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subgroup “fight their own war.” These siluations are described concisely

in the sentences below.
(117) Every four students will reccive a room.
Kol arba’ah studentim yekablu heder.
(118) Every several soldicrs fought their own war.
Kol kama hayalim lahamu at milhamtam shelahem.
Every four” and “every several” (in the sense indicated above) are na-
l.urally understood as strong relational quantifiers that distinguish parti-
tions of a certain size in the domain of the quantified relation.

Strong relational quantifiers

Strong relational quantifiers are quantificrs satisfying the strongest in-
variance condition {d) in Higginbotham and May’s list but ot (a) through
(c). As we have seen above, “couple” quantificrs fall under this category.
Other genuinely strong relational quantifiers are quantifiers rcquiring the
detection of sameness and difference across domains. Thus the quantificr
“Reflexive xy™ is a strong quantificr, as are all quantifiers attributing order
properties to relations in their scope. Consider the following cxumblcs:
(119) Parenthood is an antireflexive relation.

(120) Forty workers elected a representative from among themselves.

We have completed the description of first-order Unrestricted Logic
(UL) based on the philosophical conception developed in chapter 3. This
conception was formally and linguistically elaborated in the present
chapter. Along with Lindstrom’s original semantics, | have proposed a
“‘constructive” method for representing logical terms with ordinal func-
tions. This method constitutes a natural extension of Mostowski’s work
on |-place predicative quantifiers. Some philosophical issucs concerning
lvhc new conception of logic will be discussed in chapter 6. But first I would
like to investigate the impact of the generalization of quantiliers on an-
other new logical theory. This theory has to do not with logical particles
but with complex structures of logical particles. It is the theory of branch-
ing quantification.

Chapter 5
Ways of Branching Quantifiers

I Introduction

Branching quantifiers were first introduced by L. Henkin in his 1959 paper
“Some Remarks on Infinitely Long Formulas.” By *“‘branching quanti-
fiers™ Henkin meant a new, nonlinearly structured quantifier prefix whose
discovery was triggered by the problem of interpreting infinitistic formulas
ol a certain form.! The branching (or partially ordered) quantifier prefix
is, however, not essentially infinitistic, and the issues it raises have largely
been discussed in the literature in the context of finitistic logic, as they will
be here.

We would eventually like to know whether branching quantification is
a genuine logical form. But today we find ourselves in an interesting
sitnation where it is not altogether clear what the branching structure is.
While Henkin's work purportedly settled the issue in the context of stan-
dard quantifiers, Barwisc’s introduction of new quantifiers into branching
theory reopened the question. What happens when you take a collection
of quantifiers, order them in an arbitrary partial ordering, and attach the
result to a given formula? What truth conditions are to be associated with
the resulting expression? Are these conditions compositionally based on
the single quantifiers involved? Although important steps toward answer-
ing these questions were made by Barwise, Westerstahl, van Benthem, and
others, the question is to my mind still open. Following the historical
development, Fwill begin with standard quantifiers.

Initially there were two natural ways to approach branching quantifica-
tion: as a gencralization of the ordering of standard quantifier prefixes and
as a generalization of Skolem normal forms,
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A generalization of the ordering of standard quantifier prefixes

In standard modern logic, quantifier prefixes are lincarly ordered, both
syntactically and semantically. The syntactic ordering of a quantifier pre-
fix {(Qyx), ..., (Qnx,)> (where Q; is either V or 3 for 1 < i < n) mirrors
the sequence of steps used to construct well-formed formulas with that
quantifier prefix. Thus, if

(M Quxy) - (Quxa) (x4, .., X,)

is a well-formed formula, of any two quantifiers Q,x; and Q;x; (I <i#
J < n), the innermore precedes the outermore in the syntactic construction
of (1). The semantic ordering of a quantifier prefix is the order of deter-
mining the truth (satisfaction) conditions of formulas with that prefix, and
it is the backward image of the syntactic ordering. The truth of a sentence
of the form (1) in a model A with-universe A4 is determined in the following
order of stages:?

1. Conditions of truth (in ) for (Q,x,)¥,(x,), where
W =(Qax2) - (Quxp)®P(xy, X5, .oy X,)

2. Conditions of truth for (Q,x,)¥,(x,), where
¥y =(Qax3) ... (Qux,)P(ay, x5, X3, ..., x,)
and g, is an arbitrary element of A4

n. Conditions of truth for (Q,x,)'¥,(x,), where
W, =®a,, ay,...,0,.1, X,)
and a,, ..., a,-, are arbitrary elements of 4

We obtain branched quantification by relaxing the requirement that
quantifier prefixes be linearly ordered and allowing partial ordering in-
stead. It is clear what renouncing the requirement of linearity means
syntactically. But what does it mean semantically? What would a partially
ordered definition of truth for multiply quantified sentences look like?
Approaching branching quantifiers as a generalization on the ordering of
quantifiers in standard logic leaves the issue of their correct semantic
definition an open question.

A generalization of Skolem normal forms
The Skolem normal form theorem says that every first-order formula is
logically equivalent to a second-order prenex formula of the form

2 G- ) Vxy) .. (Yx,),

3

*
k
A
%

Ways of Branching Quantifiers 107

where x,, ..., x, are individual variables, f, ..., f,, are functional vari-

ables (m, n > 0), and @ is a quantifier-free formula.® This second-order

formula is & Skolem normal form, and the functions satisfying a Skolem
normal form are Skolem functions.

The idea is roughly that given a formula with an individual existential
quantifier in the scope of one or more individual universal quantifiers, we
obtain its Skolem normal form by replacing the former with a functional
existential quantifier governing the latter. For example,

3) (VXY E)P(x, y, 2) R

is equivalent to

(4) FHV)VPLx, y, f2(x, )]

The functional variable £? in (4) replaces the individual variable z bound

by the existential quantifier (3z) in (3), and the arguments of /  are all the

individual variables bound by the universal quantifiers governing (3z)
there. It is characteristic of a Skolem normal form of a first-order formula
with more than one existential quantifier that for any two functional
variables in it, the set of arguments of one is included in the set of
arguments of the other. Consider, for instance, the Skotem normal form of

(5) (VX)E(V2)@w)d(x, y, z, w), ’

namely,

(6) (31" (3H) (V) (V2)[x, £ (x), 2, g2(x, 2)].

In general, Skolem normal forms of first-order formulas are formulas of

the form (2) satisfying the following property:

(7) The functional existential quantifiers (3f,), ..., (3f,) can be ordered
in such a way that for all | <i,j < m, if (3f;) syntactically precedes
(3f,), then the set of arguments of f; in & is essentially included in
the set of arguments of f; in ®.*

This property reflects what W. J. Walkoe calls the “‘essential order” of

linear quantifier prefixes.®

The existence of Skolem normal forms for all first-order formulas is
thought to reveal a systematic connection between Skolem functions and
existential individual quantifiers. However, this connection is not sym-
metric. Not all formulas of the form (2), general Skolem forms, are expres-
sible in standard (i.e.. linear) first-order logic. General Skolem forms not
satisfyving (7) are not.

Itis natural to generalize the connection between Skolem functions and
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ization requires that first-order quantifier prefixes not be in general
linearly ordered. The simplest Skolem form not satisfying (7) is

(8) A (Ee"H (V) (V)D[x, /' (v), 2, 8" ()]

Relaxing the requirement of syntactic linearity, we can construct a “first-
order” correlate for (8), namely

(Yx)(3y)
(9) >(I)(x, y, 2, w).
(V2)(3w)

We see that the semantic structure of a partially ordered quantifier
prefix is introduced in this approach together with (or even prior to) the
syntactic structure. The interpretation of a first-order branching formula
is fixed to begin with by its postulated equivalence to a second-order,
linear Skolem form.

Do the two generalizations above necessarily coincide? Do second-
order Skolem forms provide the only reasonable semantic interpretation
for the syntax of partially ordered quantified formulas? The definition of
branching quantifiers by generalized Skolem functions was propounded
by Henkin, who recommended it as “natural.” Most subsequent writers
on the subject took Henkin’s definition as given. I was led to reflect on the
possibility of alternative definitions by J. Barwise™s paper “On Branching
Quantifiers in English” (1979). Barwise shifted the discussion from stan-
dard to generalized branching quantifiers, forcing us to rethink the prin-
ciples underlying the branching structure. Reviewing the earlicr contro-
versy around Hintikka’s purported discovery of branching quantifier con-
structions in natural language and following my own carlier inquiry into
the nature of quantifiers, I came to think that both logico-philosophical
and linguistic considerations suggest further investigation of the branch-
ing form,

2 Linguistic Metivation

In “Quantifiers vs. Quantification Theory” (1973), J. Hintikka first pointed

out that some quantifier constructions in English are branching rather

than linear. A wéll-known example is,

(10) Some relative of each villager and some relative of each townsman
hate each other.®

Hintikka says, ““This [example] may ... offer a glimpse of the ways in

which branched quantification is expressed in English. Quantifiers occur-
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ring in conjoint constituents frequently enjoy independence of each other,
it seems, because a sentence is naturally thought of as being symmetrical
semantically vis-da-vis such constituents.”” Another linguistic form of the
branching-quantifier structure is illustrated by
(11) Some book by every author is referred to in some essay by every
critic.®

