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subgroup "fight their own war." These situations are described \.. 0 II\" I:I\;I 

in the sentences below. 

(117) Every four students will receive a room. 
~ Kol arba'ah studentim yekablu heder. ] 

(I 18) Every several soldiers their own war. 

Kol kama hayalim lahamu at Illilhamlam shelahem. 

"Every four" and "every several" (in the sense indicated ahove) arc na
turally understood as strong relational quantifiers that distinguish 
tions of a certain size in the domain of the quantified relation. 

Strong relational quantifiers 

Strong relational quantifiers arc quantifiers satisfying the strollgest in
variance condition (d) in Higginbotham and May's list but 1I0t (a) 

(c). As we have seen above, "couple" quantifiers 1~1I1 undcr this category. 
Other genuinely strong relational quantifiers are qualltiliers requirillg the 
detection of sameness and dilference across domains. Thus the qualltifier 
"Reflexive xy" is a strong quantifier, as arc allqll<lntiliers attributing order 
properties to relations in their scope. Consider the following exalllples: 

(119) Parenthood is an antirel1exive relation. 

(120) Forty workers elected a representative from alllollg thelllseives. 

We have completed the description of first-order Unrestricted 

(UL) based on the philosophical conception developed in chapter J. This 

conception was formally and linguistically elaborated in the present 
chapter. Along with Lindstr()m's original semantics, I have proposed a 

"constructive" method for representing logical terms with ordinal func

tions. This method constitutes a natural extension of Mostowski's work 

on I-place predicative quantifiers. Some philosophical issues concerning 

the new conception of logic will be discussed in chapter 6. But lirst I \voldd 
like to investigate the impact of the generalization of quantiliers 011 an
other new logical theory. This theory has to do 1I0t with logical 


but with complex structures of logical particles. It is the theory of hrmfch

illg qlUJIlI!/icalioll. 


~~al_~!£.~ 
Ways of Branching Quantifiers 

Introduction 

Brallchillg quantifiers were !irst introduced by L. Henkin in his 1959 paper 
"Sullie Relllarks on Inlinitely Long Formulas." My "branching quanti 
Hers" Ilellkill meant a new, nonlinearly structured quantifier prefix whose 

was triggered by the problem of interpreting infinitistic formulas 
or a cerlain form. I The branching (or partially ordered) quantifier prefix 

is, however, not essentially infinitistic, and the issues it ~aises have largely 

been discussed in the literature in the context of finitistic logic, as they will 

like to know whether branching quantification is 

a genuine logical form. But today we lind ourselves in an interesting 

situation where it is not altogether clear what the branching structure is. 

While lien kin 's work purportedly settled the issue in the context of stan

dan.1 quantifiers, Barwise's introduction of new quantifiers into branching 

theory reopelled the question. What happens when you take a collection 

of quantiliers, order them in an arbitrary partial ordering, and attach the 

result to a given formula? What truth conditions are to be associated with 
the resulting expression? Are these conditions compositionally based on 
the single quantifiers involved? Although important steps toward answer-

these questions were madc by Rarwisc, WeslersUihl, van Benthem, and 
others, thc qllestion is to my mind still open. Following the historical 

dcvelopment, I will bcgin with standard quantifiers. 

Initially there were two natural ways to approach branching quantifica
tioll: as a generalization of the ordering of standard quantifier prefixes and 

tiS a generalization of Skolem normal forms. 
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A generalization of the ordering of standard quantifier prefixes 

In standard modern logic, quantifier prefixes are linearly ordered, both 

syntactically and semantically. The syntactic ordering of a quantifier pre

fix «QIXI)' ... , (Qnxn» (where Qi is either V or 3 for I ~ i ~ Il) mirrors 
the sequence of steps used to construct well-formed formulas with that 

quantifier prefix. Thus, if 

(I) (QIXI)··· (Qnxn)fb(x l ,···, xn) 


is a well-formed formula, of any two quantifiers QjXj and QjXj (I ~ i :f:. 

j ~ n), the innermore precedes the outermore in the syntactic construction 

of (I). The semantic ordering of a quantifier prefix is the order of deter

mining the truth (satisfaction) conditions of formulas with that prefix, and 

it is the backward image of the syntactic ordering. The truth of a sentence 

of the form (I) in a model 2( with 'universe A is determined in the folIowing 


order of stages: 2 


1. 	 Conditions of truth (in ~l) for (QI x d'P 1(x I)' where 

'PI = (Q2 X2) .... (QnXn)CI>(XI' X2, ... , xn) 

2. 	Conditions of truth for (Q2X2)'P2(X2), where 

'P2 = (Q3 X3)'" (Qn xn)«1>(a l , X2, X3, ... , xn) 


and a1 is an arbitrary element of A 


n. 	 Conditions of truth for (Qnxn)'P n(xn ), where 

'Pn = <I> (a 1 , a2, ... , an-\! xn) 

and ai' ... , an - 1 are arbitrary elements of A 

We obtain branched quantification by relaxing the requirement that 
quantifier prefixes be linearly ordered and allowing partial ordering in
stead. It is clear what renouncing the requirement of linearity means 
syntactically. But what does it mean semantically? What would a partially 
ordered definition of truth for multiply quantiHed sentences look like? 
Approaching branching quantifiers as a generalization on the orderillg of 
quantifiers in standard logic leaves the issue of their correct semantic 
definition an open question. 

A generalization of Skolem normal forms 

The Skolem normal form theorem says that every first-order formula is 
logically equivalent to a second-order prenex formula of the form 

(2) 	(3fd ... (3fm)(VXI) ... (Vxn)<l>, 

. \\lays of Branching Quantifiers~ 

where x I' ... , xn are individual variables, fl' ... , fm are functional vari 
ables (m, Il ;;:: 0), and fb is a quantifier-free formula. 3 This second-order 
formula is a Skolem normal form, and the functions satisfying a Skolem 

normal form are Skolemfunc:tions. 
The idea is roughly that given a formula with an individual existential 

uantilier in the scope of one or more individual universal quantifiers, we 

obtain its Skolem normal form by replacing the former with a functional 

existential quantifier governing the latter. For example, 

(3) (Vx)(Vy)(3z)fb(x, y, z)
't 
,'!. 

is eq uivalent to " 
(4) (~l2 )(Vx)(Vy)<ll[x, y, f2(X, Y)l. 

The functional variablef2 in (4) replaces the individual variable z bound 
hy the existential quantifier (3z) in (3), and the arguments of/2 are all the 
individual variables bound by the universal quantifiers governing (3z) 
there. It is characteristic of a Skolem normal form of a first-order formula 
with more than one existential quantifler that for any two functional 
variables in it, the set of arguments of one is included in the set of 
arguments of the other. Consider, for instance, the Skolem normal fonn of 

(5) (Vx)(3y)(Vz)(3w)<I)(x, y, z, w), 


namely, 


(6) (~ll )(3g2)(Vx)(Vz)<l>[x,f I (x), z, g2(X, z)]. 

In general, Skolem normal forms of first-order formulas are formulas of 

the form (2) satisfying the following property: 

The functional existential quantifiers (3/1)' ... , (31m) can be ordered. 
in such a way that for all I ~ i,j ~ In, if (3jj) syntactically precedes 

then the set of arguments of}; in <ll is essentially included in 

the set of arguments ofjj in fb. 4 

This property reflects what W. J. Walkoe calls the "essential order" of 

linear t)uantiller prelixes. 5 

The existence of Skolem normal forms for all first-order formulas is 

thought to reveal a systematic connection between Skolem functions and 
existential individual quantifiers. However, this connection is not sym
metric. Not all formulas of the form (2), general Skolem forms, are expres

sible in standard (i.e .. linear) first-order logic. General Skolem forms not 

~ali~r: ing (7) are not. 
11 i, llJlurJI It"' generalize the connection between Skofem functions and 

w:_ r 

• ~ •• ..:=-~ ;_.. ~--':~! r-~_~~:-~_~:---:,,: E';- ~:.:~~ ~ g~~~r-___ 
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ization requires that first-order quantifier prefixes not be ill general 
linearly ordered. The simplest Skolem form 110t satisfying (7) is 

(8) 	(~r 1 )(3g 1 )(Vx) (Vz)(I>[x,/ I (x), z, g I (z)]. 

Relaxing the requirement of syntactic linearity, we can COIIStruct a "lirst
order" correlate for (8), namely 

(Vx) (3Y» 
(9) 	 <1>(x, )" z, w). 

(Vz)(3w) 

We see that the semantic structure of a partially ordcred quantifier 
prefix is introduced in this approach together with (or even prior to) the 
syntactic structure. The interpretation of a first-order branching forllluia 
is fixed to begin with by its postulated equivalence to a second-order, 
linear Skolem form. 

Do the two generalizations ahove necessarily coincide? Do second
order Skolem forms provide the only reasonahle semantic interpretation 
for the syntax of partially ordered quantilied formulas? The definition of 
branching quantifiers by generalized Skolem functions was propounded 
by Henkin, who recommended it as "natural." Most suhsequent \Hilers 
on the suhject took Henkin's definition as given. I was led to renect 011 the 
possihility of alternative delinitions hy J. Barwise's paper "On Branching 
Quantifiers in English" (1979). Barwise shifted the discussion frolll stan
dard to generalized branching quantifiers, forcing liS to rethink the prin
ciples underlying the branching structure. Reviewing the earlier contro
versy around Hintikka's purported discovery of branching quantifier COII

structions in natural language and following my own earlier inquiry illto 
the nature of quantifiers, I came to think that hoth logico-philosophkal 
and linguistic considerations suggest further investigation of the branch
ing form. 

