
5.2
LOGICAL QUANTIFIERS

Gila Sher

This chapter offers a logical, linguistic, and philosophical account of modern quan-
tification theory. Contrasting the standard approach to quantifiers (according to 
which logical quantifiers are defined by enumeration) with the generalized approach 
(according to which quantifiers are defined systematically), the chapter begins with 
a brief history of standard quantifier theory and identifies some of its logical, linguis-
tic, and philosophical strengths and weaknesses. It then proceeds to a brief history of 
generalized quantifier theory and explains how it overcomes the weaknesses of the 
standard theory. One of the main philosophical advantages of the generalized theory 
is its philosophically informative criterion of logicality. The chapter describes the 
work done so far in this theory, highlights some of its central logical results, offers an 
overview of its main linguistic contributions, and discusses its philosophical 
significance. 

I Standard Modern Quantifier Theory

1 Historical Beginnings

Modern quantifiers were first introduced by Frege (1879). The quantifiers All and Some 
were already recognized as logical operators by Frege’s predecessors, going all the way 
back to Aristotle. But Frege offered a new analysis of these operators that enabled him 
to deal with multiple-quantifier prefixes and, more generally, multiple nesting of quan-
tifiers. This, in turn, enabled him to extend traditional logic from a logic of “terms” 
(1-place predicates standing for properties) to a logic of relations. These changes revo-
lutionized logic. Among the many achievements of Frege’s theory, three are especially 
relevant for the present discussion: 

(a) Frege’s theory generated a considerably larger array of quantifiers than traditional 
logic: Starting with All as his basic logical quantifier, Frege construed not just the 
traditional Some, No, and Not All as (defined) logical quantifiers but also infi-
nitely many others, for example, Exactly n, At Least n, and At Most n, for every 
natural number n. 

(b) Frege’s theory offered a systematic interpretation of multiple-quantifier prefixes 
and other nesting quantifiers. 

(c) Frege’s expansion of logical quantifiers gave rise to languages with enormous 
expressive power. Extensive parts of natural language as well as the entire 
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language of classical mathematics and many segments of the language of science 
are expressible using his quantifiers. 

Frege regarded 1st-order quantifiers as 2nd-order functions or concepts. The 1st-order 
quantifier Some is the 2nd-order concept of nonemptiness, the 1st-order All is the 2nd-
order concept of universality. Using contemporary terminology, “( x) x” says that the 
extension of  is not empty, and “( x) x” says that the extension of  is universal.

Frege sanctioned both 1st-order and higher-order quantifiers. The former quantify 
over individual variables, i.e., variables ranging over individuals; the latter quantify 
over functional and predicative variables, i.e., variables ranging over functions, prop-
erties, and relations. For reasons that go beyond the scope of the present chapter (but 
see discussion of completeness in Section II.1 below), most logicians, linguists, and 
philosophers today focus on 1st-order quantifiers. In what follows I will limit myself to 
such quantifiers. 
Note: Throughout this chapter I am using contemporary terminology. 

2 Semantic and Proof-Theoretic Definitions of Quantifiers

Tarski (1933) developed a semantic definition of truth for languages formulated within 
the framework of modern logic. The recursive entries for the standard quantifiers—All 
( ) and Some ( )—are: given an assignment g of objects (in the intended universe) to 
the variables of the language,

( ) “( x) x” is true under g iff (if and only if) at least one object a (in the 
universe) satisfies “ x” under g;

( ) “( x) x” is true under g iff every object a (in the universe) satisfies “ x” 
under g;

where a satisfies “ x” under g iff it satisfies “ x” when all the free variables of “ x” 
other than x are assigned values by g. 