Hintikka's point is that sentences such as (10) and (11) contain two
independent pairs of iterated quantificrs, the quantifiers in each pair being
outside the scope of the quantifiers in the other. A standard first-order
formalization of such sentences— for instance, that of (10) as

(12) (VOEANVHIEw)(Fx & Tz - Ryx & Rwz & Hyw & Hwy)

or
(13) (V) (V2) (33 () (Vx & Tz - Ryx & Rwz & Hyw & Hwy)
(with the obvious readings for V, T, R, and H)—creales dependencies
where none should exist. A branching-quantifier reading, on the other
hand,

(VA
(14) 1 & Tz o> Ryy & Rwz & Hyw & Hwy,

(V2) ()
accurately simulates the dependencies and independencies involved.
Hintikka does not ask what truth conditions should be assigned to (14)
but rather assumes that it is interpreted in the “usual™ way as

(15) 3713 (YN (V) {Vx & Tz = R(f'(x), x) & R(g'(2), D) &

HO M, 812 & Hig @) /1t

Hintikk a paper brought forth a lively exchange of opinions, and G.
Fauconnier (1975) raised the following objection (which [ formulate in my
own words): (15) implies that the relation of mutual hatred between rela-
tives of villagers and relatives of townsmen has what we might call a
nassive nuclens. one that contains at least one relative of each villager
and one relative of cach townsman —and such that each villager relative
in the nucleus hates @il the townsman relatives in it, and vice versa.
However, Fauconnier objects, it is not true that every English sentence
with syntactically independent quantifiers implics the existence of a mas-
sive nucleus of objects standing in the quantified relation. For instance,

(16) Some plaver of every football team is in love with some dancer of

every ballet company
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does not.? It is compatible with the assumption that men are in love with
one woman at a time (and that dancers/football-players do not belong to
more than one ballet-company/football-team at a time). Even if Hin-
tikka’s interpretation of (10) is correct, Fauconnier continues, i.e., even if
(10) implies the existence of a massive nucleus of villagers and townsmen
in mutual hatred, (16) does not imply the existence of a massive nucleus of
football players in love with dancers. Hintikka’s interpretation, therefore,
is not appropriate to all scopewise independent quantifiers in natural
language. I'illustrate the issue graphically in figures 5.1 and 5.2. The point
is accentuated in the following examples:

(17) Some player of every football team is the boyfriend of some dancer
of every ballet company.

(18) Some relative of each villager and some relative of each townsman
are married (to one another).

Villagers Villagers' Mutuat Townsmen's Townsmen
Relatives Hatred Relatives
VWl temcmr e > LN 1

VY svmmmm e >
V4 e 3
W s s TN
Figure 5.1
Football Players Love Dancars Ballet
Teams => Companies
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Is (17) logically false? Does (18) imply that the community in.question is
polygamous?

Fauconnier’s conclusion is that natural-language constructions with
quantifiers independent in scope are sometimes branching and sometimes
lincar, depending on the context. The correct interpretation of (16), for
instance, is
(19) (VX)(Vy)(32)(3w)(Fx & By — Pzx & Dwy & Lzw).

Thus, according to Fauconnier, the only alternative to ‘“‘massive nuclei” is
linear quantification.

We can, however, approach the matter somewhat differently. Acknowl-
edging the semantic independence of syntactically unnested quantifiers in
general, we can ask, Why should the independence of quantifiers have
anything to do with the existence of a ““massive nucleus” of objects stand-
ing in the quantified relation? Interpreting branching quantifiers non-
lincarly, yet without commitment to a “*massive nucleus,” would do justice
both to Hintikka’s insight regarding the nature of scope-independent
quantifiers and to Fauconnier’s (and others’) observations regarding the
multiplicity of situations that such quantifiers can be used to describe. We
arc thus led 1o search for an alternative to Henkin’s definition that would
avoid the problematical commitment. '

3 Logico-philosophical Motivation

Why are quantifier prefixes in modern symbolic logic linearly ordered? M.
Dummett (1973) ascribes this feature of quantification theory to the genius
of Frege. Traditional logic failed because it could not account for the
validity of inferences involving multiple quantification. Frege saw that the
problem could be solved if we construed multiply quantified sentences as
complex step-by-step constructions, built by repeated applications of the
simple logical operations of universal andjor existential quantification.
This step-by-step syntactic analysis of multiply quantified sentences was
to serve as a basis for a corresponding step-by step semantic analysis that
unfolds the truth conditions of one constructional stage, i.e., a singly
quantified formuda, at a time. (See section | above.) In other words, by
Frege’s method of logical analysis the problem of defining truth for a
quantified many-place relation was reduced to that of defining truth for a
series of quantified predicates (I-place relations), a problem whose solu-
tion was essentially known.'® The possibility of such a reduction was
based, however, on a particular way of representing relations. In Tarskian
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semantics this form of representation is reflected in the way in which the
linear steps in the definition of truth are “glued” together, namely by a
relative expression synonymous with “for each one of which” (“*f.e.w.”).
Thus, for example, the Fregean-Tarskian definition of truth for

(20) (Qxf’f)(Qz}’)(Qaz)R:‘(X, Ys 2)s

where Q,, Q,, and Q; are either ¥ or 3, proceeds as follows: (20) is true in
a model A with a universe A iff there are ¢,«'s in A4, f.e.w. there are ¢,5’s
in A, f.e.w. there are g5 ¢’s in A such that “R*(a, b, ¢)” is true in 2, where
d,, 42, and g5 are the quantifier conditions associated with Q. Q,, and
Q, respectively.'!

Intuitively, the view of R? embedded in the definition of truth for (20)
is that of a multiple tree. (See figure 5.3.) Each row in the multiple tree
represents one domain of R3 (the extension of one argument place of R?);
each tree represents the restriction of R® to some one element of the
domain listed in the upper row. In this way the extension of the second
domain is represented relative to that of the first, and the extension of the
third relative to the (already relative) representation of the second. Differ-
ent quantifier prefixes allow different multiple-tree views of relations, but
Frege’s linear quantification limits the expressive power of quantifier pre-
fixes to propertics of relations that are discernible in a mutliple-tree repre-
sentation.

We can describe the sense in which (all but the outermost) quantifiers in
a linear prefix are semantically dependent as follows: a linearly dependent
quantifier assigns a property not to a complete domain of the relation
quantified but to a domain relativized to individual elements of another
domain higher up in the multiple tree. It is characteristic of a lincar
quantifier prefix that each quantifier (but the outermost) is dircctly depen-
dent on exactly one other quantifier. I will therefore call lincar quantifiers
unidependent- or simply dependent.

a4

1 1 c|
h ‘7“ By

b
By
1
g,

Figure 5.3

v of Branching Quantifiers 113

i here are two natural alternatives to simple dependence: (1) no depen-
denee, i.e., independence, and (2) complex dependence. These correspond to
two ways in which we can view relations in a nonlinear manner: we can
view cach domain separately as complete and unrelativised, or we can view
a whole cluster of domains at once in their mutual relationships.

Syntactically, 1 will represent an independent quantification by

(Qyxy)

2 ) R'(xy, ..oy Xy)
(Q,x,)

and a complex quantification by
(Qyxy)

(22) 1 =DRUN,, ... X))
(QN"‘")

Of course, there are many complex patterns of dependence among quanti-
fiers. These can be represented by various partially ordered prefixes.

Our analysis indicates that the concept of independent quantification is
different from that of complex quantification. Therefore, the first question
regarding the correct interpretation of natural-language sentences with
juantifiers is, Are the quantifiers in these sentences independent

branching ¢
or complex?

4 Independent Branching Quantifiers

It is casy to give a precisc definition of independent quantification:

Q)

(23) B, 1) =g (Q V) ANP(x, y) & (Q)EX)P(x, ¥),
Q21

or more generatly,
(Qyxy)

24) DX, . X,) =gr e
(Quxa)

(Q,x)Ex) . Fx)Plxy, )& ... &
(Q,x,)3x,) ... (T, )W xy, o X,)-
This new definition of nonlinear quantification is very different from

that of Henkin’s. Independent quantification is essentially first-order. It
does not involve commitment to a ‘“‘massive nucleus” or to any other
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f:()mplex structure of objects standing in the quantified relation. Therefore
it endl?tlies u§ to anal'yze natural-language sentences with scope-independent
quantifiers 'm a .stralghtl"orward manner and without forcing any indepen-
dent quan}rﬁer into a nested position. I thus propose (23) as a delinition
of branchmg quantifiers as independent quantifiers. Linguistically, this
construe?! is SI‘Jppor(ed by the fact that “and” often appears as a “quantifier
C()‘n;:e(:‘tht’? in nat‘ural~language branching structures in a way which
?ug Itv;ndn:ate a shift from its “original™ position as a sentential connec-
lve.h ?reover, natural-language branching quantifiers are symmetrical in
muf the s'a;]ne wz:jy that the conjuncts in my definition arc. An English
sentence with standard quantifiers that appe: ify i :

. ' ppears to exemplil’
teation plify independent
(25) Nobody loves nobody,
understood as *“Nobody loves anybody.””'? I will symbolize (25) as

(~3x)
(26) Lxy
(~3y)
and interpret it as
(27) ~(@3Ex)3Fy)Lxy & ~(3y)(3x)Lxy.
By extending our logical vocabulary to I-place Mostowskian quantifiers

we w1|l.be able tq interpret the following English sentences as independent
branching quantifications:

(28) Three elephants were chased by a dozen hunters.
(29) Four Martians and five Humans exchanged insults.
(30) An odd number of patients occupied an even number of beds.