Linguistic Motivation 

In "Quantifiers vs. Quantilkation Theory" (1973), J. lIintikka first pointed 
out that some quantifier constructions in English arc branching rather 
than linear. A well-Known example is, 

(10) Some relative of each villager and some relative of each townsman 
hate each other. 6 

Hintikka says, "This [example] may ... ofrer a glimpse of the ways ill 
which branched quantification is expressed in English. Quantifiers occur

'N. 	 ,of Branching Quantifiers 

111 conjoint constituents frequently enjoy independence of each other, 
it seems, hecause a sentence is naturally thought of as being symmetrical 
semantically vis-.i-vis sllch constituents."7 Another linguistic form of the 
branching-quantifier structure is illustrated by 

( II) Some book by every author is referred to in some essay by every 

critic. s 

Ilintik k<J'S point is that sentences such as (10) and (II) contain two 
il/dependellt pairs of iterated quantifiers, the quantifiers in each pair being 
outsidc the scope of the quantifiers in the other. A standard first-order 
formalization of stich sentences----for instance, that of (10) as 

(12) (Vx)(3.1')(V:) (3w) (Vx & 1'z -+ Ryx & RII'z & Hyw & Hwy) 

or 

( 13) (V.\) (V:) (3.1') (3w) (Vx & 1'z -+ Ryx & Rwz & Hyw & Hwy) 

(with the obviolls readings for V, T, R, and /I )--creates dependencies 
where none should exist. A hranching-quantifier reading, on the other 

halld, 

(Vx)(ir) 

'x & T::: -~ U.l'x & UIl'Z & /IyH' & /lwy,
( 141 


(V:) 


accurately simulates the dependencies and independencies involved. 
Hintikka docs not ask what truth conditions should he assigned to (14) 

but rather assllmes that it is interpreted in the "usual" way as 

(15) (3(1 )(3g )(Vx)(Vz){ Vt & Tz -+ R(f'(x), x) & R(g'(Z), z) &' 

11(/1(.\"), gl(Z) & /I(gl(z),fl(X»)}. 


Hintikk'(l paper hrought forth a lively exchange of opinions, and G. 
Fallcollllier (1975) raised the following objection (which I formulate in my 
own words): (15) implies that the relation of mutual hatred between rela
tives of villagers alld relatives of townsmen has what we might call a 
/11([,\'.\;1'(' IIlIc/ell.\' OIlC that contains at least one relative of each villager 
and olle relative of each towl1sman--and such that each villager relative 
ill thc nucleus hates all the townsman relatives in it, and vice versa. 
Ilo\\'c\'cr, Fallconnier objects, it is not true that every English sentence 
wilh sYl1tadically indepcndcllt quantifiers implics the existence of a mas
,ire IlIie/eliS of objects standing ill the quantified relation. For instance, 

( 16) S()I1lC player of every foothall team is in love with some dancer of 

c\ er: hallet company 
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does not. 9 It is compatible with the assumption that mcn are in love with 
~l. 

one woman at a time (and that dancers/football-players do not belong to 
more than one ballet-company/foot ball-team at a time). Even if Hin
tikka's interpretation of (10) is correct, Fauconnier continues, i.e., even if 
(10) implies the existence of a massive flueleus of villagers and townsmen 
in mutual hatred, (16) does not imply the existence of a mll.v.\';l'e flue/ells of 
football players in love with dancers. Hintikka's interpretation, therefore, 
is not appropriate to all scopewise independent quantifiers in natural 
language. I i1Iustrate the issue graphically in figures 5.1 and 5.2. The point 
is accentuated i!l..l~~ fC?lIowing examples: 

(17) 	Some player of every football team is the boyfriend of some dancer 
of every ballet company. 

(18) 	Some relative of each villager and some relative of each townsman 
are married (to one another). 

Villagers Villagers' Mutual Townsmen's Townsmen

Relatives Hatred Relatives 


v1 .--------------)10. • "'E;:::: ===-- •••-c------- u --_. 11 

v2 .un___ u_)Io. • • • '>€C= ",' .... =:> fifE :;:>s/==--:::" .-C__ h_h __ h _____ • 12 

v3 .--u-u-n--____,.••c= )('=:;}e=')(' ~ ••-c----- ___ u_u .• 13 

v4 .-n_uu_uh___ U,...c;::= /';;,''' --;"~'" ~ -CU __ n_hu ___ n __ , 14 

v5 .--------------•• • .........- :::::,,;;a, .-c-----_h ________ • 15 

Figure 5.1 

Football Players Love Dancers BalletTeams ::0-	 Companies 

f1 0--------------•• • · 	 )0 ••• -c n ______ __ • b1n 

7 

12 0----------••• • • • 	 .-c---------------_. b2)0 

MASSIVE 
f3 .----------------,.. - ......-c-- ______ • b3 

NUCLEUS 

n 

f4 0------------------.. )o-c------u--- ___ n • b4 

15 0--------------•• 0 . 7 
)0 .-c- n _____________ • b5 

Figure 5.2 

Ways of Branching Quantifiers 

Is (17) logically false? Docs (18) imply that the community in.question is 
polygamous? 

Fallconnier's conclusion is that natural-language constructions with 
quantifiers independent in scope are sometimes branching and sometimes 
linear, depending on the context. The correct interpretation of (16), for 
instance, is 

(19) (V'x)(V'y)(3z)(3w)(Fx & By -+ Pzx & Dwy & Lzw). 

Thus, according to Fauconnier, the only alternative to "massive nuclei" is 
linear quantification. 

We can, however, approach the matter somewhat differently. Acknowl
edging the semantic independence of syntactically unnested quantifiers in 
general, we can ask, Why should the independence of quantifiers have 
anything to do with the existence of a "massive nucleus" of objects stand
ing in the quantifIed relation? Interpreting branching quantifiers non
linearly. yet without commitment to a "massive nucleus," would do justice 
both to Ilintikka's insight regarding the nature of scope-independent 
quantifiers and to Fauconnier's (and others') observations regarding the 
multiplicity of situations that such quantifiers can be used to describe. We 
are thus led to search for an alternative to Henkin's definition that would 
avoid the problcmatical commitment. 

3 Logico-philosophical Motivation 

Why arc quantifier prefixes in modern symbolic logic linearly ordered? M. 
Oummett (1973) ascribes this feature ofquantification theory to the genius 
of Fregc. Traditional logic failed because it could not account for the 
validity of inferences involving multiple quantification. Frege saw that the 
problem could be solved if we construed multiply quantified sentences as 
complex step-by-step constructions, built by repeated applications of the 
simple logical operations of universal and/or existential quantification. 
This step-by-step syntactic analysis of multiply quantified sentences was 
to serve as a basis for a corresponding step-by step semantic analysis that 
unfolds the truth conditions of one constructional stage, i.e., a singly 
qllallt!/ied .lcu·mula, at a time. (See section I above.) In other words, by 
Frcgc's method of logical analysis the problem of defining truth for a 
quantificd many-place relation was reduced to that of defining truth for a 
series of quantified predicates (I-place relations), a problem whose solu
tion was essentially known. 10 The possibility of such a reduction was 
based, however, on a particular way of representing relations. In Tarskian 



113 
Chapter 5 112 

semantics this form of representation is reflected in the way in which the 
linear steps in the definition of truth are "glued" together, namely by a 
relative expression synonymous with "for each one of which" ("f.e.w. 
Thus, for example, the Fregean-Tarskian definition of truth for 

(20) (Q I X)(Q2y)(Q3Z) RJ(x, )', z), 

where Ql' Q2, and Q3 are either V or 3, proceeds as follows: (20) is true in 
a model '11 with a universe A aT there are III a's in A, Le.w. there arc l/2h'S 

in A, f.e. w. there are q3 e's in A such that" R3 (a, h, C)" is true in ~1. where 
q" Q2' and Q3 are the quantifier conditions associated with Q,. Q2, and 
Q3 respectively. I I 

Intuitively, the view of R3 embedded in the definition of truth for (20) 

is that of a multiple tree. (See figure 5.3.) Each row in the multiple tree 
represents one domain of R J (the extension of one argument place of RJ); 

each tree represents the restriction of R J to some one clement of the 
domain listed in the upper row. In this way the extension of the second 
domain is represented relative to that of the first, and the extension of the 
third relative to the (already relative) representation of the secolld. Differ
ent quantifier prefixes allow different multiple-tree views of relations, hut 
Frege's linear quantification limits the expressive power of quantifier pre
fixes to properties of relations thal arc discernihte in a Illulliple-tree repre
sentation. 

We can describe the sense in which (all but the outermost) quantifiers in 
a linear prefix are semantically dependent as follows: a lillearfl' depl'I,dem 
quantifier assigns a property not to a complete domain of the relation 
quantified but to a domain relativized to individual elements of another 
domain higher up in the multiple tree. It is characteristic of a Iillear 
quantifier prefix that each quantifier (but the outermost) is directly depen
dent on exactl.>:one other quantifier. I will therefore call linear quantifiers 
unidependent- or simply dependent. 

t\" t\, h,
III 1 2112 1 "1\, 

Figure 5.3 

v or Branching Quantifiers 

i here arc two natural alternatives to simple dependence: (I) no depen
{kll~e. i.e., independence, and (2) complex dependence. These correspond to 
two ways in which we can view relations in a nonlinear manner: we can 
view each domain separately as complete and unrelativised, or we can view 
a whole cluster of domains at once in their mutual relationships. 

Syntactically, I will represent an independent quantification by 

(QI.\I) 

R"(x" ... , .xn)(21 ) 

(Q"X n ) 

and a complex quantification by 

(QIXI~ 

(22) .: 7~ R"(x l ,···, x,,). 

(Q".\,,) 


Of course, there arc many complex patterns of dependence among quanti 

fiers. These can he represented hy various partially ordered preflxes. 


()\II' analysis indicates that the concept of independent quantification is 
dillcrent from that of complex quantification. Therefore, the first question 
regarding the ~orrcct interpretation of natural-language sentences with 
hranching quantiliers is, Arc the quantifiers in these sentences independent 

or complex? 

