstrém's
system, by a single sentence (if the language has enough nonlogical con-
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stants of the “right” type). Thus, let W = {4, R, ..., R,)> be a structure
of type r = {m,, ..., m,>. Let Q be the class of all structures B isomorphic
to U, and let Q be the quantifier defined by Q. Let P,, ..., P, be distinct
relational constants of m, . .., m, places respectively (P, being a sentential
letter if m; = 0), and let ¥,, ..., X, be series of distinct variables as ex-
plained above. Then the sentence

6) (Qx,, ..., )P x,..., PX)

describes the unique structure 20 (up to isomorphism).

Lindstrom’s definition, however, is “from above.” As such, it does not
show us how to ““construct” logical terms over a model 2 using elements
in the universe of N as the initial building blocks. In addition, Lindstrom’s
definition of logical terms over a specific model 2 involves quantification
(in the metalanguage) over all models. Thus, to determine whether an
n-tuple of formulas (b, ..., ®,) satisfies a quantifier Q in A, we need
information not only on the extentions of @, ..., @, in A but also about
the class of all models for the language. In the next section | will propose
a definition of logical terms *“from the ground up.” This definition shows
how to build logical terms over ¥ out of constructs of elements of %1 and
without reference to the totality of models.

2 Constructive Definition of Logical Terms

The idea is this: Tarskian logical terms over a model 21 with universe A4
distinguish the form or structure of scts, relations, and functions over A.
Any two relations differing in structure will be distinguished by a logical
term on A4, but relations that share the same structure will not. Similarly
for sets and functions. So, to define the totality of logical terms on A4, we
first have to define the totality of “structures” over 4. Once we determine
the totality of, say, structures of binary first-level relations over 4, we can
define |-place binary relational quantifiers on A as functions that assign
the value T to some of these structures but not to others (allowing, of
course, for the two extreme cases of functions that assign the value T to
all binary relational structures, and to none). The totality of these func-
tions is the totality of binary relational quantifiers on 4. The definition will
be general enough to include all types of logical terms. For the sake of
simplicity 1 will, however, omit logical functors and logical quantifier
functors. It is casy to extend the definition to these logical terms as well.

Before | begin the formal presentation, T will explain the idea behind the
definition by refercncee to a simple example.
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An informal account

Suppose we have a universe with ten individuals, say Alan, Becky, Carl
Debra, Edfiy, Fred, Gary, Helen, Ian, and Jane. We want 1o iden;if;‘ull,
s:tructures involving these persons that are the extensions of (legitimate)
hrs_t-order logical terms over a model % with the above gronvp as its
universe. I will refer to this universe simply as “The Group.” ‘

. Let us consider several structures involving 1
signated by their initials):

N J
() {a,¢,d, i}
%) {a,b,c,d,e,f, g, h, i,f}
(10) {{a, c, d, i}}
(1) ({a,b,c, dye, fig, b i, j})
(12) {{a}, {c}, {d}, {h}}
(13) {{a}, {6}, {c}, {d), {e}, { £ ). (e}, th}, (i), {/it}
(14) {<a,a>, /) 1, <g, g, $<hi>}
(15) {La, ay, <b, b), {c, ¢, Kdod), Leced, (fy 3. 4¢g, &, <l
i, <y j)}
(16) {@, {<a, j>}, {<a, j>, <, 45, i Y, {<ay iy, <ev by, g, dyt}
(7) {{<a, b>, <b, ¢, <a, b {U, ad, <a, b, <J b} |
{<a, b, <b, d),<a, dd}, - {{oay, <a, o, $<J et
{<a, b, <b3 e),<a, e}, {<ha>, <a, dy, (, d>},

nembers of the Group (de-

)

(<@ 13, Cogd a8} (<15, i £ G 1)
(< 43, b, Ca b)Y, (G, i3, G g, <o g ),
(< 72 o> <@ i3}, (i3, G, < i) )

(18) (&5, <{<a J3}, b5, <{<e, d3, i Iy},
<esd, <g, ), 1)

(19) {<{<ar 03, b, >, Ca, ), a3, (< ay, Ca b, <1, b5}, o,
<@ b3, <bd>, Ca, d3), @b, (UG ad. e, G ool 1,
(U<, b3, <y ed, < ed) b, - (Cuay, Cady. ), 1,

>

v

K, 75, <) 8>, <a, g>}, ap, - - LA, <G, f>1. I IO% .
<a, j, <Gy by, <a, b)), ap, - A id<ivgd, o gdh, i,
A<a, 3, <j, i), <a, v}, a), - Dk, Goy), )
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How shall we decide which of these structures are the extensions of
logical terms over a model ¥ with the Group as its universe? The answer
follows directly from the criterion for logical terms in chapter 3: a struc-
ture is the extension of a legitimate logical term iff it is closed under
permutations of the universe. I will call such a structure a logical structure.
Thus if S is a logical structure that contains the element E, then S also
contains cvery element £’ that can be obtained from F by some permuta-
tion of the universe. Let us examine each of the above structures and see
what kind of structure it is.

Structure (7) consists of a particular member of the Group, Jane. Jane is
not preserved under permutations of the Group, because such permuta-
tions may assign Fred to Jane, and Fred is not Jane. Jane (like Fred, lan,
and the rest) is not a “logical individual.”” Indeed, it is a basic principle of
logic that there are no logical individuals and individuals do not constitute
the extension of any logical term.

Structure (8) is also not closed under permutations of the universe. A
permutation that assigns Jane to Alan, Alan to Carl, Helen to Debra and
Gary 1o lan, will carry us beyond {a, ¢, d, i} to {a, g, h, j}. Here (8) may
be the extension of the first-level predicate “x is redheaded,” or “x is a
leftist.” But (8) does not represent any first-level logical property of mem-
bers of the Group.

Structure (9), on the other hand, does represent a first-level logical
property, since (9) is preserved under all permutations of the universe.
Thus no matter who is assigned to Jane by a given permutation m, this
person is already in (9). Put difTerently, the universal set is its own image
under all permutations of the universe. We can associate with this set the
property of being a member of the Group or see it as the property of being
American, etc. No matter what other properties are “‘extentiated” in the
Group by the universal set, (9) is also an instantiation of the logical
property of self-identity over the Group and hence is a logical structure.

Structure (10), like (8), is not logical. It may be the extension of the
second-level predicate P is a property of redheads,” or ** P is an attribute
of leftists.”” But these do not coincide with any second-level logical proper-
ties of members of the Group.

Structure (11), however, is the extension of a logical term, namely the
universal quantifier over the Group.

Structure (12) is also nonlogical, since it is not closed under permuta-
tions ol the universe. Suppose that among the members of the Group Alan
is the only philosopher, Helen is the only linguist, Carl is the only his-
torian, and Debra is the only novelist. Then (12) may be the extension of
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lhe nonk?gical second-level predicate “ 2 is either a distinctive characteris
tic of phlhlosophers, a distinctive characteristic of linguists, a dislincliv-
characteristic of historians, or a distinctive characteristic ofn‘ovclisls " Bl(l:
(12) cannot be the extension of any logical term over the Group o
Slruclurc (13), unlike (12), is logical. Structure (13) 1s the cxl;:ns*iun of
the q.uantlfier “there is exactly one x such that” over . As g )rclli H t(
(!j) ns”the seco.nd-level attribute “P is a property of exactly lonc ::’d?’
:flielglr,ouc:? attribute whose extension is invariant under permutations of
) S.truclure (14) too is nonlogical. Structure (14) may be the extension f
x‘hkcs y's dog(s)” over the Group (each dog owner likes his own (l;) 1(s )
or n'ma).' be the extension of some other relation over the Group h:l(il)):
relation in question is not logical, and (14) cannot exhaust the Ic:;(l- on
of any logical term over the Group. e
Structure (15) is the familiar relation of identity. This relation is closed
under permutation of the universe and hence is logical. T
Structure (16) may be the extension of the sccond-level predicate * X s
the sgt of fnarried'pairs (husband and wife) in 1981, or X is l;lC qc; (j;
married pairsin 1982, or ... or Xis (he set of married pairs in 1990 ""I‘Im 5
(16) reflects the various matrimonial constellations within the Uriou o b
the lfast decade. For example, during the first five years there wcrcI 1:::
_mamages among members of the Group. Then in 1986 Alan married Jane
u? 1987 Carl married Debra and Jan married Helen, and in 1989 D;b
;:lfwon:ﬁ;x'i Carl arhld n?arried Gary, while Carl married Helen, who divorc;(‘;
0‘:«‘;18 G::O(::I:.omcle is clearly not closed under permutations of members
Structure (17), on the other hand, is closed under permutations. It
rcpresenls.a linear ordering of triples in general. Structure (17) makc:s.u
th extension of the relational quantifier “R is a strict linear ordering T
triples.” This quantifier, symbolized by Q, will appear in formulas Orb“‘"
form “(.Qx_V)(D.” Thus if three members of the Group grantiu'nl‘c;l fi "
Columbia College, and their graduation dates do not coincide ‘lhc slT(:l*"
ment “(Qxp) x graduated from Columbia College before wi‘ll t » out
true in the universe in question. o
Another nonlogical structure js given by (18). Suppose that there are
three children in the Group: Becky, born to Alan and Jane in 1986 FLl‘;‘L
born to Carl and Debra in 1987, and Fred, born 1o Gary and l);:l):’l( l)l/l
I9é(§ii.»A secc;nd-level predicate that records births in the (imup‘ ncx‘t to
w .
e:ten;ri)f:(o men to women, by year, as in (16)), may have (18) as its
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Finally, (19) is a logical structure of pairs consisting of a strict linear
ordering of a triple and its smallest element. This structure “‘extentiates’

a relational quantifier over pairs of a binary relation and an individual,
similar to (24) of chapter 3.