The .“mdependent" interpretation of (28) to (30) reflects a “cumulative”
rez.admg. under which no massive nucleus, or any other complex relation-
§h1p between the domain and the range of the relation in question, is
intended.!?® We thus understand (28) as saying that the relation “élc )h:in}
x was chased by hunter y” includes three individuals in its domain fm;i a
dozen individuals in its range. And this reading is captured by (23) (Sim'(
larr!y, (23) yields the cumulative interpretations of (29) and (30) oo

F?le extension of the definition to 2-place Mostowskian quantificrs
(which in this chapter I symbolize as Q? rather than Q'') will "‘Ikl
independent quantifications of the form o

Qix) | ¥, x,
3D Dxy.
(Q%J‘) ‘Pz}’.-
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Here. however, we can apply the notion of independent quantification in

several ways. Given a binary relation R, two sels A and B, and two

quantifier conditions g, and g,, we can say the following:

a. The relation R has g, As in its domain and g, Bs in its range.

b. The relation A1 Rt Bhas g, elements in its domain and g, elementsin
its range (where A1 Rt B is obtained from R by restricting its domain
to A and its range to B).

¢. The relation A1 R!B has g, As in its domain and ¢, Bs in its range.

d. The relation Rt B has g, As in its domain and ¢, Bs in its range.

It is easy to see that (a) through (d) are not equivalenl."‘ However, for the
examples discussed here it suflices to define (31) for case (c). I thus propose
as the definition of a pair of 2-place independent quantifiers

(Q%Y) "‘1-\'.

(32) AT Qi)W x, (3y) (W x&W¥y& Dxy)}&
(Q3») | ‘War (Q2)[¥,0, (X (P x & W,y & Oxp)]
When Q2 and Q} satisfy the property of living on, i.e., when (Q*x)(®x, ¥x)
is logically equivalent to (Q2x)(dx, dx & Yx), we can replace (32) with

the simpler :
Qv | ¥yx,

(33) Dxy =4 (QI0) Wy x. (3)(¥2y & Dxy)] &
(Q3r) | War. (Q21)[¥,p, GX) (¥ x & Dxy)].

Using this definition, we can interpret (34) and (35) below as independent

quantifications:
(34) All the boys ate all the apples.'*
(35) Two boys ate half the apples.
We can also analyze (28) to (30) as independent quantifications of the form
(33).'¢

What about Hintikka's (10) and Fauconnier’s (16)? Should we interpret
these as independent branching quantifications of the form {(33)? Under
such an interpretation. (10) would say that the relation of mutual hatred
between relatives of villagers and relatives of townsmen includes at least
one relative of cach villager in its domain and at least one relative of each
townsman in its range: (16) would be understood as saying that the rela-
tion of love between football players and ballet dancers includes at least
one player of each football team in its domain and at least one dancer from
each ballet company in its range. Such interpretations would be compat-
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ible with both figures 5.1 and 5.2. Later on | will suggest a test to determine
whether the intended interpretation of a given natural-language sentence
with branching quantifiers is that of an independent or complex quantifi-
cation, and this might give us a clue regarding Hintikka's and Fauconnier’s
sentences. As for the linear option, here the question is whether one pair
of quantifiers is within the scope of the other. Generally, I would say that
when “and” appears as a quantifier connective, that is, *“Q, As and Q, Bs
stand in relation R, the quantification is not linear. However, when
the quantification is of the form “Q, As R Q, Bs,” the situation is less
clear. (For further discussion, see May 1989 and van Benthem 1989.'7) |
should note that sometimes the method of semantic representation itself
favors one interpretation over another. For example, in standard seman-
tics, relations are so represented that it is impossible for the range of a
given binary relation to be empty when its domain is not ecmpty. Thus a
quantification of the form “Three As stand in the relation R to zero Bs™
would be logically false if interpreted as independent branching quanti-
fication. To render it logically contingent, we may construe it as a nested
quantification of two |-place predicative quantifiers, and this gives us the
linear reading.

S Barwise’s Generalization of Henkin's Quantificrs

I now turn to complex quantification. Evidently, Henkin's quantifiers be-
long in this category. I ask: What kind of information on a quantified
relation does a complex quantifier prefix give us? As we shall soon sce, the
shift to a more general system of quantifiers, namely Mostowski’s 1- and
2-place predicative quantifiers, throws a new light on the nature of com-
plex branching quantification.

Barwise (1979) generalized Henkin's definition of standard branching
quantifiers to 1-place monotone-increasing Mostowskian quantifiers in
the following way:'8

(Q,x)

(36) >‘DU =4 AX)EV)(Q ) Xx & (Q, 1) Y1 &

(Qzy) (VX)) (V) (Xx & Yy - dxyp)].'°
Technically, the generalization is based on a relational reading of the
Skolem functions in Henkin’s definition. Thus, Barwise's cquivalent of
Henkin’s (8) is
37) ARYES) (VX)) Rxy & (Vz)(3w)Szw &

V) (V) (V) (VW) (Rxy & Szw — D(x, v, 2, w))].
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Clearly. Barwise's quantifiers, like Henkin's, are complex, not indepen-

dent, branching quantifiers. . '
Barwise suggested that this generalization enables us to give English

sentences with unnested monotone-increasing generalized quantifiers a
“Henkinian™ interpretation similar to Hintikka's interpretation of (10)
and (11). Here are two of his examples:*°
(38) Most philosophers and most linguists agree with each other about
branching quantification.
(39) Quite a few boys in my class and most girls in your class have
all dated each other.

To interpret (38) and (39), we have to extend (36) to 2-place predicative
quantifiers. This we do as follows: Let Q% and Q3 be 2-place monotone-
increasing predicative quantifiers. Then

Qiv) - Wix
(40) ~ Oxp =y
Qi) - Wy,
AN AN QI (P, X, X0 & Q2 (Far, 1)) &
(V) (V) (Xx & Yy — dxp)}
We can now interpret {38) as
(M2y) » Px,
41) : Axy & Ayx =y
(M2p) - Ly,
(AN EV) M) (Px, Xx) & (M?p)(Ly, Y1) &
(VX)) (X & Yy — Axy & Apx)],
with the obvious readings of P, L. A and where “M 2" stand for the 2-place
“most.” We interpret (39)ina similar manner.

Barwise emphasized that his definition of branching monolqne-
increasing generalized quantifiers is not applicable to mono(one-deereastmg.
non-monotone, or mixed branching quantifiers.?! This is easily explained
by the absurd results of applying (36) to such quantifiers: (36) would
render any monotone-decreasing branching formula vacuously true (by
taking X and Y to be the empty set); it would render false non-monotone

branching formulas true, as in the case of “Exactly one x and exactly one

v stand in the relation R, where R is universal and the cardinality of the

universe is targer than 1.
Barwise proposed the following definition for a pair of I-place monotone-

decreasing branching quantifiers:
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( ?l )\
(42) Oxy =4 AX)EV(Q ) Xx & ’
] d . J ( &
(Qz}-)/ 1 Q1)

& (VX)) (V1) (Dxy - Xx & 1y)).22
Definition (42), or its counterpart for 2-place quantifiers, provides an

intuiti . .
tuitively correct §emant|cs for English sentences with a pair of unnested
monotone-decreasing quantifiers. Consider, for instance,

(43) Few ph.ilosophers and few linguists agree with each other about
branching quantification.

. As to non-monotone and mixed branching quantificrs, Barwise left the
omfer unattended and skeptically remarked about the latter, *“There is no
sensible way to interpret

le

(s) >A (x, y)
Qz}'

;lez:p(;:f: [quantifier] is increasing and the other is decreasing. Thus, for
(t) 7Few of the boys in my class and most of the girls in your class

have all dated each other. )
appears grammatical, but it makes no sense.”??