4 Independent Urancldng Quantifiers 

It is easy to give a precise definition of independent quantification: 

(Q1x) 
(23) I <Nx, Y) =df (QI x)(3y)<I)(x, Y) & (Q2y)(3x)<J>(x, y), 

(Q2.1') 


or more generally, 


({J 1'\'> 

<l)(.x- I' ... , x,,) =df(24) 

(Q".\,,) 

(Olxl)C1X'z) .. (3x,,)(I)(x l ,···,x,,)& ... & 

(Q/I.\,.)(3x l ) ... (3xn ... I )<Nx" ... , XII)' 

This new definition or nonlinear quantification is very ditferent from 
that or Henkin's. I ndependent quantification is essentially first-order. It 
docs not involve commitment to a "massive nucleus" or to any other 
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complex structure of objects standing in the quantified relation. Therefore, 

it enables us to analyze natural-language sentences with scope-independent 

quantifiers in a straightforward manner and without forcing any indepen

dent quantifier into a nested position. f thus propose (23) as a definition 

of branching quantifiers as independent quantifiers. Linguistically, this 

construal is supported by the fact that "and" often appears as a "quantifier 

connective" in natural-language branching structures in a way which 

might indicate a shift from its "original" position as a sentential cOllnec
tive. Moreover, natural-language branching quantifiers are symmetrical in 
much the same way that the conjuncts in my definition are. An English 

sentence with standard quantifiers that appears to exemplify independent 
quantification is 

(25) Nobody loves nobody, 


understood as "Nobody loves anybody." 12 I will symbolize (25, as 


( 
(26) Lxy 

( -3y) 

and interpret it as 

(27) -(3x)(3y)Lxy & -(3y)(3x)Lxy. 


By extending our logical vocabulary to I-place Mostowskian quantifiers, 


we will be able to interpret the following English sentences as independcnt 
branching quantifications: 

(28) Three elephants were chased by a dozen hunters. 

(29) Four Martians and five Humans exchanged insults. 

(30) An odd number of patients occupied an even number of beds. 

The "independent" interpretation of (28) to (30) reflects a "cumulative" 

reading, under which no massive nucleus, or any other complex relatioll

ship between the domain and the range of the relation in question. is 
intended. 13 We thus understand (28) as saying that the relation "elephant 

x was chased by hunter y" includes three individuals in its domain and a 

dozen individuals in its range. And this reading is captured by (23). Sillli
(23) yields the cumulative interpretations of (29) and (30). 

The extension of the definition to 2-place Mostowskian quantifiers 

(which in this chapter I symbolize as Q2 rather than QI.l) will yield 
independent quantifications of the form 

(Qix) 'PIX, 

(31) <I>xy. 

(Q~y) 'P 2 y, 

Ways of Branching Quantiliers 

Here. however, we can apply the notion of independent quantification in 

several ways. Given a binary relation R, two sets A and B, and two 

cOllditions q 1 and q2' we can say the following: 

a. The relation R has ql As in its domain and ql Bs in its range. 
b. The relation A 1R t /J has ql elements in its domain and ql elements in 

its range (where A 1R t B is obtained from R by restricting its domain 

to A and its range to B). 
c. The relation A 1R ~ B has ql As in its domain and q2 Bs in its range. 

d. The relation R t B has q1 As in its domain and ql Bs in its range. 

It is easy to see that (a) through (d) are not equivalent, 14 However, for the 

examples discussed here it sulfices to define (31) for case (c). I thus propose 

as the definition of a pair of 2-place independent quantifiers 

«)~ x) I 'I'I x, 
=df (Q~ x)['P 1x, (3y)('P I x & 'I' 2Y & <l>xy)] &(32) 

(<)~y) I '1/
2.1', (<)iy)l'l/2Y' (3x) CP I X & 'I' 2Y & <l>xy)]. 

\Vhcn <); and <)~ satisfy the property of tivilll-! on, i.e., when (Q2x){<I>x, 'I' x) 

is logically cquivalent to (Q2 X )(<1)X, (I>x & 'Px), we can replace (32) with 

thc simpler 

(<)i x) I 'I'I x, 

(.B) I <J'xy =df (Q~ x)['I' 1 x, (3y)('P 2Y & <l>xy)] & 

(Q~y) '1'2)" (Q~)')['P2Y' (3x)CP Ix & <I>xy)]. 

this definition, we can interpret (34) and (35) below as independent 

quanti licat ions: 

(34) All the hoys ate all the apples. 
ls 


(35) Two boys ate half the apples. 


We can also analyze (28) to (30) as independent quantifications of the form 


(33). I () 

\Vltat about Ilintikka's (10) and Fauconnier's (16)? Should we interpret 

these as independent hranching quantifications of the form (33)? Under 
such an interpretation. (10) would say that the relation of mutual hatred 

het ween relatives of villagers and relatives of townsmen includes at least 
olle relative of each villager in its domain and at least one relative of each 
townsman in its range; (16) would be understood as saying that the rela

tion or love hetween foothall players and ballet dancers includes at least 

one player of each football team in its domain and at least one dancer from 
each hallet compallY in its range. Such interpretations would be compat
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ible with both figures 5.1 and 5.2. Later on I will suggest a test to determine 

whether the intended interpretation of a given natural-language sentence 

with branching quantifiers is that of an inuepcndent or complex qUHntili
cation, and this might give us a due regarding lIintikka's and Fallcollllier's 

sentences. As for the linear optioll, here the question is whcther one pair 

of quantifiers is within the scope of the other. Gcnerally, I would say that 

when "and" appears as a quantifier conncctive. that is, "QI As lind Qz Bs 

stand 	in relation R," the quantification is not linear. Howevcr. whcn 

the quantification is of the form "QI As R Qz Us." the situation is less 
clear. (For further discussion. see May 1989 and van Benthem 1989,17) I 1f 

should note that sometimes the method of semantic representation itself 

favors one interpretation over another. For example, in standard seman

tics, relations are so represented that it is impossible for the rangc of a 
Jgiven binary relation to be empty when its domaill is not empty. Thlls a 

quantification of the form "Three As stanu in the relation R to zero lis" 
would be logically false if interpreted as indcpenucnt branching quanti 
fication. To render it logically contingent, we may construe it as a nested 
quantification of two I-place predicative quantillers. and this gives liS the 
linear reading. 

lIarwisc's Generalization or Ilcnkin's Quantifiers 

I now turn to complex quantification. Evidently, Henkin's quantifiers be

long in this category. I ask: What kind of information on a quantificd 

relation does a complex quantifier prefix give us? As wc shall soon scc, the 
shift to a more general system of quantifiers. namely Mostowski's I and 

2-place predicative quantifiers, throws a new light 011 the naturc of COtll 

plex branching quantification. 

Barwise (1979) generalized Henkin's definition of standard branching 

quantifiers to I-place monotone-increasing Mostowskian quantificrs in 
the following way: 18 

(QI X» 
(36) 	 $xy =df (3X)(3 Y)[(QI x)Xx & (Qzy) Yy & 

(Q2)') (V'x)(Yy)(Xx & Y)' -+ <J>xy) 1. J<~ 
Technically. the generalization is based on a relational reading of' 'he 
Skolem functions in Henkin's uefinition. Thus, Barwisc's equivalent <)f 
Henkin's (8) is 

(37) 	 (3R)(3S) [(Yx)(3y)Rxy & (V'z)(3w)SzH' & 

(V'x)(Yy)(V'z)(V'w)(Rxy & Sz,,' -+ (J)(x. y. =. w»]. 

Ways or Branching Quantifiers 

('Icarly. Barwisc's quantificrs. like lIenkin's. are complex, not indepen

dellt, hranching quantificrs. 
Barwise suggestcd that this gencralization enables us to give English 

sentences with unl1ested monotone-increasing gencralized quantifiers a 

"lIenkinian" intcrpretation similar to Hilltikka's interpretation of (10) 

aud (II), Ilcrc arc two of his cxamples: 
zo 

(8) 	1\,10st philosophers and most linguists agree with each other about 

hranching quantification. 

(.N) <)uitc a fcw boys in my class and 1110st girls in your class have 

all dated each other. 

To interpret <JR) and (,39), we have to extend (36) to 2-place predicative 

quantificrs. This we do as follows: Let Qi and Q~ be 2-place monotonc

im.:reasing predicativc quantifiers. Then 

(<)~.r) 	 . 'I'I x, 

(40) 	 (J>xy =df 

(<)~r) . '11 
2 .1'. 

)(3 Y)[ (Qi x)( \fJ I x, Xx) & (Q~y)(\f zy, Yy) & 

(V'x)(V'y) (Xx & Yy -+ (I>x)')]. 

We can now intcrpret (38) as 


(1\1 2x) , Px. 


(41 ) Ax)' & Ayx =df 


(MZy) . Ly. 


(3.\')(3 r )[(M 2x)(Px, Xx) & (Mz)')(Ly, Yy) & 

(V'.\)(V'y)(Xx & Yy -+ Ax)' & Ayx)], 

\vith the ohviolls readings of P. L A and where "M 2 .. stand for the 2-place 

"most." We interpret (39) in a similar manner. 
Barwise cmphasized that his dcflnition of branching monotonc

increasing generalized quantifiers is not applicable to monotone-decreasing. 
non-Illonotone, or mixed hranching quantifiers. 21 This is easily explained 

thc ahsurd results of applying (36) to such quantifiers: (36) would 

rendcr any l1lonotonc-d<.~creasing branching formula vacuously true (by 
taking .\ and r to he the cmpty set); it would rcnuer false non-monotone 

branching formulas true. as in thc case of "Exactly one x and exactly one 
r stand ill the relation R:' where R is universal and the cardinality of the 

universe is largcr tllnll I. 
Bar\\'isc proposed the following dcfinition for a pair or I-place monotone

dccrea<;ing hranching quantifiers: 
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(QIX)~ 
(42) 	 /clJxY =,Ir (3X)(3 Y) [(Ql x) Xx & (Q2Y) }~I' & 


(Q2Y) (Yx)(Yy)(<I)xy ---I> Xx& }~,.)J.22 


Definition (42), or its counterpart for 2-place quantifiers, provides an 
intuitively correct semantics for English sentences with a pair of ul1Ilestcd 
monotone-decreasing quantifiers. Consider, for instance, 

(43) 	Few philosophers and few linguists agree with each other about 


branching quantification. 