The principle of closure under permutations determines all the logical
terms over a given universe. Every structure containing sets of individuals,
relations of individuals, sequences of these, or sequences of sets/relations
and individuals and closed under permutations of the universe determines
a legitimate logical term over that universe. But the principle of closure
under permutations can be used not only to identify but also to construct
logical structures over a universe 4. The construction of such structures is
a very shmple matter.

Again, take the Group. Construct any set of members of the Group, say
ta, b, d, f}. Examine all permutations m of members of the Group and for
each such permutation m add m(a), m(b), m(d) and m(f) to your set. In
other words, close the set {a, b, d, f'} under all permutations of the uni-
verse, or ereate a union of all its images under such permutations. You will
end up extending {a, b, d, [} to (9), the universal set of the domain. This
set is the extension of the first-level logical predicate of self-identity over
the Group. .

In a similar manner you can start from the relation (14), and by uniting
(creating a union of ) all its images under permutations of the universe, you
will obtain the logical structure (15), the extension of the binary logical
relation of identity.

Likewise, (17) can be obtained from {{<a, ), <b, j), {a, j>}} by clos-
ing it under permutations. And so on.

Suppose now you start with {4, {a}, {a, b} }. Closure under permuta-
tions will give you a set whose members are the empty set, all unit sets, and
all sets of two clements. This set is the extension of the 1-place predicative
quantifier ““there are at most two™ over the Group.

I have characterized the logical terms over a single universe, but my
theory of logical terms says that logical terms do not distinguish between
universes of the same cardinality. That is, each logical term is defined by
a rule that does not change from one universe of cardinality o to another.
Thus, although the characterization of identity for the Group by (15)
would do, this is evidently not an adequate characterization for all uni-
verses with 10 elements. To capture the idea of a logical term, the rule
associated with such a term, rather than its extension in a particular

universe, should be specified. A very simple method of associating terms
with rules presents itself. The idea is this: instead of recording the actual
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extens?on of a given term in a given universe, let us record its “index
extension.”” Unlike its “object extension,” the index extension encodes :
rl‘zle' that applies to all universes of the same cardinality. We can theL:
dls%mguish between rules that do, and rules that do not corrcs;‘)ond tI
Iog:caﬂl terms over universes of the cardinality in qucsxion.‘ ( ’
I \.wll begin by specifying a fixed index set for all universes of a given
cardinality. In case of the Group, I will take 10, identified with ‘t!f;e set
{0,1,2,3,4,5,6,7, 8, 9}, as my index set. More generally, if 4 is a uni-
verse of cardinality a, [ will take the least ordinal ofcardinz;lity a, defined
as the set of all smaller ordinals, to be a standard index set for all l;niver
of cardinality . I will say that A is indexed by « or, in the example e:lb(:/ecS
'that t.he Group is indexed by 10. There ar'e, of course, many ways )f:
indexing the Group by 10. We may start any way we wam’, say aSSigll)i/;] v(()
to Alan, | to Becky, and so on, following the alphabetical order of (bhc
members’s first names. Next we associate with each structure generated
'from members of the Group its index image under the chosen indcx(ix y
Thus the index image of (14) is *

(20) {<0,0), <5, 55, <6, 6), (9, 9>}.

The index image of (15) is

(21) {<0, 03, <1,13,<2,25,<3, 3), (4,4, (5, 5),<6, 65, <7, 7,
<8,8> ¢9,9}.

And the index images of (7), (9), (11), and (16) are respectively

(22) 9,

(23) {0,1,2,3,4,5,6,7,8,9},

(24) {{0,1,2,3,4,5,6,7,8,9}},

(25) {5, {<0, 9>}, {<0,9), (2, 3), <8, 7>}, {0, 9>, €2, 7>, <6, 3>} }.

Note that it is essential that we do not treat the members of 10 in the same

way that we treat 10, namely as sets of all smaller numbers. The reason is

that if we identify 9 with {0, I, 2 i S
nac il {0, 1,2, ..., 8}, (22) will represent not only (7)

(26) {a,b,c,d, e, f,8,h,i}.

Sixzilarly, if we identify 0 with ¢, (25) will not distinguish between (16}
an

(27) {ay {(a’ j>}1 {<a7 .j)’ <C' d>» <" h>}9 J<(l, /)a <C’ h)! <g' d>} }
Therefore, 1 deﬁ'ne an index set to be a set of ordinals treated as individuals
(or as sets of pairs of the form (B, a), where a is some fixed object). More
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precisely, an index set for a universe of cardinality « is the set of all
ordinals smaller than the least ordinal of cardinality a, where the ordinals
in the index set are themselves not sets of ordinals.

Buck to the index set 10. I call a memberof 10 a 10-individual, a subset
of 10 a 10-predicate, and a set of n-tuples of members of 10 (n>1) a
10-relation. Thus (22) is a 10-individual, (23) is a 10-predicate, and (20)
and (21) are 10-relations.

I call any finite sequence of 10-individuals, 10-predicates, and/or 10-
relations a 10-argument. Such sequences constitute the arguments of logi-
cal terms over the Group. It follows that a 10-individual is a 10-predicate-
argument; a finite sequence of two or more 10-individuals is a 10-relation-
argument; other 10-arguments are 10-quantifier-arguments. I say that 10-
arguments are of the same type if they have the same structure: all indi-
viduals are of the same type, all sets of individ uals are of the same type,
and all n-place relations of individuals are of the same type. Sequences
of m elements of corresponding types are also of the same type. (The
formal definition of type is slightly different, but the notion of “same type”
is the same.) Thus
(28) <1, 2
and
(29) 3,4
are of the same type, and so are
(30) {8}
and
(31) {3,4.5,8},
as well as
(32) <1 {12}, KL DY

and
(33) <9$ {3v 41 5}5 {(61 7>s <71 6)})‘

| call two 10-arguments similar iff one is the image of the other under
some permutation of 10. Thus (28) and (29) are similar, but neither 30)
and (31) nor (32)and (33) are. Looking at the logical structures among (7
through (19), we sec that a logical structure is a structure of similar
clements of a given type. More accurately, a logical structure over the
Group is a structure of 10-arguments of a single type closed -under the
relation of similarity. Since the relation of similarity is an equivalence
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relation, each logical structure corresponds o a union of equivalenc
classes of similar 10-arguments of a given type. e
Nole that while some logical terms can be identificd with a single
equivalence class, others correspond to a union of equivalence Cl‘ls‘:‘ S ”I]’& .
example, “thcr'e is exactly one” is a function that gives to a l()-‘alr‘::l'nc:::
the value Tiff it is a member of the equivalence class of all sets s‘inﬁil'n‘ to
{0}, [{0}], but “there is ar least one™ assigns the value T (o mt.;mhc‘rs o(f
more than one equivalence class. So Pdefine a logical term over universe
with 10 elements as a function from all equivalence classes of a given Ltlbtf
to {T, F}. “There is exactly one” assigns the value T (o the cquivwlcn):[?(:
class [{0}] and F to all other equivalence classes of subsets of the lem;v d 1“
wgcr!eas “there is at least one” assigns the value T 1o [{0}] [{0, 1}) o
[{ \k}t;dzt’(‘:n‘t;:’di ;;3{ l93] and ,F to {)525] Feall such functions |()~()/J(*ralai‘sj
do o can we ds -operalors? Well, there are several things we can
o Wecan take a 10-operator of type ¢ (that is, an operator defined ove
equivalence classes of elements of type 1), a structure of the same :Wf
gcnerat@d from the Group (a 10-individual being matched with 1 m:m)l/[?t'
of the Group, etc.), and ask whether the latter satisfies (he ln"icwl [‘?“
defin.cd by llFe former. For example, we can take the cx[cnl‘;iill(t)l’LllllI:
p'redlcalc “x is a philosopher,” namely {a}, and ask whether i~l satisti "“L
glvc‘n I-Plilcc predicative quantifier over the Group. To find lh; ‘11;5 ‘\‘5 fl
we hrs.t index the Group by 10 (in any way we choose). Then we l"lkc\llu:
index image of {a} and see whether the quantifier in question (dcﬁl;cd a ']'L
10-operator) gives the value T (o [{index(a)}]. This test will show 1!1‘11‘ a
(34) (At least one x) x is a philosopher ‘
is true in the intended model of the Group (Alan is a philusopher), but
(35) 2x)xisa philosopher ‘
and
(36) (Vx) xisa philosopher
are false in the same model (Alan is the only philosopher).
Sec_:ond, we can take a structure over the Group, ask whether it defines
a Iogxca.I term over the Group, and, if the answer is positive, get a gener; &l
‘seman.trc schema of the logical term in question. We do this [)y cr::':m y 'd
index image of the structure and examining whether the result is ('1 ln&' "
f)l‘ equivalence classes under the relation of similarity. Thus (2I)~'1‘n i Hl‘t“
image of (15), is an equivalence class of all pairs similal: to (2)‘ 0)"" U;
therefore (15) does determine a logical term, namely identity, ;wcr dtll:(c
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Group. The index image (20) of (14) does not constitute such an equiv-
alence class (or a union of equivalence classes under similarity), and hence
(14) does not determine a logical term over the Group.