Barwise's work suggests that the semantics of branching quantifiers
depends 0.!\' the monotonic properties of the quantifiers involved. The
t.ruth conditions for a sentence with branching monotone-increasing . uan
tifiers a.re altogether different from the truth conditions for a semenc: v»:itl;
br‘anchmg monotone-decreasing quantificrs, and truth for sentences with
mixed ‘branching quantifiers is simply undefinable. Is the meuni‘n of
branc‘hmg quantification as intimately connected with mono(onicitg ¢
Barylse's analysis may lead one to conclude? o
m(i:;stt(;n;dwould . like to f)bseer: that B.arwise interprets branching
oo ecreasing quantifiers simply as independent quantifiers: when
ﬂl]:;]aqujr; r?(?nolone-decreasing (42) is logically equivalent to my (23).

er e.mmor‘l, as we have seen, has meaning --the same meaning --

.for all quantifiers, irrespective of monotonicity. On this first-order rc%ul-
ing, (4.13) s?ys that the relation of mutual agreement about br'mch‘in

qua.\nuﬁcatlon between philosophers and linguists includes (at mlmn f \g'
phllOS(\phers m 1ts domain and (at most) few linguists in itg range -

] Barwise explained the limited applicability of (36) in the fo\lo;.‘ina way:
Every formula of the form ' -

Bz {28
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(44) (Q)dx,

where Q18 monotone-increasing,
formula of the form

45) (3.X) [(Q¥) ¥x & (Vx)(Xx — dx)],

ar to (36). This fact establishes (36) as the correct
definition of branching monotone-increasing quantifiers. However, (45)
is not a second-order representation of quantified formulas with non-
monotone-increasing quantifiers. Hence (36) does not apply to branching

quantificrs of the latter kind. The definition of branching monotone-
42) is explained in a similar manner: when Q is

is logically equivalent o a second-order

which is structurally simil

decreasing quantifiers by (
monotone-decreasing, (44) is logically equivalent to
(46) (X [(QX) Xx & (Vx)(Dx — X¥)],
which is structurally similar to (42).24

[ do not find this explanation convincing. Linear quantifiers vary with
respeet to monotonicity as much as branching quantifiers do, yet the
semantic definition of linear quantifiers is the same for all quantifiers,
irrespective of monotonicity. Linear quantification is also meatiingful for
all combinations of quantificrs. Why should the meaningfulness of the
branching form stop short at mixed monotone quantifiers? Moreover, if
the second-order representation of “simple” [first-order quantifications
determines the correct analysis of branching quantifications, Barwise has
not shown that there is no second-order representation of (44) that applies
universally, without regard to monotonicity.

6 A General Definition of Complex, Henkin-Barwise
Branching Quantifiers

The conception of complex branching quantification embedded in Bar-
wise's (36) assigns the following truth conditions to branching formulas of

the form
Q,x)
Q0
am Xy,
Vs
Q1)
where Q, and Q; arc monotone-increasing:

pEFINTTION 1 The branching formula (47) is true in a model 21 with
universe A iff there is at least one pair, (X, YD, of subsets of 4 for which

the follawing conditions hold
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I. X satisfies the quantifier condition Q,.
2. Y satisfies the quantifier condition Q,.
3. Each element of X stands in the relation ®* (o o the elements of Y.

The condition expressed by (3) I shall call the each-all (or all-all) condition
on (X, Y) with respect to ®¥. We can then express definition 1 more
succinctly as follows:

DEFINITION 2 The branching formula (47) is true in a model 2 with a
universe A iff there is at least one pair of subsets of the universe satisfying
the each-all condition with respect to ®¥, with its first element satis{ying
Q, and its second element satisfying Q,.

Set-theoretically, definition 2 says that ®¥ includes at least one Cartesian
product of two subsets of the universe satisfying Q, and Q, respectively.
(The *‘massive nucleus” of section 2 above was an informal term for a
Cartesian product.)

Is the complex quantifier condition expressed by definition 2 meaningful
only with respect to monotone-increasing quantifiers? I think that the idea
behind this condition makes sense no matter what quantifiers Q, and Q,
are. However, this idea is not adequately formulated in definition 2 as it
now stands, since this definition fails to capture the intended condition
when Q, and/or Q, are not monotone-increasing. In that case Q, and/or
Q, set a limit on the size of sets X and/or Y such that (X, Y ) satisfies the
each-all condition with respect to ®¥: (47) is true only if a Cartesian
product small enough or of a particular size is included in ®*. But defini-
tion 2 in its present form cannot express this condition: if ®" includes a
Cartesian product larger than required, definition 2 is automatically satis-
fied. This is because for any two nonempty sets A and B, if 4 x Bisa
Cartesian product included in ®¥, so is A" x B, where A’ and B’ arc any
proper subsets of 4 and B respectively. The difliculty, however, appcars to
be purely technical. We can overcome it by demanding that the condition
be met by a maximal, not a sub-, Cartesian product. In other words, only
maximal Cartesian products included in ®* should count as satisfying the
each-all condition.

I thus add a maximality condition to definition | and arrive at the
following general definition, in which no restrictions are set on Q, and Q,:

DEFINITION 3 The branching formula (47) is true in a model 2 with
universe A iff there is at least one pair (X, Y} of subsets of A for which
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the following conditions hold:

I. X satisfies quantifier condition Q.

2. Y satisfies quantifier condition Q,.

1 Each element of X stands in the relation
Y.

4. The pair (X, Y)isa maximal pair satisfying (3).

@Y (o all the elements of

Referring to (3) and (4) as “the maximal each-all condition on .(X, Y
with respect to @, we can reformulate definition 3 more concisely as
follows:
DEFINFIION 4 The branching formula (47) is true in a—model ‘ll w_ith
universe A ifT there is at least one pair of subsets in the universe sa'tusfymg
the maximal each-all condition with respect to & such that its first
clement satisfies Q, and its second element satisfies Q,.
I thus propose to replace (36) with
(Qi -\‘)\
(48) Dy =y
(Qz)
AVYAN{Q X)X x & (Q,)) Yy & (Vx)(Vy)(Xx & Yy—- dxy) &
VXYV YOHIYO ) ((Xx & Yy — X'x& Yy &
(X'x & Y'y—-bxy)) -
VOV Xx& Yy X'x& Y'nl
as the definition of Henkin-Barwise complex brunching quantifiers. We
can rewrite (48) more succinetly, using common conventions, as

(Qy¥)
(49) Dxy =4

(Q21)

AN EANHQ VAN & (Q1) Yy & X X Y&

(VXY HVY I x YeX <Y’ chosXx V=X xV")]

Maore concisely yet, we have

(Q, )~
(50) by =y

Q17

AN ENHQ VXX & Q) Yy &
(VX NVENX x FEX x V' edoXx Y=X x Y9l
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It is easy to see that whenever Q, and Q, are monotone-increasing, (49)
is logically equivalent to (36). At the same time, (49) avoids the problems
that arise when (36) is applied to non-monotone-increuasing quantifiers.

Maximality conditions are very common in mathematics. Generally,
when a structure is maximal, it is “‘complete’ in some relevant sense.?® The
Henkin-Barwise branching quantifier prefix expresses a certain condition
on sets (subsets of the quantified relation). And when we talk about sets,
it is usually maximal sets that we are interested in. Indeed, conditions on
sets are normally conditions on maximal sets. Consider, for instance, the
statement ““Three students passed the test.”” Would this statement be true
had 10 students passed the test? But it would be if the quantifier *“13" set
a condition on a nonmaximal set: a partial extension of “x is a student who
passed the test” would satisfy that condition. Consider also “No student
passed the test™ and ““Two people live in America.”

The fact that quantification in genceral sets a condition on maximal sets
(relations) is reflected by the equivalence of any first-order formula of the
form

(44) (QY)Px,
no matter what quantifier Q is (monotone-increasing, monotone-decreasing
or non-monotone), to

(51) AX)HQO)Xx & XS P& (VX)X S X' S ® - X' = X))},

which expresses a maximality condition. The logical equivalence of (44) to
(51) provides a further justification for the reformulation of (36) as (49).

We have seen that the two conceptions of nonlinear quantification dis-
cussed so far, independence (first-order) and complex dependence (sccond-
order), have little to do with monotonicity or its direction. The two con-
ceptions lead to entirely different definitions of the branching quantifier-
prefix, both, however, universally applicable.

Linguistically, my suggestion is that to determine the truth conditions
of natural-language sentences with a nonlinear quantifier-prefix, one has
lo ask not whether the quantifiers involved arc monotone-increasing,
monotone-decreasing, etc. but whether the prefix is independent or com-
plex. My analysis points to the following clue: Complex Henkin-Barwisc
quantifications always include an inner each-all condition, explicit or
implicit. Independent quantifications, on the other hand, do not include
any such condition.

Barwise actually gave several examples of branching sentences with an
explicit each-all condition:
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(39) Quite a few boys in my class and most girls in your class.have all

[
dated each other.?

. 27
(52) Most of the dots and most of the stars arc all connected by lines.

Such an explicit “all” also appears in his
(1) Few of the boys in my class and most of the girls in your class have
all dated each other.”®
| therefore suggest that we interpret Barwise's () as an ins(ange of (49). _
Some natural examples of Henkin-Barwise complex branching quanti-

ficrs in English involve non-monotonic quantifiers. For example,

(53) A couple of boys in my class and a couple of girls in your class were
all dating each other.

(54) An even number of dots and an odd number of stars are all
connected by lines.

Anotlier expression that seems (o point to a complex branc?hing structure

(which indicates a second-order form) is ‘‘the same.” Consider

(55) Most of my friends have applied to the sane few graduate programs.