As to non-monotone and mixed branching quantifiers, Barwise left the 
former unattended and skeptically remarked about the latter, "There is no 

sensible way to interpret 

QI 
X>(s) 	 A (x, y) 

Q2Y 

when one [quantifier] is increasing and the other is decreasing. Thus, for 
example, 

(t) 	?Few of the boys in my class and most of the girls in your class 
have all dated each other. 

appears grammatical, but it makes no sellse."2J 
Barwise's work suggests that the semantics of branching quantifiers 

depends on the monotonic properties of the quantifiers involved. The 
truth conditions for a sentence with branching monotone-increasing quan
tifiers are altogether different from the truth conditions for a sentence with 
branching monotone-decreasing quantifi(;rs. and truth for sentenccs with 
mixed branching quantifiers is simply undefinable. Is the meaning of 
branching quantification as intimately connected with mOllolonicity as 
Barwise's analysis may lead one to conclude? 

First, I would like to observe that Barwise interprets branching 
monotone-decreasing quantifiers simply as independent quantifiers: whcll 
Q 1 and Q2 are monotone-decreasing (42) is logically equivalent to my (23). 
The latter definition, as we have seen, has meaning-- the same meaning 
for all quantifiers, irrespective of monotonicity. On this first-order rcad
ing. (43) says that the relation of mutual agreement about branching 

quantification between philosophers and linguist'.' include" (at tn0"U fe\\ 
philosorhers in its domain and (at most) fe\\ lingu;q" in it" range 

Barwise e~plained the limited applicability of (36) in the follo\\ ing \\ a~: 

Every fonnula of the form 

Ways of Branching Quantifiers 

(44) (Qx)(1>x, 
where Q is monotone-increasing, is logically equivalent to a second-order 

formula of the form 

(45) (3X) [(Qx) Xx & (Yx)(Xx -+ <1>x)], 


which is structurally similar to (36). This fact establishes (36) as the correct 

definition of branching monotone-increasing quantifiers. However, (45) 


is not a second-order representation of quantified formulas with non

monotone-increasing quantifters. Hence (36) does not apply to branching 

quantilicrs of the latter kind. The definition of branching monotone

decreasing quantifiers by (42) is explained in a similar manner: when Q is 


monotone-decreasing, (44) is logically equivalent to 

(46) 	 rLf)[(Qx)Xx & ('1x)(<I>x -+ Xx)], 

which is structurally similar to (42).24 
I do not find this explanation convincing. Linear quantifiers vary with 

respect to ll1onotonicity as much as branching quantifiers do, yet the 
semantic definition of linear quantifiers is the same for all quantifiers, 
irrespective of Illollotonicity. Linear quantification is also meantngful for 
all cOnihillOtiOllS of quantifiers. Why should the meaningfulness of the 
hranching form stop short at mixed monotone quantifiers? Moreover, if 
the second-order representation of "simple" first-order quantifications 
determines the correct analysis of branching quantifications, Barwise has 
not shO\vn that there is no second-order representation of (44) that applies 

Wlirer.wlly. without regard to monotonicity. 

6 	 A General Definition of Complex, Henkin-Barwise 

Branching Quantifiers 

The conception of complex branching quantification embedded in Bar
wise's (36) assigns the following truth conditions to branching formulas of 

the 101m 

() 1 x)"
'-. 

(47) 	 )'el'.H. 

(V2 r )/ . 


wherc VI and Q2 arc monotone-increasing: 

DEItNIIION I The branching formula (47) is true in a model '11 with 
universe A ifT there is at least one pair, (X, Y), of subsets of A for which 

til:, 1".,11,'\\ in~ c0 rd i ti()T1" hold: 
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I. X satisfies the quantifier condition QI . 

2. Y satisfies the quantifier condition Q2' 

3. Each element of X stands in the relation <1,'11 to all the clements of Y. 

The condition expressed by (3) I shall call the each-all (or all-all) condition 
on (X, Y) with respect to <1>91. We can then express definition I lIlore 

succinctly as follows: 

DEFINITION 2 The branching formula (47) is true in a model'll with a 
universe A iff there is at least one pair of subsets of the universe satisfying 

'! 
the each-all condition with respect to q,'1I, with its first element satisfying 

Q1 and its second element satisfying Q2' 

Set-theoretically, definition 2 says that <1>91 includes at least one Cartesian 

product of two subsets of the universe satisfying Ql and (.)2 rcspec..:tivcly. 
(The "massive nucleus" of section 2 above was an informal term for a 
Cartesian prod uct.) 

Is the complex quantifier condition expressed hy definition 2 menningful 
only with respect to monotone-increasing quantiflers? I think that the idea 
behind this condition makes sense no matter what quantifiers Q, and Q2 
are. However, this idea is not adequately formulated in definition 2 as it 
now stands, since this definition fails to capture the intended condition 
when QJ and/or Q2 are not monotone-increasing. In that case Q, and/or 

Q2 set a limit on the size of sets X and/or Y such that (X, Y) satisfies the 
each-all condition with respect to <1>91: (47) is true only if a Cartesian 

product small enough or ofa particular size is included in q,'1I. But defini
tion 2 in its present form cannot express this condition: if q, '.11 includes a 

Cartesian product larger than required, definition 2 is automatically satis
fied. This is because for any two nonempty sets A and H, if Ax B is (J 

Cartesian product included in q,'1I. so is A' x 8', where A' and H' are any 

proper subsets of A and 8 respectively. The difficulty, however. appears to 
be purely technical. We can overcome it by demanding that the condition 
be met by a maximal, not a suh-, Cartesian product. I n other words, only 
maximal Cartesian products included in q, '11 should count as satisfying the 
each-all condition. 

I thus add a maximality condition to definition I and arrive at the 

following general definition, in which no restrictions are set 011 Q I and Q2: 

DEFINITION 3 The branching formula (47) is true in a model'll with 

universe A iff there is at least one pair (X. Y) of subsets of A for which 

Ways or Bram.:hin!! Quanlilicrs 

the following conditions hold: 
I. X satisfies quantifier condition Q1' 
2. r satisfies quantifier condition Q2' 
J. Each clement of .I" stands in the relation <1>'11 to all the elements of 

r. 
4. The pair (X, Y) is a maximal pair satisfying (3). 

Referring to (3) and (4) as "the maximal each-all condition on (X, Y) 
with respect to <1>," we can reformulate definition 3 more concisely as 

follows: 

DEFINITION 4 The branching formula (47) is true in a model ~ with 
universe A ilf there is at least one pair of subsets in the universe satisfying 
the maximal e(1ch-a/l condition with respect to <1>'11 such that its first 

clement satisfies Q I and its second element satisfies Q2' 

I thus propose to replace (36) with 

t<)1 x) 

(4H) <1>.\')' =df> 
(V2Y) 


(:lX)(HrH (Q( x)Xx & (Q2)') Yy & (Vx)(Vy)(Xx & Yy -) q,xy) & 


(V.X')(V Y')[(Vx)(Vy)«Xx & Yy -) X'x & fly) & 

(X'x & Y'y -) q,xy» -) 

(Vx)(Vy)(Xx & Yy +-+ X'x & y'y)]} 

as the definition of Henkin-Barwise complex branching quantifiers. We 

call rewrite (4R) more succinctly, lIsing common conventions, as 

(V,x)"" 
(49) 	 )d}xr =df 


(V2Y)/ 


(lX) (::I Y)I(Q\.'dXx & (Q2)') Yy & X x Y s; <I) & 


(V X' )(V Y' )(X x r s; X I X Y' s; <I. -) X x Y = X' x Y / )]. 


More concisely yet. we have 


(Q\X» 

(50) (I.xy =df 

(Q2.1') 

(jX)(3 Y)\(Q, x)Xx & (Q2.1') yy & 
(VX')(VY')(XX )'s;X'x Y's;<lh-tXx Y=X'x Y')]. 



Chapter 5 	 122 

It is easy to see that whenever Ql and Q2 are monotone-increasing, (49) 

is logically equivalent to (36). At the same time, (49) avoids the problems 
that arise when (36) is applied to non-monotone-increasing qlJantifjcrs. 

Maximality conditions are very common in mathclllatks. 
when a structure is maximal, it is "complete" in some relevant sense. 25 The 

Henkin-Barwise branching quantifier prefix exprcsses a certain conditioll 

on sets (subsets of the quantified relation). And when we talk about sets, 

it is usually maximal sets that we are interested in. Indeed, conditiolls on 

sets are normally conditions 011 maximal sets. Consider. for installce, the 

slatement "Three students passed the test." Would this statement be true 

had 10 students passed the test? But it would be if the quantifier "13" set 

a condition on a non maximal set: a partial extension of " x is a student who 

passed the test" would satisfy that condition. Consider also "No student 

passed the test" and "Two people live in America." 
The fact that quantification in general sets a condition 011 maximal sets 

(relations) is reflected by the equivalence of any first-order formula of the 
form 

(Qx)<I>x, 

no matter what quantifier Q is (monotone-increasing, monotone-decreasing 
or non-monotone), to 

(51) (3X)[(Qx)Xx & X s; <I> & (V'X')(X X's; <1> ---} X' X)j, 

which expresses a maximality condition. The logical equivalence of(44) to 

(51) 	provides a further justification for the reformulation of(36) as (49). 

We have seen that the two conceptions of nonlinear quantification dis
cussed so far, independence (first-order) and comp/cx dependence (second

have little to do with monotonicity or its direction. The two con

ceptions lead to entirely different definitions of the branching quantilier
prefix, both, however, universally applicable. 