Third, we can take any 10-operator and use it as a blueprint for con-
structing a logical term over the Group. Thus, starting with any indexing
of the Group by 10, 1 take the 10-operator *“exactly one,” a function o
from all equivalence classes of subsets of 10 to {T, F} defined as

o[N| = TifT[N] = [{0}],
and transform it into a quantifier in extension by going through the
elements of the equivalence class(es) assigned T and constructing their
correlates over the Group: {a}, {b}, ctc. | then collect these correlates into
a set, and this is (13), the quantifier ““there is exactly one” over the Group.
Finally, [ define the totality of all logical terms over the Group as the
totality of predicates, relations, and quantifiers corresponding to all dis-
tinct 10-operators. Generalizing, | define the totality of logical terms as
functions that to each cardinal o assign an a-operator.

A formal account
First, let me make some preliminary remarks. In the foregoing definitions

I use the variable o to range over cardinals identified with equipollent least
ordinals. But while 1 take a cardinal o to be a set of ordinals, I require that
the ordinals in « are themselves not sets of ordinals. This requirement is
introduced to ensure that “the index image of x,” defined below, is one-
to-one. (We can treat ordinals as individuals, we can replace each von
Neumann ordinal o with the pair (8, a), where a is some fixed object, etc.)
Throughout the book I use lowercase Greek letters a, f3, y, 8, ... both as
variables ranging over cardinals and as variables ranging over ordinals. It
is always clear from the context what the range of a given variable is.

I identify a I-tuple with its member, ie., (x) = x.

In carlier chapters T often distinguished between predicates (1 place) and
relations (many places). Below 1 will talk only about predicates, referring

to relations as many-place predicates.

DEFINTION | Let A be a set indexed by a = | 4], where an indexing of 4
by « is a onc-to-one function from a onto A. The index image of x, i(x),
under the given indexing is as follows:

s lfved ix)=(filea)(x = ay).
s ifxc A n=1i)={{f,...,B>ea™ {ag,,...,a ) €x}


http:H/_nl,.rp
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TERMINOLOGY Let « be a cardinal number. An a-individual is a member of
a; an n-place a-predicate is a subset of a”.

If A is indexed by a = } 4|, then since the indexing function is one-to-one
and onto, an a-individual is the index image of some a € A, and an n-place
a-predicate is the index image of some R < A", under the given indexing.

DEFINITION 2 Let &k be a positive integer. [ call R(a) = {r,(a), ..., r(a))
an o-predicate-argument if each r(a), | <i<k, is an a-individual. 1
call R(a) = {r(a), ..., n(a)> an o-quantifier-argument if cach r(a),
| <7< k,iseither an a-individual or an a-predicate and at least one r'-(ot),
| i< k,isana-predicate. If R(x) is either an a-predicate-argument o.r an
a-quantifier-argument, [ say that R(a) is an a-argument.

Below I categorize various kinds of entities into “types.” To simplify the
type notation, I use two systems of categorization. Entities categorized by
the first system will be said to have marks, and entities catcgorized by the
second system will be said to have fypes. An entity with a type is a
function, and its type is essentially the mark (sequence of marks) of its
argument(s).

DEFINITION 3 A type is a sequence of natural numbers, {7,,..., 1),
k> 0. A mark is also a sequence of natural numbers, (my, ..., m)
k> 0. ’

CONVENTION [f pis the k-tuple
0, ..., 0,

ktimes

Isay that p = 0* If p = 0!, I say that p = 0.
DEFINITION 4 Ijet R(@) = {ry(a), ..., r(a)) be an a-argument. The mark
of R(a), mg(w), is a k-tuple, (m,, ..., m >, where for | < i<k,
= {0 if r;() is an a-individual,

"7 |n ifr(a)is an n-place a-predicate.
DEFINITION 5 Let R (a), Ry(2) be two a-arguments. R, (x) and R,(a)
are similar iff for some permutation m of o, R (a) = m(R,(x)), where

m(Ry(«)) is the image of R,(«) under the map induced by m (which I also
symbolize by m).

TERMINOLOGY  If R{«) is an a-argument, I designate the equivalence class
of R(a) under the relation of similarity, defined above, as [R(2)]. T call
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[R(a)] a generalized a-argument. If R(a) is of mark p, I say that [R(a)] is
also of mark p. I call a sct of generalized a-arguments an a-siructure.

DEFINITION 6 Let [R(a)] be the set of all generalized x-arguments of a
given mark. An a-operator is a function
o, [M()] = {T, F}

If [9(a)] is a set of generalized a-predicate-arguments, [ call o, an a-
predicate-operator; if [Ra)] is a set of generalized a-quantifier-arguments,
I call o, an a-quantifier. 1f the members of [9N(a)] are of mark p, I say that
0, is of type p. We can identify an a-operator with an a-structure, namely
the set of all [R(a)]'s in its domain such that o([R(0)]) =T.

To prove one-to-one correspondence between a-operators and logical
predicates and quantificrs of UL restricted to 91(|) = «), we need a few
additional definitions.
pEFINIFON 7 10 C is a logical predicate or quantifier satislying conditions
(A) to (E) of chapter 3, then the restriction of C to A, Cy, is as follows: Let
£.(1) be as in chapter 3, section 6. If £,(2) is a subset of B, x -+ x By (see
condition (C)), then Cy is a function from By x -+ x B, into {T, F} such
that Cylxy, ..., x) =Till g,y X e ().

LEFINITION 8 Let A be a set. If x € 4, then the mark of xis0. If x € 4",

n > 0, the mark of xis n.

DEFINITION 9 Let 91 be a model with universe 4.
« If Cis a k-place logical predicate, then the type of Cy is
0, ..., 0 =05
k times
« If Cis a k-place logical quantifier and x = {x,, ..., x> € Dom(Cy),
then the rppe of Cyis {1y, ..., 4y, where for 1 < i< k, 1; is the mark

of v; (sce definition 8).

I sum up the mark/type classification in table 4.1.

I now state a theorem establishing a one-to-one correspondence be-
tween a-operators and logical predicates and quantifiers of UL restricted
to an arbitrary model 91 of cardinality a.

Throres | Let 91 be a model with a universe A of cardinality . Let €|
be the set of all logical predicates and quantifiers of UL restricted to 2.
Let ¢, be the set of all z-operators. Then there exists a 1-1 function 4 from
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Table 4.1

The mark/type classification

Mark Type

a~u;fi|v1dualz 0 k-place a-predicate opcmtor‘,—;: 0k

n-p ;;ctzoa-pred;cate: n k-place a-quantificr, ¢, : {1, ..., 1*>*

:i: 1 k-place logical predicate, Py : 0t

xcAdA":n k-place logical quantifier, Qg : ¢y, ..., 01

. He i ] <ig k, iS lhe Hl'dlk i r{a Wll(}l(: R‘(X} = {(F,{a r{a €
l(e :). ¢ |( ); [ < l( )u LR *( )>]
l Here I ] < i< k is the mark Of X Where <Y Y € assuny
i = Ny ; “Xis Xy ooy Xy l)Ol"(Q\ ) (l ¢ ne
{ha‘ an empty n- lace Iel' t as : 1 I. > o sue
i " pty p') alion hdS a dlﬂblclll n]dlk ﬁ om an Cn]p(y Hl-pk{ce r(‘lu-

(Ou ) l 0
onto ’6 Q( deﬁ"ed as ’OHOWS. I Or eVL]y 0, € (' h((} is [he l()gl(_dl ferm
C a a a)

+ 0, and Cy are of the same type;

o il {8y, ..., Sy isak-tuple in Dom(Cy), then Cy(s,, ..., 5) =
0 [Ci(sy), - - - i(5) )], where for some indexing /ol A by,a i(s))
i(s,) are the index images of 5, ..., 5, respectively, under, I e

Proof See the appendix.