To interpret the above sentences accurately, we have to cxtenfi 49) to

ntifiers. As in the case of 2-place independent quantifiers (sce

¢ can apply the notion of complex each-all quantifica-
y attention to one of these,

2-place qua

section 4 above), w '

tion in more than one way. I will limit m .
M M 23] (g

defining “Q, Asand @, Bs all stand in the relation R as “There is atlleefst

one maximal Cartesian product included in A1 RV B with Q, As In its

domain and Q, Bs in its range.” In symbols,
Qi) - Wy,
(56) . hxy =4
(Q3r) - o,
AN ENHQIN Y x, ¥x) & Q30 (For, Y1) &
(VX)VY )X x Y€ X' x V' e, T, e
X x V=X x ¥

ains the meaning (function) of inner quan-

Linguistically, nty account expl . '
. idual variables

tifiers that, like Barwise's “all.” do not bind any new indiv :
in addition to those bound by Q and Q,. A “standard” reading of such
quantifiers is problematic, since all the variables are uhlready bound by the
ouler gnantifiers. Onmy analysis, these quantifiers point toa second-order

condition.
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Going back to the controversy regarding Hintikka's reading of natural-
language sentences with symmetrical quantifiers, we can reformulate Fau-
connier’s criticism as follows: Some natural-language scntences with un-
nested quantifiers do not appear to contain, explicitly or implicitly, an
inner each-all quantifier condition. On my analysis, these are not Henkin-
Barwise branching quantifications. Whether Hintikka's (10) includes an
implicit each-all condition, I leave an open question. (One way to justify
Hintikka’s claim that (10) is a Henkin sentence is to interpret “cach™ in
“each other” as elliptic for “each-all.”")

The reading of a natural-language branching quantification with no
explicit each-all condition involves various linguistic considerations. QOur
logical point of view has so far indicated three possible readings: as an
independent quantification, as a linear quantification, or as a Henkin-
Barwise complex quantification. But as we will presently sce, these are not
the only options. In the next section I will introduce a “family of inter-
pretations” that extends considerably the scope of nonlincar quantification.

7 Branching Quantifiers: A Family of Interpretations

The Henkin-Barwise definition of branching quantificrs, in its narrow as
well as general form, includes two quantifier conditions in addition to
those explicit in the definiendum: the outer quantifier condition “there is
at least one pair (X, ¥»" and the inner (maximal) each-all quantifier
condition. By generalizing these conditions, we arrive at a new delinition
schema whose instances comprise a family of semantic interpretations for
multiple quantifiers. Among the members of this family are both the
independent branching quantifiers of section 4 and the Henkin-Barwise
complex quantifiers of section 6. This generalized definition schema de-
lincates a totality of forms of quantifier dependence. Degenerate depen-
dence is independence; linear dependence is a particular case of (non-
degenerate) Henkin-Barwise dependence.?®

We arrive at the definition schema in two steps. First we gencralize the
inner each-all quantifier condition (sce definitions |- 4), and we obtain the
following schema:

GENERALIZATION | A branching formula of the form (47) is truc in a
model 2 with a universe A iff for at least one pair (X, ¥ of subsets of
the universe satisfying the maximal quantifier condition 2, with respect to
O, X satislies Q,, and Y satisfics Q,,
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where 2, represents any (first-order) maximal quantifier-condition on a

: i i o o o are a few
patir of subsets of the unmiverse with respect to @™, The following are a fe
instances of Z,:
Condition A= one one The pair (X, ¥)isa maximal pair such that each
element ol X stands in the relation ™ to exactly one element of Y.m?d for
cach element of ¥ there is exactly one element of X that stands to it in the
relation k¥,
Condition B: each two or more  "The pair (X, Y is a maximal pair such
: ; w

that euch element of X stands in the relation @7 to two or more ¢Iemcnt.s
of ¥ and for each element of Y there is an element of X that stands to it

. . l
in the relation @Y,

Condition C: cach more than ___The pair (X, }>wls a maximal pat
such that cach element of X stands in the relation ©¥ to more than

clements of ¥ and for cach element of Y there is an element of X that

. . . $"
stands to it in the relation &7

Condition D+ each at least halfat least half~each The pilll‘.<X s }; yisa
rch clement of X stands in the relation &7 to at

maximal pair such that ¢
“and to cach clement of ¥ at least half the

Ieast hall the clements of )
clements of X stand in the relation @™
We can find natural-language sentences that exemplify gereralization |

by substituting conditions A through D for 2,:

(57) Most of my right-hand gloves and most of my left-hand gloves
maltch (one to one).

(58) Most of my [riends saw at least two of the same few TrufTaut
movies.

(59) The same few characters repeatedly appear in many of her early
novels.

(60) Most of the boys and most of the girls in this party are such that
cach boy has chased at least half the girls and cach girl has been
chased by at least half the boys.

The adaptation of generalization 1 to 2-place quantiliers, needed in order

to give these sentences precise interpretations, is analogous lo-(56),

We can verify the correctness of our interpretations by checking whether

(57) to (60) can be put in the following canonical forms:

(61) Most of my right-hand gloves and most of my left-hand gloves
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are su.ch that each of the former matches exactly one of the latter
and vice versa.

(62) I\/zost of my friends and few of Truffaut's movies are such that cach
of the former saw at least two of the latter and cach of the latter
was seen by at least one of the former.

(63) FF.W characters and many of her early novels are such that each
o the‘ﬁ)rmer appears in more than__of the latter and cach of the
latter includes at least one of the former.

Sentence (60) is already in canonical form,

. By replacing 2, in generalization | with condition E below we get the
independent quantification of section 6.

Condiri . . .
Suor;]dr]!zon E: each—some[some-each The pair (X, ¥> is a maximal pair
Cch that each element of X stands in the relation @™ (0 some element of

l'e 8C b b
an or each e €¢ment o 1ere is yme elemen ¢} 4‘ lhd stands to 1
n lhe ICIaUOH (D . (

. Thfss. both i{adependent branching quantifiers and complex, Henkin-
arwise branching quantifiers fal] under the general schema.

g S ts “0 t st E:XISICHIIJI con-
l he SCCOIld cnet allza“o“ db tr ac m he outer mos
dl“o".

GE]‘:EI?A:,IZA.TI()N 2' A branching formula of the form (47) is truc in a
lr;lo eA A w:lh_umversc A iff there are v, pairs (X, ¥> of subsets of

1§ universe sahsfy,ng the maximal quantifier condition 7, with respect to
® % such that X satisfies Q, and Y satisfies Q,.3°

Zl;e fol,l’o»Ymg sentences exemplify generalization 2 by substituting “by
and large™ (interpreted as “most™) and “at most few” for 2, (2, is the
each-all condition): T

(64) By and [a'ge no more llla" a ‘EW b S d“d a ‘CW ”IS a” ddle ne
’ 0

(65) There are at most few cases of more than a couple Eastern delegates
and more than a couple Western delegates who are all on speaking
lerms with one another,3!

The family of branching structures delineated above cnlarges consider-
at.)ly the array of interpretations available for natural-languagé 9cnl‘cncc‘;
V\flth multiple quantifiers. The task of selecting the right le((’:l‘llﬂ;i\’e for 1
given .natura]*language quantification is casier il explicit inner and out “r
quantifier conditions occur in the sentence, but is more complica‘tcd olhctr
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wise. One could, of course, be assisted by “‘context,” but linguists will be
interested in formulating general guidelines that hold across contexts.
Indeed, we may look at Barwise’s claims regarding monotone-increasing
and monotone-decreasing English branching quantifiers in this light.
According to Barwise, in English monotone-increasing branching quan-
tifiers are usually accompanied by an inner “all,” indicating a complex
“each all structure™ (with “some” as the outer quantifier condition);
monotone-decreasing quantifiers are usually not accompanied by an inner
quantifier condition, pointing to an independent (each- some/some—each)
structure. These conjectures can be expressed in terms of my general
definition schema of branching quantification (generalization 2).>2 How-
ever, the new multiplicity of inner and outer quantifier conditions intro-
duced in the present section calls for refinement and supplementation of

Barwise’s conjectures.
8 Conclusion

My investigation has yielded a general definition schema for a pair of
branching, or partially ordered, generalized quantifiers. The existing def-
initions, due to Barwise, constitute particular instances of this schema.
The next task is to extend the schema, or particular instances thereof,
especially (49), to arbitrarily large partially ordered quantifier prefixes.
This task, however, is beyond the scope of the present work.

In “Branching Quantifiers and Natural Language™ (1987), D. Wester-
stahl proposed a general definition of (Barwise's) branching quantifiers
different Irom the ones suggested here. Although Westerstahl’s motivation
was similar to mine (dissatisfaction with the multiplicity of partial defini-
tions), he approached the problem in a different way. Accepting Barwise's
definitions of monotone-increasing and monotone-decreasing branching
quantifiers, along with van Benthem’s definition of branching non-
monotonic quantifiers of the form “exactly n,” Westerstahl constructed
a general formula that yields the above definitions when the quantifiers
plugged in have the “right” kind of monotonicity. That is, Westerstdhl
was looking for an umbrella under which the various partial existent
definitions would fall. From the point of view of the issues discussed here,
Westerstahl's approach is very similar to Barwise’s. For that reason I did
not include a separate discussion of his approach.®® As for van Benthem's
proposal for the analysis of non-monotonic branching quantifiers, his

definition is
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(Exactly-nx) - Ax,
(66) . Ryy=43X)3¥)(XcA4&YcB&
(Exactly-my) - By, [ X|=n&|Y|=m&R=Xx 1)
For I-place quantifiers, the definition would be
(Exactly-n x)
(67) >R.\’} =4 BX)AY)(X]=n&|V]|=m&
(Exactly-m y) R=XxY).