Linguistically, my suggestion is that to determine the truth conditions 

of natural-language sentences with a nonlinear quantifier-prefix, one has 
to ask not whether the quantifiers involved are monotone-increasing, 

monotone-decreasing, etc. but whether the prefIX is independent or COI11

plex. My analysis points to the following clue: Complex Henkin-Rarwise 

quantifications always include an inner each-all condition, explicit or 

Independent quantifications, on the other hand. do not include 

any such condition. 

Ilarwise actually gave several examples of branching sentences with an 

explicit each-all condition: 

123 
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a few boys in my class and most girls ill your class_nave all(J9) 
dated each other.26 

21 
rv10st or the dots and most of the stars are all connected by lines. 

Such an explicit "all" also appears in his 
in your class have(t) 	Few of the boys in my class and most of the 

28(//1 d.ltcd each other.
 

I therefore suggest that we interpret Barwise's (t) as an instance of (49). 

SOIllC natural examples of Henkin-Barwise complex branching quanti 


fiers in English involve non-monotonic quantifiers. For example, 


A couple of boys in my class and a couple of girls in your class were 

0/1 dating each other. 

(54) All cvcn nmnber of dots and an odd number of stars are all 

cOlillectcd by lines. 

Another expression that seems to point to a complex branching structure 

(which indicates a second-order form) is "the same." Consider 

(55) Most of my friends have applied to the same few graduate programs. 

To interpret the above sentences accurately, we have to extend (49) to 
2-pI;ICC ql1(llllif1ers. As ill the case of 2-place independent' quantifiers (see 

section 4 .lbove), we can apply the notion of complex each-all quantifica
tion in more than one way. I will limit my attention to one of these, 

defining "Q\ As and Q2 Bs all stand in the relution R" as "There is at least 

one maximal Cartesian product included in A 1 R t B with Ql As in its 

domain ,lIld Q2 IJs in its range." I n symbols, 

(Gf\) 'PtX, 

(56) 	 (I)x), =df 

«)~y) '1'2,1', 

r )I ( Q 7x )( 'IJ 1x, Xx) & (Q ~ y)( \f' 2Y' Yy) & 

(V' X' )( V' Y')( X x}' X' x Y' s; 'I' 1 1<I> t \f' 2 +-+ 

X x r X' x f')j. 

Linguistically, my accollllt explains the meaning (function) of inner quan

tifiers that, like Barwise's "all." do not bind allY new individual variables 

ill addition to those bound by 0\ and Q2' A "standard" reading of such 
quantifiers is problematic, since all the variahles are already bound by the 
outer quantifiers. On Illy analvsis.these quantifiers point to a second-order 

condition. 

http:other.26
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Going back to the controver!'y regarding Bintikka's reading of natural
language sentences with symmetrical quantifiers. we can rcformlilate Fall

where .:J I represents any (first-order) maximal quantifier-condition on a 
pair of subsets of the universe with respect to d)'II. The following are a few 

connier's criticism as follows: Some natural-language scntenccs with UI1 ~;, instanccs of :II: 

nested quantifiers do not appear to contain, explicitly or implicitly. an 
inner each-all quantifier condition. On my analysis. thesc arc not f Icllkill
Barwise branching quantifications. Whcther lIilllikka's (10) includes an 

implicit each-all condition 

Hintikka's claim that (10) is a Henkin sentence is to interpret "each" in 
"each other" as elliptic for "each-all.") 

The reading of a natural-language branching quantification wil h no 

explicit each-all condition involves various linguistic considcrations. Our 
logical point of view has so far indica ted three possible rcadings: as an 

independent quantification, as a linear quantification, or as a Hcnkin
Barwise complex quantification. But as wc will prescntly see, these arc not 
the only ontions. In the next section I will introduce a 

that extends considerablv the scope of nonlincar nl1!lllllfil'~llinn 

Branching QuanHfiers: A Family of Interpretations 

The Henkin-Barwise definition of branching quantifiers, in its narrow as 
well as gcneral form, includcs two qualltificr conditions in addition to 
t hose explicit in the deflniendum: the outer quantifier condition "thcre is 
at least one pair (X, Y)" and the inner (maximal) ('och-all quantificr 
condition. By generalizing these conditions, we arrive at a new definition 
schema whose instances comprise a family of semantic internretations for 
multiple quantifiers. Among the members of this 
independent branching quantifiers of section 4 and the Hcnkin-Banvise 
complex quantifiers of section 6. This generalized definition schcma de
lineates a totality of forms of quantifier dependence. Degencratc dcpcn
dence is independence; linear dependence is a particular case of (nol1

degenerate) Henkin-Barwise dependence. 29 

We arrive at the definition schema in two steps. First we gencralizc thc 
inner each-all quantifier condition (sec definitions I 4), and wc obtain the 
'ollowinlJ schema: 

GENERALIZATION I A branching formula of the form (47) is truc in a 
model ~l with a universe A iff for at Icast one pair (X. Y) of subscts of 
the universe satisfying the maximal quantifier condition -:2, with respect to 
<J>'ll, X satisfies Qt, and Y satisfies Q2' 

('ollllilioll //: ow' 011(' The pair (X, r) is a maximal pair such that each 
c1cment or ,,r stands in thc relation (1)11 to exactly onc element of Yand for 
cach c1cmcnt or Y thcre is exactly one element of X that stands to it in the 

rcla t ion (I> '1', 

COlldilion 11: clIch 111'0 or morc Thc pair (X, Y) is a maximal pair such 
that e~,ch clcmcnt of X stands in the relation <1>'11 to two or morc elements 
of }' and for each elcment of Y there is an element of X thal stands to it 

in the relation (1)'11. 

CO/lditioll c: ('(lch more Iliall The pair (X, Y) is a maximal pair 
such that each clemcnt of X stands in the relation <b'll to more than 
c1cmcnts of Y and for each element of Y there is an clement of X that 

stands to it in the relation 

('ollt/ilioll /): cach (II 1e1iSI lla(l/aI leasl ha(l- cach The pair (X, Y) is a 
maximal p,lir slIch that cach clcment of X stands in the relation <bill to at 

least hall' the c1elllellts or Y ami to each clcmcnt or Y at least half the 

elemcnts of.X stand in tile relation <»'1'. 

\Vc: call find natural-language sentences that exemplify ger.eralization 

substitlltilH! conditions A Ihrom!ll 0 for 
and most of my left-hand gloves Most of my 


match (onc to OIlC). 


(5R) Most of my fricnds saw at Icast two of the same few TrulTaut 


lIlovies. 


(59) The same few characters repeatedly appear in many of her early 

novcls. 

Most of thc boys and most of thc girls in this party are such that 
(00) 
each hoy has chased at least half the J!.irls and each girl has bcen 

chased bv at least half thc 

The adaptation of gcncralization I to 2-place quantifiers, needed in order 
to give t hesc sentcnccs prccise intcrpretations. is analogous to (56). 

\Ve can verify the corrcctncss of our interprctations by checking whether 
(57) to (60) can hc put ill the following canonical forms: 

(61) 1\1ost or Illy right-hand gloves and most of my Icft-hand gloves 
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are such that each of the former matches exactly one of the latter 
and vice versa. 

(62) Most of my friends and few of Truffaut's movies are stich that each 
of the former saw at Jeast two of the latter and each of the Jalter 
was seen by at least one of the former. 

(63) Few characters and many of her early novels are such that each 

of the former appears in more than_of the latter and each of the 
latter includes at least one of the former. 

Sentence (60) is already in canonical form. 

By replacing J2 1 in generalization I with condition E below we get the 
independent quantification of section 6. 

Condition E: each-some/some-each The pair (X, Y) is a maximal pair 
such that each element of X stands in the relation (I) '11 to some elel1lent of 
Yand for each element of Y there is some element of X that stands to it 
in the relation cl>9f. 

Thus, both independent branching quantifiers and complex, Hellkin
Barwise branching quantifiers fall under the general schema. 

The second generalization abstracts from the outermost existential con
dition: 

GENERALIZAnON 2 A branching formula of the form (47) is true in a 

model 91 with universe A iff there are }!)2 pairs (X, Y) of subsets of 
the universe satisfying the maximal quantifier condition 3 with respect to 

<1> '11 such that X satisfies QI and Y satisfies Q2' 30 
1 

The following sentences exemplify generalization 2 by substituting "by 

and large" (interpreted as "most") and "at most few" for is the 

each-all condition): 


(64) By and large, no more than a few boys and a few girls all date one 

another. 


(65) There are at mos/lew cases of more than a couple Eastern delegates 
and more than a couple Western delegates who are all on speaking 
terms with one another. 31 

The family of branching structures delineated above enlarges consider
ably the array of interpretations available for natural-language sentences 
with multiple quantifiers. The task of selecting the right alternative for a 

given natural-language quantification is easier if explicit inner and outer 
quantifier conditions occur in the sentence, but is more complicated other-

of Branchillg Quantifiers 

wise. Onc could, of course, be assisted by "context," but linguists will be 
interested in formulating general guidelines that hold across contex.ts. 
Indeed. we may look at Barwisc's claims regarding monotone-increasing 
<lnd Illollotone-decreasing English branching quantifiers in this light. 
According to Barwise, in English monotone-increasing branching quan
tHicrs (lrc usually accompanied by an inner "all," indicating a complex 
"each all structure" (with "some" as the outer quantifier condition); 
monotone-decreasing quantifiers arc usually not accompanied by an inner 
ljuantificr condition, pointing to an independent (each·· some/some-each) 
structure. These conjectures can be expressed in terms of my general 
definition schema of branching quantification (generalization 2).32 How
ever, the ncw Illultiplicity of inner and outer quantifier conditions intro
duced in thc prcsent section calls for refinement and supplementation of 
Barwisc's conjectures. 

8 Conclusion 

investigation has yielded a general deHnition schema for a pair of 
hranching. or partially ordered, generalized quantifiers. The existing def· 
illilioJls, due to Barwisc, constitute particular instances of this schema. 
The 1It''<t task is to extcnd the schema, or particular instances thereof, 
espt'cially (49), to arhitrarily large partially ordered quantifier prefixes. 
This task, however, is beyol\d the scope of the present work. 