I symbolize the a-operator correlated with Cy as of.

Le't me give a few e.xamples of the a-operators corresponding to logical
predicates and quantifiers restricted to an arbitrary model 9 with a uni-
verse A of cardinality «. I will define the a-counterparts of the logical
predicates and quantifiers of the examples in chapter 3.

(37) The identity relation Jy corresponds to of, an a-predicate of type
0, 0), defined by 0! (X) = T iff for some fea, X = [(f, ).

(38) The universal quantifier Vy corresponds to o/, an a-quantifier of type
(1), defined by 0] (X) = Tifl X = [a].
(39) The existential quantifier 3, corresponds to o2, an a-quantifier of
type (1), defined by 0}(X') = T iff for some 5 < a such that s # ¢
X = [s]. h
(40) The cardinal quantifiers Cy correspond to o?, a-quantifiers of
type (1D, defined by 02(X) = T ifl for some s € « such that {s] = &
X = [s]. ‘
(41) The quantifiers “finitely many” and “uncountably many,” FIN,,

and UNC, correspond to o™ and 0N, a-quantifiers of type ¢1)

&

digged by of™(X) = Tiff for some s € a such that |s] < N,, X = [s];
0, C(X) = Tiff for some s € a such that |x] > X, X = [s]. '
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(42) ‘The quantifier “as many as not,” MNy, corresponds to o¥N an
a-quantifier of type {1, defined by o*N(X) = T'iff for some s S &
such that |s] > la — s, X = [s].

(43) The I-place quantifier “‘most,” MY, corresponds to oM, an
a-quantifier of type {1, defined by oM'(X) = Tifl for some s S «
such that s} > |a — s}, X = [s].

(44) The 2-place quantifier “‘most,” MY;!, corresponds to oM, an
a-quantifier of type <1, 1), defined by oM"'(X) = T iff for some
s, 1 < a such that [sn ] > |s — 1, X =[{s, D)

(45) The I-place “well-ordering” quantifier WOy corresponds to oo,
an a-quantifier of type (25, defined by o¥°(X) = T ifl for some
» < o? such that r well-orders FId(R), X = [r].

(46) The (second-level) set-membership quantilier SM, corresponds to
o™ an a-quantifier of type <0, 1>, defined by oM(X) = Tiff for
some fleaand s €« such that f e s, X =[{B, ]

(47) The quantifier “ordering of the natural numbers with zero,” NZy,
corresponds to oM an a-quantifier of type (2, 0, defined by
oM (X) = Tiff for somer < «? and B € a such that (Fld(r), 7, =
(o, <, 0, X =[<r, Bl

(48) The “the” quantifier, THEy, corresponds to o
type <1, I, defined by oJ"5(X) = Tiff for some s, 1 & such that

Isl=landsc, X = [¢s, )

I define logical operators as follows:

T an a-quantifier of

DEFINITION 10 A logical operator of type 1 is a function that assigns to
each cardinal  an a-operator of type f.

3 Unrestricted First-Order Logic: Syntax and Semantics

I can now delincate the syntax and the semantics of first-order logic with
‘Tarskian logical terms satisfying the metatheoretical requirements spe-
cified in chapter 3 and defined by means of logical operators. As before, 1
will leave logical functors and quantifier functors oul for the sake of

simplicity.

Syntax
Let me first present the preliminary notion of the type of a constant. A type

¢ is, recall, a sequence of natural numbers <{fy, ..., iy, where kis a

T
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posmv.e integer. Intuitively, the type of a constant gives us information
about its arguments.

* Individual constants do not have a type (since they do not have
arguments).

* The type of logical and nonlogical k-place first-levet predicates is
0,...,0) =0~

k times

* The type of k-place quantifiers is ty, ..o, 1, where for some
I <i<n, k;> 0. (Intuitively, if the ith argument of a k-place
quantifier Q is a singular term, 1, = 0; if the ith argument is an n-place
first-level predicate, 1, = n.)

Primitive symbols
1. Logical symbols
a. sentential connectives: any collection that semantically forms a
complete system of truth-functional connectives, say ~, &, v
=, ) ‘
b. n logical predicates and/or quantificrs, Cp, .., G of types
Iy, ..., t,respectively, n > 0
2. Variables: Xy, X3, ... (informally: x, p, z, v, )
3. Punctuation symbols: (a) parentheses: (, ); (b) comma: .,
4. Nonlogical symbols
a. individual constants: a,, ey, m >0
b. predicate constants: for each n > 0, a finite (possibly empty) set of
n-place predicates, Py, ..., Pr.

Well-formed formulas (wfs)

1. Terms: Individual constants and variables are terms,
2. Atomic wifs: If S is an n-place predicate (logical or nonlogical) and
Si5...5 8, are terms, then S(s,, ..., s,) is an atomic wir.
3. Wits
a. An atomic wiT is a wif.
b. If ®, ¥ are wifs, then so are (~D), (D&W), (D v W), (D - V) and
(D P).
¢. IfQis a quantifier of type r = (1, ..., 1>, nis the maximum of
{tis o oo}, xy, .., x, are distinct variables, and B, ..., B arc
expressions such that for each | <i <k, ifs, =0, B;is a term and
otherwise B, is a wif, then ((Qx,, ..., X HBy, o, BY))is a wil,
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| follow the convention that outermost parentheses in wffs may be
omitted.

Bound and free occurrences of variables in wffs 1 say that x occurs in an

expression ¢ iff either x = e or x is a member of the sequence of primitive

symbols constituting e.

» There are no bound occurrences of variables in terms.

« If & is an atomic wif, then no occurrence of x in ® is bound.

« If disa wil of the form ~W, then an occurrence of x in ® is bound iff
it is bound in W.

s Ifdisawlfof the formWY&Z, W v E WY-E or¥—E, thenan

occurrence of x in & is bound iff it is either a bound occurrence in ¥

or it is a bound occurrence in Z.

If @ is a wil of the form (Qx, ..., x,)(B,, ..., By), where Q is of type

{4, .., iy, then an occurrence of x in ® is bound ifT it is an

occurrence in some B;, 1 < i < k, such that either x is bound in B, or

forsomel <m<t, x=x,.
« An oceurrence of v in @ is free iff it is not bound.

The idea is that if Q is, say, of type {1, 2, 0> and R, R, are two 2-place
predicates of the language, then in the wif

(Q‘\‘i ,V)(Rl(x': _V)v RZ("’? ,}')9 x)

Q binds the first two occurrences of x and the second occurrence-of y, but
the third occurrence of x and the first occurrence of y are free. To make
the notation more transparent, I sometimes indicate the type of a quan-
tifier Q with a superscript. That involves rewriting the formula above, for

example, as

QM 2%, »IR (x, ¥}, Ry(x, 3), X).

Sentences A sentence is a wil in which no variable occurs free.

In practice | will sometimes omit commas separating the variables in a
quantifier expression. Thus instead of (Qx, y), I will write (Qxy). I will also
use various types of parentheses.

Semantics
Let ¥ be a first-order logic with syntax as defined above. Say & has
Tegicalprodioares 10 T Tagical guantifizra Q. (), . nonlogical
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F,,. Each logical predicate or quantifier C of type 1 is semantically defined
by means of a logical operator o€ of the same type.

Let U be a model for the language with universe A of cardinality «,
defined relative to the nonlogical vocabulary of .% in the usual way. That
is, W= (4, a¥,...,a},P\,..., P} ). Letg beanassignment of elements
in A to the variables of the language. I define an extension of g, g, to the
terms of the language as follows: For a variable x, g(x) = g(x). For an
individual constant a, g(a) = a¥.

DEFINITION OF SATISFACTION 9 satisfies the wiT @ with the assignment
g— U = ©[g]—iff the following conditions hold:
1. Atomic wifs

a. Let P be an n-place nonlogical predicate and s, .. ., s, terms. Then

Uk Plsys ..., s)[8] T CB(sy), ., B(s,) > € P

(As before, I identify a I-tuple with its member.)
b. Let V be an n-place logical predicate and s, .. ., s, terms. Then

Ak V(s,,...,s,)[g]iff there is an indexing 7 of A

by « such that o) [<i(g(s,)), ..., i{&(s,)))] =T,

where for 1 < j < n, i(g(s;)) is the index image of g(s;) under 1.
(See definition 1.)