Since (67) is equivalent to (68) when R is not empty, I can express van

Benthem's proposal in terms of my second generalization by saying that

quantifiers of the form “exactly n”" tend to occur in complex quantifica-

tions in which 2, is “each-all” and 2, is *‘the (only).”

(68) The (only) pair (X, Y of subsets of the universe satisfying the
maximal each-all condition with respect to R is such that X has
exactly n elements and Y has exactly m elements.

I would like to end with a few general notes. Russcll, recall, divided the
enterprise of logic into two parts: the discovery of universal “templates’ of
truth and the discovery of new, philosophically significant logical [orms.
Branching quantifiers offer a striking example of an altogether new logico-
linguistic form unlike anything thought to belong to language before
Henkin's paper. One cannot, however, avoid asking: When does a generali-
zation of a particular linguistic structure lead to a new, more general form
of language and when does it end in a formal system that can no longer be
considered language? Henkin, for instance, mentioned the possibility of
constructing a densely ordered quantifier prefix. Would this be considered
language? What about a prefix of quantifiers organized in some non-
ordering pattern? Even the thoroughly studied form of an infinitely long
linear prefix has yet to be evaluated with respect to our general concept of
language.

Another question concerns the possibility of “‘importing’ new struc-
tures into natural language. New forms continuously “appear™ in all
branches of mathematics and abstract logic. The “discovery” of branching
prefixes in English makes one wonder whether new constructions cannot
be introduced into natural language as well. Let us look back at Hintikka's
“revelation’” that branching quantifiers exist in English. Did Hintikka
discover that all along we were talking about villagers’ and townsmen’s
relatives hating each other en masse (each-all hatred) when we said that
some relative of each villager and some relative of each townsman hate
each other? Or did he, perhaps, propose to give a new meaning to a
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syntactically well-formed but semantically empty (loosely deﬁn‘ed) linguis-
tic form? I am not sure what the right answer to this question is. Some of
the English examples discussed in the literature strike me as having had a
clear branching meaning even before the oflicial seal of“bra_n_c_hing quanti-
fication” was aflixed to them. But others impress me as having been
hopelessly vague before the advent of branching theory. These could have
been semantically undetermined structures, forms in quest of content.
Present-day languages have not used up all their lexical resources. Is
logical form another unexha usted resource? o
Investigations of the branching structure in the context of “‘generalized
logic led Barwise to extend Henkin’s theory. My own inquiries have led to
an even broader approach. In the next chapter | will return to the general
conception of logic developed in this book and introduce some of its 'philo’:
sophical consequences. The philosophical ramifications of “.unreslrklcted
logic have never before been (publicly) investigated. | will briefly point the
direction of some philosophical inquiries and spell out a few results.
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A New Conception of Logic

The b.road questions underlying this work concern the scope and limits
of logic. Are the principles underlying modern logic fully exhausted b
the standard system? Do generalized quantifiers signify a gcnuinc\ hrmk)-l
through in logic? What are the boundaries of logic fmm the point of v;cw
ofmode.m semantics? Starting with a general outlook of logic, I proceeded
}o exa‘m'me Mostowski’s generalization of the standard quantifiers, tracin
1ts origins to Frege's interpretation of number statements. | th‘cn mmgl
‘T?/los'lowtski‘s theory as a jumping board for investigating the nntion. of
.logrcallly.” The initially loose philosophical question regarding the prin-
?IPICS of logic received specific content: What makes a linguistic expression
?nto a.logical term? What are all the logical terms? My method ()f‘:ll]é\;er-
ing this qulestion was conceptual. Examining Tarski's foundational ;\'()rk
in s'emanucs, I was able to identify a central motivation for constructing
logic as a syntactic-semantic system in which logical truths and con-
Sequences are determined by reference to a full-blown system of models
I showed that within the framework of model-theoretic semantics th'e.
success of the logical project depends on the choice of logical térmq
In'asmuch as logical constants represent the formal and necessary con;:
stituents of possible states of affairs. the system will zlccompli;I; its task
But the task is fully accomplished only if all formal and ncccssz;z‘v c;)x);{it;
uents are taken into account. The standard system carries us on;: ste \ to-
warq the goal. It takes the full range of Tarskian or first-order Unrc‘qtrgltcd
Logic ,(l.JL) to achieve the objective in full. This outlook on logic is r‘cnlimd
by logicians working within the dynamic field called “abstract” logic lf is
also reflected in the work of linguists secking to enhance the rcs‘ourrcc'q (\k*
studying the logical structure of natural language. l o
If.the central claim of this book is correct, namely that standard mathe-
matical logic, with its limited set of logical constants, does not fully ex;)rcss
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the idea of logic, the question arises of whether a conceptual revision in
the *official” doctrine is called for. Should *‘unrestricted logic™” become
“standard™ logic? Because of the prominent place of standard first-order
logic not only in mathematics but also in philosophy, linguistics, and
related disciplines, at stake is a change in a very general and basic concep-
tual scheme. What are the philosophical ramifications of the new concep-
tion of logic? What new light does it shed on old philosophical questions?
Are the conditions ripe for an “official’" revision? And how should the new
developments in semantics be viewed from the standpoint of proof theory?
I would like to end this work with reflections on some aspects of these

questions.

I Revision in Logic

Putnam has convincingly argued that a change in a deeply ingrained
conceptual scheme is seriously entertainable only if a well-developed alter-
native already exists. Referring to the revolution in geometry, Putnam
argued that the laws of Euclidean geometry could not have been aban-
doned “before someone had worked out non-Euclidean geometry. That is
to say, it is inconceivable that a scientist living in the time of Hume might
have come to the conclusion that the laws of Euclidean geometry are false:
‘I do not know what geometrical laws are true but I know the laws of
Fuclidean geometry are false.” "' Principles at the very center of our con-
ceptual system are not overthrown unless ““a rival theory is available.”?

Is there a serious alternative to standard logical theory incorporating
the principles of Unrestricted Logic delineated in this book? The unequi-
vocal answer is yes. There exists a rich body of literature, in mathematics
as well as in linguistics, in which nonstandard systems of first-order logic
satislying (UL) have been devcloped, studied, and applied. Mostowski's
and Lindstrom’s pioneering work led to a surge of logico-mathematical
rescarch. From Lindstrom’s famous characterizations of “‘elementary
logic™ (1969) to works like Keisler's proof of the completeness of first-
order logic with the quantifier “there exist uncountably many,” the yield
of mathematical investigations is astounding. For a representative collec-
tion of articles plus a comprehensive bibliography of more than a thousand
items, the reader is referred to the 1985 volume Model-Theoretic Logics,
edited by Barwise and Feferman. .

In linguistics, Barwise and Cooper’s 1981 paper also led to a profusion
of literature. Generalized quantifiers became an essential component of
formal semantics and of the theory of Logical Form within generative
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grammar. Representative works by van Benthem, Keenan, Ma W
stdhl, and others are listed in the references. ’ e
Philosophically, the view (hat Tarskian or unrestricted logic is logic
pmpf:r has not yet received its due attention. In particular fcwbphilg;)-
so.phncal arguments in support of the new view appeared in ;;rinl I hope
th.lS book has, to some extent, filled the void. If my argument is C(.)gcnI pit
will add a new philosophical dimension to the support that lhc; new | '
has received from other quarters, ( e

2 The Logicist Thesis

The logicist thesis says that mathematics is reducible to logic in the sense
that a‘l! mathematical theories can be formulated by purely logical m;:'l 1‘:
That is, all mathematical constants are definable in terms of Ing;iml co[n
stants and.aH the theorems of (classical) mathematics are dcrivabl‘e from
purely logical axioms by means of logical rules of derivation (and defini-
tions). Now for the logicist thesis (o be meaningful, the notions of logical
constant, logical axiom, logical rule of derivation, and definition muf:l l;e
well dc{ined and, moreover, so defined as to make the reduction nontri.vhl
In pf)rllcular, it is essential that the reduction of mulhcnmliés to logic (hL
carried qul relative to a system of logic in which mathematical constants
do 'n'ol, m' general, appear as primitive logical terms. The “fh(hcﬁ‘i 0>f
logicism did not engage in a critical examination of (he concept of k; ical
constant from this point of view. That is, they took it for granted llﬁt tie;e
1S a.smal[ group of constants in terms of which the reduction i; 1o be
carncq out: the truth-functional connectives, the existential (un;'vcrﬂl)
quanUﬁftr, identity, and possibly the set-membership relation. The I;“W
concep[non'of I(?gic, however, contests this assumption. If my z;n:llyﬁistof
the semantic principles underlying modern logic in chapter 3 is cn;‘rkcct
then any mathematical predicate or functor satisfying condition (E) c'n{
play the role of a primitive logical constant. Since mathematical cum't'n;le
In general satisfy (E) when defined as higher-level, the program of rcdu(‘i r
mathemalics to logic becomes trivial, Indeed, even if the whole of nn:hlolc%
m‘aucs could be formulated within pure standard first-order logic ‘thcn
(since the standard logical constants are nothing more than certain ;'n'tic-
ular m.alhematical predicates) all that would have been accomplish'c‘l is ¢
reduction of some mathematical notions to others. o
While the .logicisl program is meaningless from the point of view of the
new cgnceptnon of logic, its main tenet, that mathematical constants are
cssentially logical, is, of course, strongly supported by this co‘n;cp.li(:nL
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Indeed, Russell’s account of the logicality of mathematics in /ntroduction
to Mathematical Philosophy is in complete agreement with my analysis:
There are words that express form. .. . And in cvery symbolization hitherto invented
of mathematical logic there arc symbols having constant formal meanings. .. .
Such words or symbols express what are called ‘logical constants.” Logical con-
stants may be defined exactly as we defined forms; in fact, they are in essence the
same thing. .. . In this sensc all the ‘constants’ that occur in pure mathematics are
fogical constants.?