III "Branching ()uantifiers and Natural Language" (1987), D. Wester
stithl proposed a general definition of (Barwise's) branching quantifiers 
diffelent !"rom the ones suggested here. Although Westerstahl's motivation 
\vas silllilar to mine (dissatisfaction with the multiplicity of partial defini
tions). he approached the problem in a different way. Accepting Barwise's 

dellnitiolls of monotone-increasing and monotone-decreasing branching 
quantifiers. along with van Benthem's dellnition of branching non
monotonic quantifiers of the form "exactly 11," Westerstahl constructed 

a general formula that yields the above definitions when the quantifiers 
plugged ill have the "right" kind of monotonicity. That is, Westerslahl 
was looking for all umbrella under which the various partial ex.istent 
dellnitions would fall. From the point of view of the issues discussed here, 
Westerst,lhl's approach is very similar to Barwise's. For that reason I did 
not include a separate discussion of his approach.33 As for van Benthem's 
propos:tI for the analysis of lion-monotonic branching quantifiers, his 
definition is 

http:approach.33
http:contex.ts
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(Exactly-n x) . Ax, 	 syntactically well-formed but semantically empty (loosely defined) linguis

(66) Rxy =df (3X)(3 r)(,x t:;; A & r c; lJ & 	 tic form? I am not sure what the right answer to this question is. Some of 

(Exactly-m y) . By, IXI 11&1 YI m& R X x }').J4 

For I-place quantifiers, the definition would be 

(Exactly-n x) 

(67) 	 Rx}' =df (3X)(3 Y)(IXI = If & IYI III &> 
(Exactly-my) R =.X x Y). 

Since (67) is equivalent to (68) when R is not empty, I can express van 
Benthem's proposal in terms of my second generalization by saying that 
quantifiers of the form "exactly n" tend to occur in complex quantifica
tions in which 221 is "each-all" and 222 is "the (only)." 

(68) 	 The (only) pair (X, Y) of subsets of the universe satisfying the 
maximal each-all condition with respect to R is such that X has 
exactly 11 elements and Y has exactly m clements. 

I would like to end with a few general notes. Russell, recall, divided the 
enterprise of logic into two parts: the discovery of universal "templates" of 
truth and the discovery of new, philosophically significant logical forms. 
Branching quantifiers offer a striking example of an altogether new logico
linguistic form unlike anything thought to belong to language before 
Henkin's paper. One cannot, however, avoid asking: When does a generali
zation of a particular linguistic structure lead to a new, more general form 
of language and when does it end in a formal system that can no longer be 
considered language? Henkin, for instance, mentioned the possibility of 
constructing a densely ordered quantifier prefix. Would this be considered 
language? What about a prefix of quantifiers organized in some nOI1
ordering pattern? Even the thoroughly studied form of an infinitely long 
linear prefix has yet to be evaluated with respect to our general concept of 
language. 

Another question concerns the possibility of "importing" new struc
tures into natural language. New forms continuously "appear" in all 
branches or mathematics and abstract logic. The "discovery" of branching 
prefixes in English makes one wonder whether new constructions cannot 
be introduced into natural language as well. Let us look back at Hintikka's 
"revelation" that branching quantifiers exist in English. Did Hintikka 
discover that all along we were talking about villagers' and townsmen's 
relatives hating each other ell masse (each-all hatred) when we said that 
some relative of each villager and some relative of each townsman hate 
each other? Or did he, perhaps, propose to give a new meaning to a 

the Fnglish ex.amples discllssed in the literature strike me as having had a 
dear branching meaning even before the oflicial seal of "branching quanti 
fication" was allixed to them. But others impress me a's-flaving been 

hopelessly vague before the advent of branching theory. These could have 
rr. been semantically undetermined structures, forms in quest of content. 

Prescnt-day languages have not used up all their lexical resources. Is 

logical form another unexhausted resource? 
Investigations of the branching structure in the context of "generalized" 

logic led Barwise to extend Henkin's theory. My own inquiries have led to 
an even broader approach. I n the next chapter I will return to the general 
conccption of logic developed in this book and introduce some of its philo
sophical consequences. The philosophical ramifications of "unrestricted" 
logic have never before been (publicly) investigated. I will briefly point the 
direction of some philosophical inquiries and spell out a few results. 
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The broad questions underlying this work concern the scope and limits 
of logic. Are the principles underlying modern logic fully exhausted by 

the standard system? Do generalized quantifiers signify a genuine break
through in logic? What are the boundaries of logic from the point or view 
of modern semantics? Starting with a general outlook oflogic, I proceeded 
to examine Mostowski's generalization of the standard quantiriers, tracing 
its origins to Frege's interpretation of Ilumher statements. I then used 

Mostowski's theory as a jumping board for investigating the notion of 
"logicality." The initially loose philosophical question regarding the prin
ciples of logic received specific content: What makes a linguistic expression 

into a logical term? What are all the logicalterrns? My method of HnS\\ier

ing this question was conceptual. Examining Tarski's foundatiollal work 

in semantics, I was able to identify a central motivation for constructing 
logic as a syntactic-semantic system in which logical truths and con
sequences are determined by reference to a full-hlown system of models. 

f showed that within the framework of model-theoretic semantics the 
Success of the logical project depends on the choice of logical terms. 
Inasmuch as logical constants represent the formal and necessary COIl

stituents of possible states of affairs. the system will accomplish its task. 
But the task is fully accomplished only if all forlllal and necessary cOllstit
uents arc taken into account. The standard system carries us one step to

ward the goal. It takes the full range of Tarskian or first-order Unrestricted 
Logic (UL) to achieve the objective in full. This outlook on logic is realizcd 

by logicians working within the dynamic field called "ahstract" logic. It is 
also reflected in the work of linguists seeking to ellhancc the rcsourccs for 
studying the logical structure of natural language. 

If the central claim of this book is correct, namely that standard Illathe
maticallogic, with its limited set oflogical constants, does not fully exprcss 
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the idea of logic. the question arises of whether a conceptual revision in 

the "ofIkial" doctrine is called for. Should "unrestricted logic" become 

"sl<lIldard" logic? Because of the prominent place of standard first-order 
not only ill mathematics but also in philosophy, linguistics, and 

related disciplines. at stake is a change in a very general and basic concep

tual scheme. What are the philosophical ramifications of the new concep

tioll of logic? What new light does it shed on old philosophical questions? 

Are the conditions ripe for an "official" revision? And how should the new 

developments in semantics be viewed from the standpoint of proof theory? 

1 would like to end this work with reflections on some aspects of these 

qllestions. 

Rrlision in I,ogic 

PUlll;llll Il:Is cOllvincingly argued that a change in a deeply ingrained 
conceptual schelllc is seriously cntertainable only if a well-developed alter
Illlti\'C already exists. Referring to the revolution in geometry, Putnam 
argued that the laws of Euclidean geometry could not have been aban
dOlled "hcfore someone had worked out non-Euclidean geometry. That is 

10 say, it is incollceivable that a scientist living in the time of Hume might 

havc comc to the conclusion that the laws of Euclidean geometry are false: 

'I do not know what geometrical laws are true but I know the laws of 

Euclidean geol1letry are false.'" I Principles at the very center of our con

ceptual system (Ire not overthrown unless "a rival theory is available."2 

Is there a serious alternative to standard logical theory incorporating 
the principles of Unrestricted Logic delineated in this book? The unequi
vocal answer is yes. There exists a rich body of literature, in mathematics 

as \vell as in linguistics, in which nonstandard systems of first-order logic 
satisfying (U L) have been developed, studied, and applied. Mostowski's 
and Lindslr()Il1's pioneering work led to a surge of logico-mathernatical 
resc:lI'ch. Frolll l-indstr61ll's famolls clwractcriz,l tions of "elementary 
logic" (Il)(,t) to works like Keisler's proof of the completeness of Hrst

order IOl!ic \vith the quantifier "there exist uncountahly many," the yield 

of mathematical investigations is astounding. For a representative collec
tion of ,nticlcs pillS a comprehensive bihliography of more than a thousand 

ilems. the le:Hlcr is referred to the 19R5 volume Mod('/-I1,corelic Logics, 

cdited hy Barwise and Feferman. 
In linguistics. Barwise and Cooper's 1981 paper also led to a profusion 

of literature. Gcneralized quantifiers becal11e an essential component of 

forl1l,II semantics and of the theory of Logical Form within generative 
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grammar. Representative works by van Benthem, Keenan, May, Wcstcr
shihl, and others are listed in the rcfcrences. 

Philosophically, the view that Tarskian or unrestricted logic is logic 
proper has not yet received its duc attcntion. In particular. fcw philo
sophical arguments in support of the ncw vicw appeared in print. f hope 

this book has, to some extent, filled the void. If my argumcnt is cogcnt, it 

will add a new philosophical dimension to thc support that the ncw logic 
has received from other quarters. 

2 The Logicist Thesis 

The logicist thesis says that mathematics is reduciole to logic in thc scnse 

that all mathematical theories can be formulated oy purely logicallllcans. 

That is, all mathematical constants are definaole in terms of logical COI1

stants and aI/the theorems of (classical) mathematics arc derivahlc from 

purely logical axioms by means of logical rulcs or dcrivation (and defini
tions). Now for the logicist thcsis to be mcaningful, the notions of logical 
constant, logical axiom, logical rule of derivation, and definition lllllst oe 

well defined and, moreover, so dcflned as to make the reduction 1I0ntriviai. 
In particular, it is essential that the reduction of mathematics to logic he 

carried out relative to a system of logic in which mathematical constants 

do not, in general, appear as primitive logical terms. The "fathers" of 

logicism did not engage in a critical examination of the conccpt of logic;]1 


constant from this point of view. That is, they took it for granted that there 


is a small group of constants in terms of which thc reduction is to oe 


carried out: the truth-functional connectives, thc existential (universal) 

quantifier, identity, and possibly the sCHllemoership relation. The new 


conception of logic, howevcr, contcsts this assulllPtion. If my analysis of 

the semantic principles underlying modern logic in chaptcr J is correct. 

then any mathematical predicatc or functor satisfying condition (E) can 

play the rolc of a primitive logical constant. Since mathematical COllstants 
in gencral satisfy (E) when defined as higher-Ievcl, the program of reducing 

mathematics to logic becomes trivial. Indeed, even if the wholc of mathc

matics could be formulated within pure standard first-order logic, thell 
(since the standard logical constants arc nothing more than certain partic

ular mathematical predicates) all that would have becn accomplished is a 
reduction of some mathematical notions to others. 