2. Nonatomic wifs
a. Let ®, ¥ be wifs.

U= ~0[g]iff A d[g];
Ak (D& V) [g] iff A= Dlg] and A = ¥[g]

b. Let Q be a quantifier of type <t,, ..., £, ), let n be the maximum of
{t;,..., .}, let x,, ..., x, be distinct variables, and let B,, ..., B,
be expressions such that foreach 1 < j < k,if ;= 0, B isa term,
and otherwise B; is a wif. Then

NE= (Qxy, ..., x,)(By, ..., B)[gliff there is an indexing /
of A by a such that o2[<i(gs, (B))), ..., i(£s, (B))]) =T,

where for 1 < j <k,

if ;= 0, then g; (B) = g(B);
ift;21.g; (B)={<a,.....a0>e 4" Uk
Riglx. :V (v 21

rd W e e e~ R T -
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DEFINITION OF TRUTH IN A MODEL  Let ¥ and 2 be as above. [.‘ct ®bea
sentence of £ Then ® is true in A—A = G—iff for some assignment g
of elements in A4 to the variables of the language, 2= D[g].

Examples Let 21 be a model with the Group as its universe. I‘,et Pand M
be the I-place predicates “x is a philosopher” and “x is a mathe-
matician” respectively, P* = {Alan}, and M" = {Alan, Jane}. Let G bﬁ
the 2-place relation “x graduated from Columbia College betjore y
and G = {(lan, Carly, (Carl, Gary), <lan, Gary)}. The q'uanllfétzrs 1§
(“there is exactly one”), Mt !(“most —_ are...”), and TL-F ( t.hrce
individuals stand in the linear relation , the first being .. ..”"), restricted
to N, are definable by the following 10-operators:

(49) oYy : EQ(P(10)) — {T, F}, where 0!,[X] = T iff X is similar to {0}.
(50) ot EQ(P(10) x P(10)) — {T, F}, where oKX, Y =Tiff

10
XN Y|>|X- Y[ ‘
(51) oIL"FEQ(P(10%) x 10) - {T, F}, where ol FIKR, D] =Tiff
(R, x) is similar to ({€0, 1), <1, 25, €0, 251,05,
EQ(Z) is the set of all equivalence classes of members of Z under the

relation of similarity. - . o
Let I be any indexing of the Group by 10, say indexing by alphabetica

order of members’ first names. Then

(52) There is exactly one philosopher,

or formally,

(53) (M x)Px,

is true in 2, since i(P™) = {0}.

(54) There is exactly one mathematician,

or,

(35) (M) My

is false in M. since (M ™) = {0.9) is not similar to {0}.

{241 NMagr philssaphers are 2lin mathemariciang
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or,
(59) (TL-Fxy)(Gxy, lan),

is true in 9, because ({8, 2>, <2, 6>, <8, 6>}, 8> is similar to
<0, 1), <1, 2), €0, 2>}, 0).

4 Higginbotham and May’s Relational Quantifiers

My characterization of logical terms as logical operators puts all logical
predicates and quantifiers on a par. It captures a basic principle of logi-
ca.lity. namely that to be logical is to take only structure into consider-
fillon. Also captured is the complementary principle that cvery structure
1s mirrored by some logical term. It is, however, interesting to divide the
fzx%)anse of logical terms into groups according to significant character-
istics. Mostowski’s work allows us to single out predicative quantiers by
identifying a method of individuation particular to these quantifiers. In
“Questions, Quantifiers, and Crossing” (1981) J. Higginbotham and R.
May distinguish four groups of relational quantiliers of the simplest kind,
type {25, by means of the invariance conditions they satisfy. Their criterion
orders simple relational quantifiers according to their complexity, from
quantifiers that can only distinguish the number of’ pairs a binary relation
R contains to “fine-grained” quantifiers that take into account the inner
structure of R.

Given a universe A4, Higginbotham and May define a binary relational
quantifier over A as a function ¢: P(A x A) - {T, F}. They consider the
following invariance conditions:!

a. Invariance under automorphisms of A x A

b. (1) Invariance under l-automorphisms of A x A
(2) Invariance under 2-automorphisms of A x A
Invariance under pair-automorphisms of A x A
. Invariance under automorphisms of A

e o

F}iven aset A, m:A X A— A x Aisa(set) automorphism of A x A ill
m1s a permutation of 4 x A,

An automorphismm: A x A » A x Aisa L-automorphism of 4 x A iV
foralla, b,a’, b, ¢, d, ¢',d € A,
mia, b) = (a', b') and m(c, d) = (¢’, d') implies (a = ¢ iff &’ = ().
Thatis, misa I-automorphism of 4 x A iff there is an automorphism
of A such that for all g, be 4,

m(a, b) = (m,(a), ')
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for some o' € 4. Informally, if p, and p, are pairs with the same first
clement, then a l-automorphism m will assign to p, and p, pairs that also
share their first element. In such a case I will say that m respects first
clements.

Anautomorphismm : A x A > A4 x Aisa2-automorphismof A x Aiff
foralla, b, a', b, ¢, d, ', d € 4,

mi{a, by = (', b’)and m{c, d) = (¢’, d’') implies (b = d iT b’ = d').

Thatis, mis a 2-automorphism of 4 x A ifl there is an automorphism m,

of A such that forall a, b e A,

m(a, by = (a’, m,(h))

for some o’ € A. Informally, m respects second clements.
Anautomorphismm: A x A — A x Aisa pair-automorphismof A x A

T mris both a l-automorphism of 4 x A and a 2-automorphismof 4 x A.

That is, » is a pair-automorphism of 4 x A iff there are automorphisms

niy ., my of A such that foralla, be 4,

m(a, by = (m,(a), my(h)).

In such a case I will say that m respects both first and second elements.

The invariance conditions (a) to (d) increasingly extend the notion of
relational quantifier, with (a) reflecting a minimalist approach and (d) a
maximalist approach. All quantifiers satisfying (a), (b), or (c) satisfy (d),
but some quantifiers satisfying (d) do not satisfy (a) to (c); some quantifiers
satisfying (¢) do not satisfy either (b.1) or (b.2), etc. The more invariance
conditions a quantifier satisfies, the less distinctive it is. A quantifier satis-
fying (a), for instance, does not distinguish between relations that have the
same number of clements but otherwise differ in structure (for example,
the once is a well-ordering relation, while the other ts not). Quantifiers
satisfying (d) are those for which 1 developed my “constructive” defini-
tion. Ipso facto, all quantifiers satisfying Higginbotham and May’s condi-
tions fall under my definition. Let us describe the quantifiers in each of
Higginbotham and May’s categories.

Invariance condition (a) The relational quantifiers satisfying (a) consti-
tute an immediate extension of Mostowski’s quantifiers and are definable
by his cardinality functions. These quantiliers treat relations as sets, and
clements of relations, i.e., n-tuples of individuals, as individuals. 1 will call
these weak relational quantifiers.

The contribution of weak relational quantifiers to the expressive power
of first-order logic is straightforward. They allow us to enumerate the
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f:lemem's of relations: * pair(s) of individuals in the universe stand(s)
in the binary relation R,” and similarly for n-place relations. Thus we can
define the 1-place weak relational quantifier

(60) (Most! xy)Rxy

(“Most pairs of individuals in the universe fall under the relation R") by
the same function 7 that defines the I-place predicative “most.” Similarly
the 2-place relational “most,” ’

(61) (Most!'! xp)(Rxy, Sxy)

(““Most pairs standing in the relation R stand in the relation $), is defined
by the same cardinality function as the 2-place predicative “most.”