The difference between the new conception and the “old” logicism re-
garding mathematical constants is a matter of perspective. Both approaches
are based on the equation that being mathematical = being formal =
being logical. But while the classical logicists say that mathematical con-
stants are essentially logical, the new conception implies that logical con-
stants are esentially mathematical. Thus if the classical thesis is “the
logicist thesis of mathematics,” the new one is “the mathematical thesis of
logic.”™ Another point of difference worth noting is that according to the
new conception, mathematical constants are logical only when construed
as higher-level. Accordingly, the natural numbers, as individuals, are not
Togical objects. But as second-level entities, classes of classes, they are. This
view is, as we saw in chapter 2, in some respects very Fregean. Frege's
logical delinition of the natural numbers takes numbers to be higher-level
entities. i.e., classes of classes or classes of concepts. Indeed, the formula-
tion of numerical statements as first-order quantifications in UL is exactly
the same as 'rege’s in The Foundations of Arithmetic.

3 Mlathematics and Logic

My discussion of logicism above highlighted one aspect of the relationship
between logic and mathematics: in the new conception of logic any mathe-
matical constant can play the role of a logical term, subject to certain
requirenients on its syntactic and semantic definitions. However, mathe-
matical constants appear in the new logic also as extralogical constants,
and this reflects another side of the relationship between logic and mathe-
matics: as logical terms, mathematical constants are constituents of logical
frameworks in which theories of various kinds are formulated and their
logical consequences are drawn. But the “pool™ of formal terms that can
figure as logical constants is created in mathematics. The semantic defini-
tion of, say, the logical quantifier “there are uncountably many x* is based
on some mathematical theory of sets. Similarly, the semantic definition of
the quantifier “there is an odd number of x™" is based on arithmetic. And
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even in'slandard logic, the semantic definitions of the truth-functional
gonnectnves and the universal (existential) quantifier arc based on certain
snn‘ple Boolean algebras. These observations point to a difference between
logic and mathematics vis-a-vis formal terms: formal terms are created in
mathematics; they are used in logic.

' Now since logic provides a framework for theories in general, the mean-
mg of formal terms can be given by a mathematical theory formulated
wnh'in logic. We can thus picture the interplay between logic and mathe-
matlc§ as a cumulative process of definition and application. Starting with
a logical system that applies certain elementary but powerful mathe-
matical functions (Boolean truth functions, the universal/existential-
quantifier function and, usually, identity) to a first-level extralogical vocab-
ular.y, we construct various formal theories. Such theories describe mathe-
matical structures by delimiting the semantic variability of the extralogical
ler.ms of the language. This is done by introducing a set of extralogical
axioms that partition the “universe” of all models for the language into
lh(.)se that do, and those that do not, “realize™ the theory. In this way the
axioms of the theory give specific meanings to all nonlogical terms of the
language. Once mathematical terms are defined within the framework of
standard first-order logic, they can be incorporated in the superstructure
of a new, extended system of logic. As an cxample, consider the first-order
lhcory of Peano arithmetic. As soon as arithmetic terms receive their
meaning within this theory, we can convert them into logical arithmetic
quantifiers: the numerical quantifiers, the “even” quantifier, quantitative
comparative quantifiers (“there are fewer x's such that ... than x’s such
that ), and so on. We can now use the new logical vocabulary
10. formulate theories—mathematical, physical, etc.--that assume the
F‘,XlSlC.an;‘ of a machinery for counting and comparing sizes. In these
theories we will logically conclude that, say, there are 4 Bs, given that there
are 2 Cs, and that the number of Bs is twice the number of Cs. As we shall
see be'low, there is an essential difference between applying mathematics
by us'mg mathematical terms as part of the logical superstructure and
applymg mathematics by adding extralogical mathematical constants and
axioms to a theory of standard first-order logic.

4 Ontological Commitments of Theories

Quine is known for the thesis that the logical structure of theories in a
standard first-order formalization reflects their ontological commitments.
To determine the ontology of a theory .7 formulated in natural language
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(or a scientific “dialect” thereof’), we formalize itas a (standard) first-order
theory. .7,, and examine those models of F; in which the extralogical
terms receive their intended meaning. 7 is committed to the existence of
such objects as populate the universes of the intended model(s) of J.
Thus if .7 includes a sentence of the form

(1) Uncountably many things have the property P,

then. since the notion of uncountably many is not definable in pure stan-
dard first-order logic, we have to include in .7, some theory in which

“uncountably many"” can be defined. Choosing a set theory with Ur-
clements, we express (1) as
(2) (Av)jrisaset & xis uncountable &
(Vy)(y e x—yisan individual & Py}l
And through (2), 7 is committed to the existence of sets.

Now. consider what happens if we formalize .7 within the framework
of UL. using a system ¢ that contains, in addition to the standard logical
terms and axioms, the logical quantifier “uncountably many"” and appro-
priate axioms (€.g.. Keisler's). Obviously, we do not need set theory to
express (1}in & The meaning of (1) is adequately captured by the sentence

(3) (Uncountably many x)Px,

which does not commit .7~ to the existence of sets. So with a “right” choice
of logical vocabulary, 7" can be formalized by a theory, 7,, whose ontol-
ogy consists merely of individuals, not sets.

We see that the new conception of logic allows us to save on ontology
by augmenting the logical machinery. We can weaken the ontological
commilments of theories by parsing more terms as logical. We no longer
talk about the ontological commitment of an unformalized (or pre-
formalized) theory J (there is no such thing!). Instead, ontological
considerations become a factor in choosing logical frameworks for for-

malizing theorics.
The examination of Quine’s principle from the perspective of UL

reveals the relativistic nature of his criterion. The comparison of 7, and
7, highlights the crucial role played by logical constants in deciding
commitment in other theories of logic and ontology as well. Consider the
straightforward view that the commitment of a theory under a
formalization Z is determined by what is common Lo all models of #.
Here too the difference in logical terms between the formalizations .7, and
75 of .7 results in essentially different commitments. The occurrence of
the quantifier “‘uncountably many" in (3) ensures that in every model of

simple.
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. Pis assigned an uncountable set of individuals. But by the Léwenheim-
Skolem theorem, 7, has at least one model in which the predicate “x
is uncountable™ is given a nonstandard interpretation and P is assigned a
countable set. We can thus say that 75 is committed to an ontology of
uncountably many objects, whercas 7, 1s not.

We see that logical terms are vehicles of strong ontological commitment,
\r\(hilﬁ extralogical terms transmit a relatively weak commitment. This
difference in ontological import between logical and extralogical terms is
explained by the fact that logical terms are semantically pre-fixed, whereas
the meaning of extralogical terms is relative to models. To use Putnam’s
turn of speech, extralogical terms are viewed from within models, whereas
logical terms are viewed from the ourside.* Including formal terms as part
of the logical superstructure allows us to use them in the logic with “a view
from the outside.”

The distinction between “strong” and “weak™ ontological commitments
explains the difference between using mathematical notions as part of the
logical machinery and using them as extralogical terms in theories within
the logic. It also suggests a guideline for choosing logical frameworks. If
you formulate, say, a physical theory and you want to use formal tools
.crealcd clsewhere (i.e., in some mathematical theory). you might as well
include the mathematical apparatus as part of the logical superstructure.
This }Jvill reflect the fact that you are not interested in specifying the
meanings of the mathematical terms but in saying something about the
physical world, using mathematical notions which you take as given. The
pre-fixed notions will enable you to make some very strong claims about
the physical world, strong in the sense that what they say does not vary
from one model of the theory to another. All this will be done without
compromising the uscfulness of the logical framework in determining
necessary and formal consequences. If, on the other hand, your goal is to
define the mathematical notions themselves, you cannot construe them as
logical, because as such their meaning would have to be given at the outset.
You have to use undefined terms of the language (i.e., extralogical terms)
and then construct a theory that will give these notions a distinclive

content.’