Whilc thc logicist program is meaningless from thc point of vicw of the 

new conception of logic, its main tenct, that mathcmatical constants arc 
essentially logical, is, of coursc, strongly supported oy this conception. 
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Indeed, Russell's account of the logicality of mathcmatics in Introduction 
to Mathematical Philosophy is in complcte agrecment with my analysis: 

There ale words thai express form.. . /\ml in every symholization hitherto invented 
of Illalitclllatical logic there are symbols having constant formal meanings .... 
Such words or symbols express what arc called 'logical constants.' Logical con
stants may he defined exactly as we defined forms; in fact, they are in essence the 
salllc thing.. . In this sensc all the 'constants' that occur in pure mathematics are 
logical constants."' 

The difTercnce betwcen the ncw conception and the "old" logicism re

garding mathcmatical constants is a matter of perspective. Both approaches 

are hascd 011 the equation that being mathematical = being formal = 

heing logical. But while the classical logicists say that mathematical con

stants arc essentially logical, the new conception implies that logical con

stants arc cscntially mathematical. Thus if the classical thesis is "the 

logicist thesis of mathcmatics," the new one is "the mathematical thesis of 

logic." Another point of diflcrence worth noting is that according to the 
IlC\\' conccption, mathematical constants are logical only whcn construcd 

as higher-level. Accordingly, the natural numbcrs, as individuals, are not 

logica I objects. But as second-Icvel entities, classes ofclasses, they are. This 
vicw is, as we saw in chapter 2, in some respccts vcry Fregcan. Frege's 

lo~i«(/I delinition of thc naturalnumbcrs takes numbers to.be higher-level 

cnl ities. i.e., classes of classes or e1asses of concepts. Indeed, the formula

tion or 11l1ll1crical statcmcnts as first-order quantifications in UL is exactly 

the salllC as Fregc's in 111e Foundations (~lArilhmetic. 

J l\ la.h<.'lIIa'ics ami Logic 

My disclission oflogicisl1l above highlighted one aspect of the relationship 

between logic and mathel1latics: in thc new conception of logic any mathe

matical constant call play thc role of a logical tcrm, subject to certain 

rcquiremellts on its syntactic and semantic definitions. However, mathe

matical constants appear in the new logic also as extralogical constants, 

and this rcl1ects another side of thc relationship bctween logic and mathe

Illatics: as logical terms, mathematical constants are constituents of logical 

frameworks in which theories of variolls kinds are formulated and their 

logical COllsequcnces arc drawil. But the "pool" of formal terms that can 

as logical constn nts is created in mathematics. The semantic defini

tion of. say, the logical quantifier "there arc 1I1lcountaoly many x" is based 

011 SOIl1C mathematical theory of sets. Similarly, the semantic definition of 

the quantifier "there is an odd number of x" is based on arithmetic. And 
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even in standard logic, the semantic definitions of the truth-functional 
connectives and the universal (existential) quantifier are based on certain 
simple Boolean algebras. These observations point to a difference between 
logic and mathematics vis-a.-vis formal terms: formal terms <Ire ('fcated in 
mathematics; they are used in logic. 

Now since logic provides a framework for theories in general. the mean

ing of formal terms can be given by a mathematical theory formulated 
within logic. We can thus picture the interplay between logic and mathe
matics as a cumulative process of definition and application. Starting with 
a logical system that applies certain elementary but powerful mathe
matical functions (Boolean truth functions, the universal/existential
quantifier function and, usually, identity) to a first-level extralogical vocab
ulary, we construct various formal theories. Such theories describe mathe
matical structures by delimiting the semantic variability of the extntlogical 
terms of the language. This is done by introducing a set of extralogical 
axioms that partition the "universe" of all models for the language into 
those that do, and those that do not, "realize" the theory. In this way the 
axioms of the theory give specific mcanings to HII nonlogical terms of the 
language. Once mathematical terms are defined within the framework of 
standard first-order logic, they can be incorporated in the superstructure 
ofa new, extended system of logic. As an example. consider the first-order 
theory of Peano arithmetic. As soon as arithmetic terms receive their 

meaning within this theory, we can convert them into logical arithmetic 
quantifiers: the numerical quantifiers, the "even" quantifier. quantitative 
comparative quantifiers ("there are fewer x's such that ... than x's such 
that "), and so on. We can now use the new logical vocahulary 
to formulate theories--mathematical, physical. etc.- that assume the 
~xistence of a machinery for counting and comparing sizes. In these 

theories we will logically conclude that, say. there are 4 Bs. given that there 
are 2 Cs, and that the number of Bs is twice the number of es. As we shall 
see below, there is an essential difference between applying mathematics 
by using mathematical terms as part of the logical superstructure and 
applying mathematics by adding extralogical mathematical constants nnd 
axioms to a theory of standard first-order logic. 

4 Ontological Commitments of Theories 

Quine is known for the thesis that the logical structure of theories in a 
standard first-order formalization reflects their ontological commitments. 
To determine the ontology of a theory.'?I formulated in natural language 
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(or a scientifk "dialect" thereof). we formalize it as a (standard) first-order 
.'1 , and examine those models of in which the extralogical

1 
tcrllls receive their intended meaning..'Y is committed to the existence of 
slIch (,hjccts as populate the universes of the intended model(s) of .r1 · 

Thus if .J includes a sentence of the form 

(I) Uncountably many things have the property P, 

then, since the notion of uncountably many is not definable in pure stan

dard first-order logic, we have to include in .'?It some theory in which 
"uncolllltably many" can be defined. Choosing a set theory with Ur

elemellts. we express (I) as 

(2) (3.\")[x is a set & x is uncountable & 

(\fy)(y E x ~ y is an individual & Py)l. 

And through (2), :Y is committed to the existence of sets. 
Now. consider what happens if we formalize .'?I within the framework 

of U L. lIsing a system !.f' that contains, in addition to the standard logical 
terms ~lIId axioms. the logical 4uantifler "ullcOllntahly many" and appro
priate axioms (e.g .. Keisler's). Ohviollsly, we do not need set theory to 
express (I) in !I'. The meaning of (I) is adequately captured by the sentence 

(Ullcollntably Illany x)Px. 

which docs not commit .'Y to the existence of sets. So with a "right" choice 

or logical vocabulary, :Y can be formalized by a theory, whose ontol

ogy consists merely of individuals. not sets. 
\Ve see that the new conception of logic allows us to save on ontology 

by augmenting the logical machinery. We can weaken the ontological 
commitmcnts of theories by parsing more terllls as logical. We no longer 
talk about till' ontological commitment of an unformalized (or pre
formalized) theory .'1 (there is no such thing!). Instead, ontological 
considerations become a factor in choosing logical frameworks for for

malizing theories. 
The examination of Quine's principle from the perspective of UL 

reveals the relativistic nature of his criterion. The comparison of ·'?It and 
.'1 highlights the crucial role played by logical constants in deciding 

2 
commitment in other theories of logic and ontology as well. Consider the 

simple. straightforward view that the commitment of a theory under a 
formalization .~ is determined by what is common to all models of .rtF. 
Ilere too the difference in logic.,1 terms between the formalizations!Yt and 
:1 of.1 results in essentially difl'erent cOl11mitments. The occurrence of 

2 
the quantifier "ullcountably many" in (3) ensures that in every model of 
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.~, P is assigned an uncountable set of individuals. But by the Luwenheilll
Skolem theorem, .r,. has at least one 1II0dei in which the predicate "x 
is uncountable" is given a nonstandard interpretation and P is assigned a 
countable set. We can thus say that :12 is cOlllmitted to an olltology of 
uncountably many objects, whereas .'T1 is nol. 

We see that logical terms are vehicles of strong ontological commitment, 
while extralogical terms transmit a relatively weak cOlllmitlllent. This 
difference in ontological import between logical and extralogical terms is 
explained by the fact that logical terms arc selllantically pre-fixed, whereas 
the meaning of extralogical terms is relative to models. To usc Putnam's 
turn of speech, extra logical terms are viewed from lI'ithin models, whereas 
logical terms arc viewed from the outside. 4 Including formal terms as part 
of the logical superstructure allows us to use them in the logic with "(I view 
from the outside." 