WFak relational quantifiers do not exhaust the cardinality properties of
relations, however. Among the cardinality properties not expressible by
weak relational quantifiers is the following:

(62) The (binary) relation R has « elements in its domain,

where o is z? cardinal number. Instances of (62) can be stated using a pair
of predicative quantifiers:

(63) (lx x)(3y)Rxy

But no weak relational quantifier is equivalent to the pair (la x)(3r).

lnvar.ia.nce condition (b) The relational quantifiers satisfying invariance
condition (b) essentially say how many individuals in the universe stand
to how many individuals in a given relation R. The difference between the
Fwo conditions (b.1) and (b.2) is in the direction from which the relation
is ;?erceived. Quantifiers satisfying the first condition basically say that «
obj.ects in the universe are such that each stands in the relation R to f
objects in the universe. Quantifiers satisfying the second condition say that
there are f objects in the universe to each of which a objects in the universe
s‘tand in the relation R. (The properties predicated on relations by quan-
tifiers satisfying (b.1) and (b.2) can be more complex than those described
apove, but for my purposes it suffices to consider the basic propertics.)
SIHCC the two conditions under (b) are symmetrical, it is enough to discuss
just one. Following Higginbotham and May, I will concentrate on the
ﬁrs't. Higginbotham and May prove that all quantifiers satisfying (b)
assign cardinality properties to relations in their scope. A detailed descrip-
tion and proof of their claim appears in the appendix.
_Intlfitivcly, we arrive at the cardinality counterparts of quantifiers satis-
fy‘mg invariance condition (b.1) in the following way: Given a model 91
with a universe A of cardinality « and a binary relation R € 4%, we can
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describe R from the point of view of its cardinalities by stating, with
respect to each element of 4, to how many objects in A it stands in the
relation R and to how many objects in A it does not stand in the relation
R. We can thus represent the cardinalities of R by means of a function

fra= (B )

where a serves as a set of indices for the elements of A (as in section 2
above) and (f3, 7), is the set of all pairs of cardinals B, y whose sum is a.
Given an element a, € A4, f(8) is the pair of cardinals {f, y) such that a,
stands in the relation R to f individuals and a, does not stand in the
relation R to y individuals. But quantifiers do not distinguish which ele-
ments of .4 are associated with a given pair of cardinals {§, y). Therefore,
Higginbotham and May construct equivalence classes of functions f under
a similarity relation. Quantifiers are then defined as functions from such
equivalence classes to truth values. As you can see, there is a certain
resemblance between Higginbotham and May's cardinality functions and
my a-operators. Indeed, 1 arrived at the idea of my definition by generaliz-
ing Higginbotham and May's method.

Invariance condition (¢) Quantifiers invariant under pair-automorphisms
of A x A distinguish identities and nonidentities both in the domain and
in the range of a given relation R. These quantifiers can express such
properties of relations having to do with identities as, €.8., “____isa

one-to-one relation.”

Invariance condition (d) T will call relational quantifiers satisfying invari-
ance under automorphisms of A4, but not the other invariance conditions,
strong relational quantifiers. Strong relational quantifiers are genuine logi-
cal terms, and they can be represented by logical operators defined in
section 2 above. These quantifiers make the finest distinctions among rela-
tions that logical terms are capable of making. Below I will give several
examples of strong relational quantifiers in natural language, and also of
weaker relational quantifiers satisfying (a) through (c).

5 Linguistic Applications

Several “types” of logical terms of UL have received ample attention in
logico-linguistic circles, usually under the heading of “generalized quan-
tifiers.” In chapter 2 we saw Mostowskian quantifiers being used to inter-
pret determiners. In the present section I will further expand the domain
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of applications of UL quantifiers. My discussion will not assume the form
of a survey. Instead, I will describe applications of logical quantifiers that
came up in the course of my own investigations. (Other works devoted to
linguistic applications of, or theoretical linguistic approaches 1o, gene-
ralized quantifiers are listed in the references. The reader s referred to
Barwise and Cooper, Higginbotham and May, Kcenan, Keenan and
Moss, Keenan and Stavi, May, van Benthem, and Westerstahl, among
others.)

I will begin with a new application of Mostowskian qQuantifiers and then
proceed through Higginbotham and May’s categorics to describe increas-
ingly strong relational quantifiers in natural language.

Generalized operations on relations

In standard first-order logic we use the existential and universal quantifiers
as operators that, given two binary relations R and S, yield new relations
called the relative product of R and S RI”S - and the relative sum of R
and S— R[SS. These are defined (by dual conditions) as follows:

RIPS =4 {<x, > : (z)(xRz & zSy)}
RBS =4 {<x, > 1 (Y2)(xRz v z8y)}

Linguistically, we can interpret the relation “being a paternal uncle of ™
as the relative product of the relations “being a brother of™ und “being a
father of,” etc. By generalizing the definitions of relative product and sum,
we arrive at the notion of a relative product/sum modulo Q. where Qisa
l-place Mostowskian quantifier. I define the relative product and sum of
binary relations R and § modulo Q as follows:

RIGS =4 {<x, pd (Q2)(xRz & z8y)}

RIGS =4 {<x, > (Qz)(xRz v 253}

(As in the traditional product and sum, if Q, is the dual of Q,, the
definiens of RG, S is the dual of the definiens of R3,S) T will call the
standard relative product the relative product modulo 3 and the standard
relative sum the relative sum modulo V. The notions of relative product
and sum allow us to define relations that include a “cardinality factor.”
The operation of relative product modulo Q appears to be especially
useful, as can be seen in the following examples:

(64) xis a friend of many people who know y.

(65) x has few common acquaintances with .

When R is an ordering relation, we can define relations that have to do
with distance or relative position in R uas relative products of R modulo

e

e
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the appropriate Q. In this way we can define
(66) There arc n elements between x and y in R.
(67) xis far behind/ahead-of y in R.
(68) xis second best to yin P. ‘ N
Here P is a property (e.g., diving) that determines the field of an-implicit

‘dering relation R, “‘being better at....”
m'(;c»:fl:-l:)lzlce predicative quantifiers can also be used to deﬁ.ne sets and
relations that include a cardinality factor. | f:a_ll' the 0pc;rallon of con—’
structing such a set (or relation) from two initial relations R fmd f
“a generalized relative product of R and R’..” For example, Lfsmlg t t:
quantifier “*same number,” defined in the obylous.way, we can single ou
the median element in a linear ordering relation with
(69) (sume-number z)(xRz, zRx).
In a similar way, we can define “x is relatively higl}/low in R.” o

It is often useful to consider “semilinear” orderings, an ordering like a
linear ordering but with the requirement “(Vx)(Vy)(x”< yvy> x VX =
1)” replaced by “(Vx)(Vy)(x <y v » > VXA ) . wherfbx ll:. :(;21'«3
équivulcnce refation, for example “bcmg in the sarne income brac ’e .
Thus if R is a semilinear ordering relative to “bcmg in the §ame l-ncome
brackel as,” (69) will give us the set of all elements in the middle mc?me
bracket. Using a second predicative quantifier, we can Now express s.t‘%te‘
ments indicating how many individuals occupy a certain relative position
in R. For example, . .
(70) Proportionally more women hold high-paying jobs in San Diego

than in other cities in the country. .

Other statements stating formal properties ofgeneraliz.ed relative prt')duc?s
of R and § can be constructed using relational quantifiers defined in this

chapter.

rak relational quantifiers . '
!W\tf?: indicate solme of the uses of weak relational quantlﬁe.rs. Given a
relative product modulo Q, e.g., (66), we can use weak relational quan-
tifiers to make statements of the form
(71) There are m pairs whose distance in R is n. . .
Other cases of quantification where pairs are lakf:n as basic units are
also naturally expressed using weak relational quantifiers. For example,

(72) Most divorced couples do not remarry,
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Consider, however,

(73) Four married couples left the party.

The most natural construal of (73) as a weak relational quantification fails.
S}xpposc thz}t exactly 43” 14, is a 2-place weak relational quantifier over
binary rela%lons. Then, since !4 is essentially a Mostowskian quantifier, we
can define it by a cardinality function as described in chapter 2 Tha‘l is
given a universe 4, 1} is a function such that for any qu . ,

adrupl

wherex + S+ y + 6 = |A], . uple s [l 0
i a, B,y,0)=Tifa =4.

This means that if R and S are binary relations on A4,

4(R, S)=TIif |[RNn S| =4.
Now, if we interpret (73) as
(74) (14 xy)(x is married to y, x and y left the party)

then (?4) turns out true when the number of married couples who left the
party is two, not four. (This is because there are two pairs in a couple.)
Thus (74) is an incorrect rendering of (73). There are various remedies l;)
the problem. Among them are the following:

a. We can treat binary relations as sets of couples (a couple being an
unordered pair) and then define weak relational quantifiers as regular
Mostowskian quantifiers by setting numerical conditions on the
ato.ms of tbc Boolean algebra generated by n-tuples of such “sets” in
a given universe 4. The couple quantifier 14 will thus be defined by
the same ¢-function as the corresponding quantifier based on pairs:
!Q(R, S) = T iff the intersection of the two sets of couples R and S‘(
yields a set of 4 couples. ‘

b. Wc can cqnstrue couple quantifiers as strong relational quantifiers
i.e., quantifiers satisfying invariance condition (d). ‘

‘ By adopting s'tralegy (a), we will be able to use weak relational quan-
tifiers to symbolize the following English sentences:

(75) Half the students in my class do not know each other.
(76) Most of my friends have few common acquaintances.
(77) Few townsmen and villagers hate each other.

(78) Almost all brothers compete with each other.