5 Metaphysics and Logic

\Yhal role, if any, does metaphysics play in logics based on Tarski's idcas?
First, for Tarski, the very notion of semantics has a strong metaphysical

A New Coneeption of Logic 137
connotation. Semantics investigates concepts having (o do with the relation-
ship between language and the world (see page 39). The categories used in
classilying relevant features of the world are, ipso facto, an important
factor in the analysis of such concepts. More specifically, as we have seen
carlier in the book, it is crucial for Tarski that an adequate system of logic
yield consequences that hold necessarily of reality. In that way meta-
physics provides an important criterion for evaluating logical systems
vis-d-vis their goal. But the role of metaphysics does not end with this
cxternal criterion. To see the metaphysical dimension of Tarskian seman-
tics more clearly, it might be well to contrast his model-theoretic method
with another type of theory, which, following Etchemendy 1990, 1 will call
“interpretational.” The interesting feature of interpretational semantics
from my point of view is that it purports to ensure the satisfaction of
Tarski’s metaphysical condition by purely syntactic means. The inter-
pretational definition of “logical consequence™ is the following:

DEFINITION LC The sentence X is a logical consequence of the set of
sentences K iff there is no permissible substitution for the nonlogical
terms in the sentences of K and in X that makes all the former true and

the latter false.

(A substitution is permissible if it is uniform and it preserves syntactic
calegories.) This definition, in essence, goes back to Bolzano (1837). It can
also be found in modern texts, e.g., Quine's Philosophy of Logic (1970).

The distinctive feature of the interpretational test for logical conse-
quence is that it is based on substitution of strings of symbols. Definition
(1.¢7) does not take into account anything but grammar and the distribu-
tion of truth values to all the sentences of the language. Thus to the extent
that syntactic analysis and a list of truth values are all that are needed to
determine logical truths and consequences, interpretational semantics has
nothing to do with metaphysics.

Tarski rejected the substitutional definition of “logical consequence”
just for that reason. The success of interpretational semantics depends on
the expressive power of the language. Relevant possible states of affairs
may not be taken into account if the language is too poor to describe them.
Thus, consider a language in which the only primitive nonlogical terms are
the individual constants “Sartre” and “Camus’ and the predicates “x is
active in the French Resistance™ and “x is a novelist.” In this language the

sentence
(4) Sartre was active in the French Resistance



5
-

Chapter 6 138

will come out logically true under the substitutional test, But obviously
(4) is not necessarily true. ’
Etch'emendy pointed out another problem with interpretational theory
due to {ts syntactic character.® In interpretational “semantics,” as in model-
theoretic semantics, “logical consequence™ and the other logical concepts
are defined relative to a set of logical constants. But in interpretational
semantics, the set of logical constants is an arbitrary set of terms, arbitrary
because the interpretational theory does not ofler a guide for determining
whether a term is logical or not. Logical and extralogical terms are defined
b){ use, and for all that interpretational semantics has to say, any term
might be used either way. What Quine calls the remarkable concurrence
of the substitutional and model-theoretic definitions of “logical conse-
q}lence" for standard first-order logic is no more than a “happy™ accident.”
Since the standard logical constants do not form a grammatically distinct
'gro'up', they are, from the point of view of interpretational sém;m(ic‘;
mdsst‘mguishable from other terms that can also be held constant in t!;t;
‘s‘ubsu‘u‘nional test. Thus even if every individual, property, and relation
participating™ in relevant possible states of afTairs has a name in the
]gnguage, some divisions of terms into the logical and extralogical will
yield unacceptable results. Suppose, for instance, that expressions naming
.Sarlre and the property of being active in the French Resistance are
included in the set of fixed (i.c., logical) terms. Then (4) will again turn out
to be logically true. (See chapter 3.)
Tarski‘.s semantics avoids the two problems indicated above by using
a semantic apparatus which allows us to represent the relationship be;
tween language and the world in a way that distinguishes formal and
nece§sary features of reality. The main semantic tool is the model, whose
r(?le 1 Lo represent possible states of affairs relative to a given language.
Sm.ce any set of objects together with an “interpretation™ of the non-
logngal t.erms within the set determine a model, every possible state of
affairs vis-a-vis the extralogical vocabulary is represented (extensionally).
Furthermore, the choice of logical constants is constrained by the rcquinf—
ment l'hal the logical superstructure represent formal, metaphysically un-
‘c‘hang.m.g' parameters of possible states of afTairs. (1t should be noted that
possibility” in this context is “formal possibility.” Therelore, the totality
of models reflects “possibilities” that in general metaphysics might bL‘
ruleq out by nonformal considerations. That is to say, the notion of
possibility underlying the choice of models is wider than in metaphysics
proper.)
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Although metaphysical considerations are central to Tarskian seman-
tics. only the most basic and general metaphysical principles are taken into
account. The historical Tarski expressed a dislike for “abstruse” philo-
sophical theories. The notions of necessity and possibility he used were, he
emphasized, the common, everyday notions, not the philosopher’s. I think
Tarski's mistrust of philosophy is not warranted, but the claim that the
philosophical foundation of logic should not rest on the web of philo-
sophical controversies regarding modalities appears to me sound. Thus the
view underlying the new conception of logic, that the mathematical “‘coor-
dinates™ of reality do not change from one possible world to another (and
therefore mathematical constants can, in general, play the role of logical
constants), is bused on a basic, generally accepted belief about the nature
of reality.

We cannot rule out, however, divergence of opinions even with respect
to “core’™ metaphysical principles. And for those who do not share the
“conumon” belief regarding the nature of mathematical properties, 1 pro-
pose the following relativistic view of logic: we can look at the definition
of “logical terms™ in chapter 3 as a schema saying that to treat a term as
logical is to take it as naming a rigid, formal property or function (fixed
across possible states of afTairs) and define it in accordance with conditions
(C) to (). 1t is then left for the user to determine whether or not it is
appropriate to treat a given term in that way. (A similar strategy will
enable one to reconcile nominalistic compunctions with the new concep-
tion: depending on the metalinguistic resources one finds acceptable, one
will construe those mathematical predicates that are definable in one’s
language as logical constants.)

The foundations of Tarskian semantics reach deep into metaphysics,
but the link between models and reality may have some weak joints. In
particular, Tarski has never shown that the set-theoretic.structures that
make up models constitute adequate representations of all (formally)
possible states of aflairs. This issue is beyond the scope of the present
book, but two questions that may arise are the following: Is it formally
necessary that reality consist of discrete, countable objects of the kind that
can be represented by Ur-clements (or other constituents) of a standard set
theory? Does the standard model-theoretic description of all possible states
of aflairs have enough parameters to represent all relevant aspects of
possible situations (relevant, that is, for the identification of formally
necessary consequences)? These and similar questions lie at the bottom of

nonstandard models for physics, probablistic logic, and, if we put aside
formality, such discourse theories as *‘situation semantics.”
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6 Proof-Theoretic Perspective

The philosophical justification of the new conception of logic is based on
an analysis of certain semantic principles underlying modern logic. What
about proof theory? Should we not set proof-theoretic standards for an
ztdequate system of logic, for example, that it be complete relative to an
*“‘acceptable” deductive apparatus? The new logic, one would then object
surely fails to comply with this requirement! 1 think this judgement m
prej'mature. The ““new conception of logic™ is a result of reexamining the
philosophical ideas behind logical semantics in response to certain mathe-
matical generalizations of standard semantic notions (Mostowski and
others). There is no sense in comparing the generalized semantics with
current un- or pre-generalized proof theory. To do justice to the new
C({n.ccption from a proof-theoretic perspective, one has to cast a new
critical look at the standard notion of proof. This task may be cxactiné
bf:c:ause there is no body of mathematical generalizations in proof theory
directly parallel to *‘generalized logic” in contemporary model theory.
~However, if the new philosophical extension of logic based on semantics
is significant, it poses a challenge to proof theory that cannot be over-
looked. I can put it this way: if Tarski is right about the basic intuitions
underl‘ying our conception of logical truth and consequence, and if my
analysis is correct, namely that these intuitions are not exhausted by
standard first-order semantics, then since standard first-order logic has
equal semantic and proof-theoretic power (completeness), these intuitions
are not exhausted by standard first-order proof theory either. Semantically
we }?ave seen, it suffices to enrich the superstructure of first-order logic b):
adding new logical terms. But what has to be done proof-theoretically?
hope that future researchers will take up this question as a challenge.

Appendix

Chapter 2,' Section 2

DEFINITION | Let A beaset. A quantifier on A'is a function

q: P - {1 F}
such that if mr: A4 - Ais an automorphism (permutation) of 4, i.e., mis

one-to-one and onto A, then for every B < A,

qgumB)) = q(B),
where m(B) is the image of B under n.

It is easy to see that Boolean combinations of quantifiers on A are also

quantifiers on A.
DEFINFFON 2 Let o be a cardinal number. A 2-partition of o is a pair of
cardinals (5. ) such that f + y = a.

DEFNITION 3 Let (. 7), be the class of 2-partitions of «. A cardinality
Sfunction on 2-partitions of ais a function 1 (f, 1), = {T, F}.

urorem 1 (Mostowski 1957.) Let 4 be a set. Let . be the set of car-
{A|. Let 2 be the set.of quantifiers

dinality functions on 2-partitions of o =
7 onto 2 defined

on A. Then there cxists a one-to-one function /i from .

as follows:

Forany 1€ 7. h(t) = the quantifier g on 4 such that forany B A,

¢(B) = ((|Bl. 14 — B).

bolize a quantifier g on A4 as Q. Given a quantifier on 4, Q4,1

1 will sym
uation the car-

will call the cardinality function ¢ satisfying the above ¢q
dinality counterpart of Q4 and symbolize it as 9.
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