The distinction between "strong" and "weak" ontological commitments 
explains the difference between using mathematical notions as part of the 
logical machinery and using them as extralogical terms in theories within 
the logic. It also suggests a guideline for choosing logical frameworks. If 
you formulate, say, a physical theory and you want to usc 1'0 rill a I tools 
created elsewhere (i.e., in some mathematical theory), you might as well 
include the mathematical apparatus as part of the logical superstructure. 
This will renect the fact that you arc not interested in specifying the 
meanings of the mathematical terms but in saying something about the 
physical world, using mathematical notions which you take as given. The 
pre-fixed notions will enable you to make some very strong claims ,Ihout 
the physical world, strong in the sense that what they say docs not vary 
from one model of the theory to another. ;\11 this will be dOlle without 
compromising the usefulness of the logical framework in determining 
necessary and formal consequences. If, on the other hand, your goal is to 
define the mathematical notions themselves, you cannot construe them as 
logical, because as such their meaning would have to be given at the outset. 
You have to use undefined terms of the language (i.e., extralogical terms) 
and then construct a theory that will give these notions a distinctive 
content. 5 

Metaphysics and Logic 

What role, if any, does metaphysics play in logics based on Tarski's ideas? 
First, for Tarski, the very notion of semantics has a strong lIIetaphysie<1I 
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cOllnol<ltioll. Semantics investigates concepts having to do with the relation
ship hetween language and the world (sec page 39). The categories used in 
c1assi rying relev,lIlt features of the world are, ipso facto, an important 
r;lctor in the ,lIwlysis of stich concepts. More specifkally, as we have seen 
earlier in the book, it is crucial for Tarski that an adequate system of logic 
yield consequences that hold necessarily of reality. In that way meta
physics provides an important criterion for evaluating logical systems 
vis-;I-vis their goal. Utlt the role of metaphysics docs not end with this 
extern;1I criterion. To see the metaphysical dimension of Tarski an seman
tic" 11IOre clearly, it might be well to contrast his model-theoretic method 
with another type of theory, which, following Etchel11endy 1990, I will call 
"interpretational." The interesting feature of interpretational semantics 
frol11 my point of view is that it purports to ensure the satisfaction of 
Tarski's metaphysical condition by purely syntactic means. The inter
pretational defillition of "logical consequence" is the following: 

I>ITINIIION Lei The sentence X is a logical consequence of the set of 
sentences K ilf there is no permissible substitution for the nonlogical 
terl1ls ill the sentences of K and in X that makes all the former true and 
the latter hllse. 

(;\ suhstitution is permissible if it is uniform and it preserves syntactic 
categories.) This definition, in essence, goes back to Bolzano (1837). It can 
also he found in l110dern texts, e.g., Quine's Philosophy (~lLogic (1970). 

The distinctive feature of the interpretational test for logical conse
quence is that it is based on substitution of strings of symbols. Definition 
(1,(") docs not t,lke into account anything but grammar and the distribu
tioll or truth values to all the sentences of the language. Thus to the extent 
tlwt syntactic analysis alld a list of truth values arc all that are needed to 
determine logical truths and consequences, interpretational semantics has 
lIothing to do with metaphysics. 

Tarski rejected the substitutional definition of "logical consequence" 
just for that reason. The success of interpretational semantics depends on 
the expressive power of the lallguage. Relevant possible states of affairs 
may not be taken illto account if the language is too poor to describe them. 
Thus, consider a language in which the only primitive nonlogical terms are 
the individual constants "Sartre" and "Calllus" and the predicates "x is 
;Ictive in the French Resistance" and "x is a novelist." In this language the 
sentence 

(4) S;Jrtll~ was active in the French Resistance 

5 
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will come out logically true under the substitutional test. BlIt obviollsly, 
(4) is not necessarily true. 

r Etchemendy pointed out another problem with interpretational theory 
:,! due to its syntactic character. 6 In interpretational "semantics," as in llIodel
" 

r theoretic semantics, "logical consequence" and the other logical concepts,: 
are defined relative to a set of logical constants. But in interpretational 
semantics, the set oflogical constants is an arhitrary set of terms, 

because the interpretational theory does not oficr a guide for determining 
whether a term is logical or not. Logical and extralogical terms arc defined 
by use, and for all that interpretational semantics has to say, any term 
might be used either way. What Quine calls the rel11arkable concurrence 
of the substitutional and model-theoretic definitions of "logical conse
quence" for standard first-order logic is no more than a "happy" accident. 7 

Since the standard logical constants do not form a grammatically distinct 
group, they are, from the point of view of interpretational semantics. 
indistinguishable from other terms that can also he held constant ill the 

test. Thus even if every individual, property, and relation 
"participating" in relevant possible states of affairs has a name in the 
language, some divisions of terms into the logical and extralogical will 
yield unacceptable results. Suppose, for instance, that expressions naming 
Sartre and the property of being active in the French Resistance are 
included in the set of/ixed(i.e., logical) terms. Then (4) will again turn out 
to be logically true. (See chapter 3.) 

Tarski's semantics avoids the two problems indicated above by lIsing 

a semantic apparatus which allows us to represent the relationship be
tween language and the world in a way that distinguishes rormal and 
necessary features of reality. The main semantic tool is the model, whose 
role is to represent possible states of affairs relative to a given .....o~ue ..... 

Since any set of objects together with an "interpretation" of the non
logical terms within the set determine a model, every possible state of 
affairs vis-a-vis the extralogical vocabulary is represented (extensiollally). 
Furthermore, the choice of logical constants is constrained by the require
ment that the logical superstructure represent formal, metaphysically un
changing parameters of possible states or affairs. (It should be noted that 
"possibility" in this context is "formal possibility." Therefore, thc totality 
of models reflects "possibilities" that in general metaphysics might be 
ruled out by nonformal considerations. That is to say, the notion of 

nllpr',,; ... n the choice of models is wider than in mphl.,'l\l.,;"" 
proper.) 
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Although metaphysical considerations are central to Tarskian seman
tics. only the most basic and general metaphysical principles are taken into 
account. The historical Tarski expressed a dislike for "abstruse" philo
sophical theories. The notions of necessity and possibility he used were, he 
emphasized, the common, everyday notions, not the philosopher's. I think 

Tarski's mistrust of philosophy is not warranted, but the claim that the 
philosophical foundation of logic should not rest on the web of philo

controversies regarding modalities appears to me sound. Thus the 
vic,v underlying the new conception of logic, that the mathematical "coor
dinates" of reality do not change from one possible world to another (and 
therefore mathematical constants can, in general, play the role of logical 
constants), is based on a basic, generally accepted belief about the nature 
of reality. 

We cannot rule out. howevcr. divergence or opinions even with respect 
to "core" metaphysical principles. And for those who do not share the 
"COllllllon" helief regarding the nature of mathematical properties, I pro
posc the following relativistic view of logic: we can look at the definition 
of "logical terms" ill chanter 3 as a schema saying that to treat a term as 

a rigid, formal property or function (fixed 
across possmlc states or allairs) and define it in accordance with conditions 
(l') to (F). It is then left for the user to determine whether or not it is 
appropriate to treat a given term in that way. (A similar strategy will 

enable one to reconcile nominalistic compunctions with the new concep
tion: depending on the metalinguistic resources one finds acceptable, one 
will construe those mathematical predicates that are definable in one's 
language as logical constants.) 

The foundations of Tarskian semantics reach deep into metaphysics, 
but the link between models and reality may have some weak joints. In 

Tarski has never shown that the set-theoretic-structures that 
make lip models constitute adequate representations of all (formally) 
possible stales of affairs. This issuc is beyond the scope of the present 
hook. btlt two questions that may arise are the rollowing: Is it formally 
necessary that reality consist of discrete, countable objects of the kind that 
can be represented by Ur-elements (or other constituents) of a standard set 
thcory? Does the standard model-theoretic description of all possible states 
of affairs have enough parameters to represent all relevant aspects of 
possihlc situations (relcvant, that is. for the identification of formally 
nccessary consequcnces)'! These and similar questions lie at the bottom of 
nonstandard models for physics, probablistic logic, and, if we put aside 

such discourse theories as "situation semantics." 
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6 Proof-Theoretic Perspective 

The philosophical justification of the new conception of logic is based on 
an analysis of certain semantic principles underlying modern logic. What 
about proof theory? Should we not set proof-theoretic standards for an 
adequate system of logic, for example. that it be complete relative to an 
"'acceptable" deductive apparatus? The new logic. one would then object. 
surely fails to comply with this requirement! I think this judgement is 
premature. The "new conception of logic" is a result of reexamining the 
philosophical ideas behind logical semantics in response to certain mathe
matical generalizations of standard semantic notions (Mostowski and 
others). There is no sense in comparing the generalized semantics with 
current un- or pre-generalized proof theory. To do justice to the new 
conception from a proof-theoretic perspective, one has to cast a new. 
critical look at the standard notion of proof. This task may be exacting 
because there is no body of mathematical generalizations in proof theory 
directly parallel to "generalized logic" in contemporary model theory. 
However, if the new philosophical extension of logic based on semantics 
is significant, it poses a challenge to proof theory that cannot he over
looked. I can put it this way: if Tarski is right about the basic intuitions 
underlying our conception of logical truth and consequence, and if my 
analysis is correct, namely that these intuitions are not exhausted by 
standard first-order semantics, then since standard first-order logic has 

equal semantic and proof-theoretic power (completeness), these intuitions 
are not exhausted by standard first-order proof theory either. Semantically, 
we have seen, it suffices to enrich the superstructure of first-order logic by 
adding new logical terms. But what has to be done proof-theoretically? I 
hope that future researchers will take up this question as a challenge. 

Appendix 

Chapter 2, t Section 2 

DEFINITION I Let A be a set. A qualll(fier 011 A is a function 

q : 1'(,.1) -- {T. F} 
sllch that if III : A --io A is an automorphism (permutation) of A, i.e., m is 

one-to-one and onto A. then for every B ~ A, 

(/(",(11)) q(l1). 


where m( B) is the image of IJ undcr m. 


It is easy to see that Boolean combinations of quantifiers on A are also 


quantilicrs on A. 


DEFINITION 2 Let rJ. be a cardinal number. A 2-partitioll oj rJ. is a pair of 


cardinals (fl. )') such that {1 + }' rJ.. 


DHINIIION J Let ({1. r)a be the class of 2-partitions of rJ.. A cardinality 


.tim('tion 011 2-parlith'IlS (~lrJ. is a function t : (fJ, }')a -- {T, F}. 


THEOREM I (M ostowski 1957.) Let A be a set. Let .'Y be the set of car

dinality functions on 2-partitions of rJ. = IA I. Let!} be theset.of quantifiers 

011 A. Theil thcre exists a one-to-one function h from .r onto fl defined 


as follo\vs: 

For any I E :1, h(1) = the quantilier q on A such that for any B £; A, 


(I (B) t (IJJI, IA -- B I). 


I will symbolize a quantifier q on A as QA' Given a quantifier on A, Q... , I 
will call the cardinality fUllctioll t satisfying the above equation the car

dillalily cOIlIllcrpart of QA and symbolize it as t<J. 
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