Thus, for instance, (75) will be symbolized as

(79) (Half xy)[x is a student in my class & y is a student in my class &
x # y, ~(x knows y & y knows x)].
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But to interpret
(80) Most younger brothers envy their elder brothers

we must go back to quantifiers based on pairs.

I should say that weak relational quantifiers (based on pairs or on
couples) do not exhaust the possibilities of interpretation of the sentences
in our examples. On my interpretation, (75), for instance, is true if my class
consists of four students, a, b, ¢, and d, and one of the students, say a,
does not know (and is not known to) anyone in the class, but the rest—b,
¢, and d-- -all know each other. Someone may wish to interpret (75) so that
it will come out false in the situation just described. This can be done by
adopting stronger relational quantifiers.

Linearity quantifiers
Higginbotham and May’s I-place relational cardinality quantifiers over
A universe A, i.c., 1-place binary quantifiers invariant under |-automor-
phismof A x A4, essentially say how many individuals stand to how many
ndividuals in a given binary relation R. But this is exactly what a linear
quantifier prefix with two 1-place predicative quantifiers says about a
relation R in a model 2 with a universe A. For that reason [ name
relational cardinality quantifiers linearity quantifiers. ‘Higginbotham and
May called the operation of constructing a relational quantifier equivalent
to a linear quantifier prefix with two predicative quantifiers absorption. A
relational quantifier constructed by absorption is said to be separable.
The rule of absorption is this: if Q, and Q, are two |-place predicative
quantifiers over a universe A and R is a binary relation included in A%, then
the quantifier prefix (Q,)(Q,y) will be absorbed by (Q,xy), where Qs is
a linearity quantifier over A such that

QyR=T ifQ,({lae 4 1Q,({be A caRbh)=TH=T.

We can generalize the operation of absorption to n-place quantifier
prefixes by defining 1-place linearity quantifiers on n-place relations over
a universe 4. A l-place linearity quantifier on an n-place relation over a
universe A is a function
g: P(A") — {T, F}
that is invariant under linear automorphisms of A" 1 define “linear auto-
morphism of A"" as follows. The function
m A" — A"
is a linear automorphism of A" iff m is an automorphism of A" and for

any ul,az,...,a,,,u’,,u’z,...,a,',, by, by, s bas b1, 4y ...rbpE A the
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following holds:

lf'm(a,, ay, o, a,)=(dy, ay, oo ay)yand by by, ... b)) =
(b1, b3, ..., b,), then

L. a; = b, iffd} = b}, and

2. ifa; = by, then a, = b, ilT a), = b3, and

f’— I.ifa; =b,andu, = b,and...anda,_, =b, ,,thena, , =b
lﬂ-a,:-l =blll"l' ’

n-1

To vrcturn to absorption of two linearly ordered I-place predicative
quantifiers, let 4 be a set of n children, n > 3. Consider the sentence

(81) Three children had three friends each.

We can formalize (81) with either (82) or (83) below:

(82) (13 x)(!3 y) x is a friend of .

Here}3 is a 1-place predicative quantifier defined, for A4, by a Mostowskian
‘functlon t such that for any (k, m) in its domain (k + m =n), (k. m) =T
iff k = 3. : o

(83) (3/3 xp) xis a friend of y.

Here 3/3 is a linearity quantifier of type (2) defined, for A, by a Hig-
gmbothtum-Muy function £ such that for any [f] in its domain
(Jin—=(j, k),), k[ f1=Tiff fis similar to some f/* such that

S*O0) = f*(1)=f*(2)=(3,n —3)and
TG S = 1) £ Gun =),

lntuiti.vely, the function /* assigns 3 to children 0, I, and 2 as the number
of‘thcn* friends, and n — 3 as the number of their nonfriends. To all other
chxldrgn f* assigns a different combination of numbers of friends and
n?nfrlends. (For the sake of simplicity I assumed that a child can have
himself or herself as a friend.) ‘
Note, however, that lincarity quantifiers on binary relations can also
e‘xpress' Boolean combinations, possibly infinite, of linear quantificr pr‘c—
hxc§ wup predicative quantifiers. Thus, consider the following infinite
conjunction in which “number” stands for “*natural number” and n ranges
over the natural numbers: ‘

(84) One number has no predecessors, and two numbers have al most
one predecessor, and three numbers have at most two predecessors
and ..., and n numbers have at most n — 1| predecessors, and | .
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This infinite conjuction cannot be formalized in first-order logic with
predicative quantificrs, but it can be formalized in first-order logic with
lincarity quantificrs on binary relations. 1 will symbolize it as

(85) (n atmost (n — 1) xp)x hasa predecessor y,

where *n -at most (# — 1) is defined, in a universe A of cardinality N,
by a function

k:|F} = {T, F}

such that for any [f1e [FLk[f1=Tiff fis similar to the function

./l* : Nl) - ([\v I)Nuv

which is such that for every n < N,

[Hn) = (1, Ry).

Intuitively, f represents a relation R with field of cardinality X, such that

under some indexing of the universe 4 by Ry, do stands in the relation R

{o no objects in A, @, stands in the relation R to one object in 4, a, stands

in the refation R to two objects in A, and so on. Clearly, k also defines the

complex quantifier in (86):

(86) Onc number has no predecessor, and one number has exactly one
predecessor, and one number has exactly two predecessors, and ...,
and one number has exactly n predecessors, and ...

Note that k need not express a condition which exhibits a regularity.
Using a quantifier k, similar (in the intuitive sense) to k, we can represent
an irregular situation like the following:

(87) Two children have two friends each, and ten children have four
friends each, and twelve children have nine friends each, and . ..

Another kind of cardinality condition expressible with linearity quan-
tifiers, but not with a standard prefix of two I-place predicative quanti-
fiers, is exemplified by the following sentence:

(88) “There is a great variance in the number of friends of cach of these
youngsters

(which could also be phrased as “These youngsters differ considerably in

the numbers of their friends™). Assuming, for simplicity, that the universe
consists of “these youngsters” and that the friends in question are
members of the universe, (88) could be expressed as

(89) (Great variance vv) voungster x has youngster v for a friend,
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where for each universe 4 of cardinality a, “great variance” is defined by
the function & such that for every [ /] € Dom(k),

k([f] = T iff there is a wide distribution of cardinals y

such that for some f € a, f(fi) = (y, « — y).

We can construct 2-place linearity quantifiers, of type <1, 2, that will
gna.ble us to restrict linear quantification to 81 R (R with it; domain
hmuleq to B). If we want to symbolize the following sentence without
assuming the universe consists of “these youngsters,” we will use the
2-place “‘great variance” quantifier.

(90) There is a great variance in the number of words in the active
vocabulary of each of these youngsters.

This sentence will-be rendered ““(Great variance xp)(x is one of these
youngsters, x has word y in his active vocabulary).”

' LeF us nowvtum to absorption of two 2-place predicative quantifiers. A
linguistically interesting case is that of quantifications of the form

O (Qix) (P, (Q.p) (¥, E)),

where @, ¥, E are well-formed formulas. The quantifiers in (Y1) are

absorbed by the quantifier (Q,/Q,)" %2, defined, for a universe A, as
follows: for every B< A and C, D < 42, ‘

(Qi/Q)A(B, C, D) =Tiff (Q,)4({ae A ae B},

{aeA:(Q) ({bed:Ca,bdeCl, {bed:{abyeD})=T}) =T.

It is easy to see that (91) is equivalent to

(92) ((Qi/Q2)""*2xy)(®, ¥, E),

whose s?tisfaction condition in a model U with a universe A by an assign-
ment g1s

A= (Qi/Qx)) (@, ¥, E)[g] iT (Q)4({a € 4 : A= blg(x/a)]},
{aed:(Q)a({be 4: Uk Y[g(x/a)(y/b)]},

{ped: Uk Elg(x/a)(y/D)]}) =T} =T.

This definition .of absorption is similar to one proposed by R. Clark and
E. L. Keenan in “The Absorption Operator and Universal Grammar”

(1986). ~But lherg is an essential difference: whereas I constructed the
absorption quantifier Q,/Q, in such a way that in the formula

(Q/Q)(dx, Wxy, Zxy)
Q,/Q; binds all free variables, Clark and Keenan defined Q,/Q, in such
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a way that it does not bind the occurrence of x in Wxy. The reason the
absorbing quantifier has to bind x in Wxy is simple: Q,/Q; has to be so
defined that

(93) (Q,/Q ¥y}, ¥, E)

is logically equivalent to

(94) (Qx)(®, (Q (Y, E)),

no matter what well-formed formulas @, ¥, and E are. Now it is an
essential feature of (94) that any free occurrence of x in®, ¥, or Zis bound
by Q,, and similarly, that any free occurrence of yin ¥ or E is bound
by Q,. The relation of binding between quantifiers and free variables
in (94) must be preserved by (93). In particular, if x occurs free in ¥, it
should be bound by Q,/Q,. The definition of absorption by Clark and
Keenan that I have referred to goes as follows: for every B, C< 4 and

D A2,
(Q1/Q2)A(B, C. D) =Tilf(Q)s(lae A:ae B},
(hed:(QibedibeC) {bed:(abyeD)=TH=T.

‘T'his definition is intended to “simulate” quantifications of the form

(Q, )M, (Q (Y, =Zxp)]

But as we have seen, it is not adequate for absorbing all well-formed
formulas of the form

(Q, )P, (Q (Y, E)]-

Note that the definition of satisfaction allows me to apply my absorbing
quantifier whether x occurs free in ¥ or not. For example, I can apply

absorption to

(95) Every man loves some woman,

or formally,

(96) (V) [Mx, @y)(Wy, Lxy)),
and get

(97) (V/Axp)(Mx, Wy, Lxy),

which has the right truth conditions. This is because the truth definition
of (97) in a model U is

W= (V/Axr)(Mx, Wy, Lxp) il Y 0{ae A NE= Mx[g(x/a)l},
lae 4:1,({hed: N Wylgxla)(y/D)]},

{hed: Ak Lolgx/a), (v} =T} =T,
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and U= Wylg(x/a), (¥/b)]} is equivalent to W= Wylg(v/M]}.

Absorption operators were originally investigated by Higginbotham
and May (1981) in an attempt to account for the logical structure of cross
reference, as in the Bach-Peters sentence

(98) Every pilot who shot at it hit some Mig that chased him.
May, in “Interpreting Logical Form” (1989), explains the issue as follows:

If scope is represented asymmetrically [as it is in formulas of form (91)], then
the narrower scope quantifier cannot bind, as a bound variable, the pronoun
contained within the broader scope phrase, which, in virtue of having broader
scope, is outside its c-command domain. Thus if the every-phrase has broader
scope, it cannot be a variable bound by the narrower some-phrase. Of course this
problem disappears if the proper structure associated with [(98)} at LF is onc
of symmetric ¢c-command, since then it wouid reside within the c-command
domain of some Mig that chased him simultaneously with him residing within the
c-command domain of every pilot who shot at it. [Absorption is then presented as})
a structural readjustment of asymmetric structures into symmetric ones.?

I will not describe the exchange of views regarding this matter in the
linguistic literature.® However, 1 would like to propose for consideration
two formalizations of (98) in the spirit of May’s suggestion.

First consider the 2-place predicative quantifier 3*'-', which [ will call
*“the conditional existential quantifier”” or “‘the conditional some.”
a universe A, I define 3} as follows: for any B, C < A4,

3B, C)y="Tiffeither B= Jor BnC # .

Given

In terms of cardinality t-functions (see chapter 2), 3% is dcfined by the
function 3" such that for any («, §, 7, 8) in its domain,

13 (a, B, y, 8) = T iffeither f = Oora #0.

Figure 4.1 helps elucidate the relation between 3* and ¢}, Clearly, if &, ¥
are wils,

99) (F*x)(D, ¥)

is logically equivalent to

(100) (Fx)® - (A (P& P).

The quantifier 3* might be used to interpret such English scntences as
(101) Every boy who chased a unicorn caught one,

understood as having the same truth conditions as

(102) (Vx) {Bx - [3y)(Uy & CHxy) - 3y)(Uy & CHxy & Cxp)]},

with the obvious symbolization key for B, U, CH and (. The formal
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Figure 4.1

sentence (102) is equivalent 10
» ) XV va)]’
03) (Yx)[Bx = @* () & CHxy, Cx) .
o o rm to (101). Returning to the Bach-

- in some respects is closer in fo
e ; 98) seem to be captured by

Peters sentence (98), the meaning of (

(104) (Vx){Px—
[(F)(My & Cyx & Sxy
with the obvious readings for P,

as havi ame meaning as (104), 1 ;
(98) as having the same mean ), 1 i e
in “*Questions, Quantifiers, and Crossing” and Clark and Keena

2y l]

Absorption Operator and Universal Grammar. “) Howeverl,oa}l::’zutie
. i binding, it does not appear

104) avoids the problem of cross ' . e

iumc logical structure as (98). 1 propose, therefore, that we assign to (98)

)= (Ay)(My & Cyx & Sxy & Hx»)l},
M, C, S, and H. (In understanding
follow Higginbotham and May

the logical form

(105) (Yx)[Px— (3*y)
Alternatively, we can analyze (98) as

(106) (Y)[Px, F*p)(My & Cyx & Sxy, Hxy)l, N
which is obtained from (105) by rc.placing the I‘;plz«:t: lvut)ii:kntshe;poﬁer
variant. ot (19542 e (;r: ;?:l;\é‘;lfl?;:c;l:; ();04), while solving the
11. If absorption is still desirable, we can

en obtain

(My & Cyx & Sxy, Hxy)].

a better semantic representati
problem of cross binding just as we
apply it to the linear pair <V, 3*). We th
(v/3* 22 (Px, My & Cyx & Sxy, Hxy). |
arity with (98), we can rewrite
2.2 yut of the type <1, 2,2, 2>+

(107)
IFinally, to increase the structural similH
(107) using a quantifier equivalent to v/3
This quantifier will be so defined that

- e i
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Figure 4.2

(108) (v/3*!:22:2xy)(Px, Sxy, Hxy, My & Cyx)

is equivalent to (107). Alternatively, we can construct a 3-place variant of
3* and replace (106) with

(109) (Vx)[Px, 3*" 1! p)(Sxy, Hxp, My & Cyx)).

The quantifier V/3*'%22 will then be obtained by absorption from
v, 3‘1""‘) in the obvious way. Formally, there is no problem in con-
structing “‘superfluous” versions of quantifiers, and indeed, in chapter 2, |

noted that such terms are common in natural languages. The 3-place 3* is
defined by a function 1 as follows:

L, By, 8,6 0, n,8) =Tiffeither 6 = 0 or « # 0

The relation between 3*'! and 3*!'!! becomes clear when we compare
figure 4.1 to figure 4.2. (Given an x, Bl represents ““Sxy,” B2 represents
“My & Cyx,” and C represents “Hxy.”)

If my analysis is correct, it is left for the linguist to account for the
occurrence of “superfluous” logical forms in certain natural-language
constructions. I will not attempt such an account. It may indeed be the
case that what is superfluous from a purely logical point of view is signi-
ficant from a linguistic viewpoint.

Pair quantifiers

Pair quantifiers are 1-place quantifiers satisfying Higginbotham and
May’s invariance condition (c) but not (b) or (a). Here are two examples:
(110) Three villagers and two townsmen exchanged blows.

(111) Two Germans and three Americans will challenge each other in
the next tournament.
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Note that the number words in each of these sentences can themselves
be construed as quantifiers. But as predicative quantifiers, neither is within
the scope of the other. Therefore, these are not ordinary predicative quan-
tifications but fall under the category of branching quantifications. A
general analysis of the branching structure will be given in chapter S.

Other pair quantifiers express various correspondence relationships.
Thus, treating modes of unhappiness as individuals (or allowing ascent to
sccond-order logic), we can analyze Tolstoy’s opening to Anna Karenina
as a pair quantification stating a one-to-one correspondence:

(112) Each unhappy family is unhappy in its own way.
Other examples of pair quantifiers are

(113) Courses vary in the students they attract.

(114) My countrymen are divided in their views about war and peace.
(115) Different students answered different questions on the exam.’
Statements of the form “For every A thereis a B,” discussed by G. Boolos
(1981), can also be construed as pair quantifications.

(116) For every drop of rain that falls, a flower grows.®

Sentences (112) to (116) include quantifiers that take into account not only
cardinalities but more refined formal features of objects standing in rela-
tions. In particular, these quantifiers discern sameness and difference be-
tween objects within (though not across) each domain of a given relation.
Thus the I-place quantifier “vary,” as in

(Vary xy)Rxy,

is defined, for each cardinal a, by a logical operator o, such that, for
example,

o1 ([{<1, 6), (2,6),(3,6),<4,6), (5 7>}]) = F,
while
o ([{€1. 65,42, 75, 43,85, ¢4, 3>, (5, D) =T.

Finally, 1 would like to point out a construction with strong relational
quantiliers that is more common in Hebrew than in English. Consider the
following situation: A group of objects is divided into pairwise disjoint
subgroups of n members each, and a certain condition is set on the mem-
bers of each group. For example, given an initial group of students, the
members of each subgroup are assigned a room in the dormitory, or given
an initial group of soldiers (say an army in disarray), the members of each