Gentzen (1935) developed a proof-theoretic method for defining logical constants in 
terms of introduction and elimination rules. Such rules tell us, for a given logical constant, 
under what conditions we can derive a statement governed by it from a statement (or 
statements) not governed by it, and under what conditions we can derive a statement 
(or statements) not governed by it from one governed by it. The entries for the standard 
logical quantifiers are, essentially:

( ) Introduction: (a) |— ( x) x
 Elimination: ( x) x |— (a) provided “a” plays a merely auxiliary role 
( ) Introduction: (a) |— ( x) x provided “a” is arbitrary
 Elimination: ( x) x |— (a)

where “a” is an individual constant and certain syntactic conditions are given for 
“ ‘a’ plays a merely auxiliary role” and “ ‘a’ is arbitrary.” Frege’s, Tarski’s, and Gentzen’s 
characterizations identify roughly the same quantifiers, though the last generalizes dif-
ferently from the first two. 
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II Strengths and Weaknesses of Standard Quantifier Theory

1 Logical Results

The logic of the standard quantifiers, i.e., standard 1st-order logic, is rich in logical, or 
rather meta-logical, results. Three results that are especially relevant for our discussion 
are:

(a) The Löwenheim-Skolem Theorem (1915/20): If a sentence  (set of sentences 
) has a model, it has a countable model, i.e., a model whose cardinality 

(i.e., the cardinality of its universe) is smaller than or equal to the cardinal-
ity of the natural numbers ( 0). 

(By definition, /  has a model iff there is a model M such that /all the sentences 
of  is/are true in M.) This result is naturally viewed as a limitation on the expressive 
power of standard 1st-order logic: Within the framework of this logic we cannot “seri-
ously” define the notion of “uncountably many” and many other infinitistic notions, 
since every consistent statement of the form “There are uncountably many F’s” comes 
out true in some countable model, i.e., a model in which there are only countably 
many F’s. This result is sometimes called “Skolem’s Paradox,” although it is not a 
real paradox. But it does imply that the representational powers of the standard 1st-
order quantificational languages are limited, since they cannot determine uniquely the 
intended meanings of formal terms and, as a result, the meaning of claims (or theories) 
containing such terms. For example, a consistent theory that says there are uncount-
ably many objects has a model (i.e., is true in a model) that does not have uncountably 
many objects. 

(b) The Completeness Theorem (Gödel 1930): Standard 1st-order logic has a 
complete proof system. I.e., A sentence  follows logically from a set of 
sentences  in the semantic sense ( |= ) iff it follows logically from it in 
the proof-theoretic sense ( |– ). 

The completeness result is perhaps the most important theoretical result of stand-
ard quantification theory. It says that in standard 1st-order logic the proof-theoretic 
relation of logical consequence is just as powerful as the semantic relation of logical 
consequence. This result is one of the main reasons most contemporary philosophers 
and logicians prefer standard 1st-order logic to standard (full) 2nd-order logic. (Full) 
2nd-order logic is incomplete: Its proof system is less powerful than its semantic 
system. 

One consequence of the completeness of standard 1st-order logic is the co-extension-
ality of the semantic and proof-theoretic definitions of the standard quantifiers. Since 
proofs, unlike models, are finite structures, this might be viewed as an advantage of the 
proof-theoretic definition over the semantic definition.

(c) The Compactness Theorem (Gödel 1930). Two significant formulations 
are: (i) If  follows logically from an infinite set , then it follows logically 
from a finite subset of ; (ii) If every finite subset of  has a model,  has a 
model. 
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The compactness result is naturally viewed as an advantage: it enables us to deal with 
infinite sets by dealing with their finite subsets. 

It should be noted, however, that the connection of these theorems to the standard 
1st-order quantifiers is not always simple. For example, compactness and completeness 
fail for logics like L , , which has formulas with arbitrarily large conjunctions and dis-
junctions, but finitely many quantifiers.

2 Linguistic Strengths and Weaknesses

Standard quantifier theory made a substantial contribution to linguistic semantics and 
syntax through the works of Geach (1962), Montague (1973), Kamp (1981), May 
(1985), Partee (1987), and numerous others. Not only did it allow linguists to analyze 
complex linguistic structures involving multiple-quantifier prefixes (e.g., “( x)( y),” 
“( x)( y)( z)”) and other nesting quantifier structures (e.g.,”( x)[( y) . . .  ( y)—]”), 
it enabled them to formulate important questions concerning quantifier scope, indefi-
nite nouns, anaphora, etc. A well-known problem of this kind is the quantificational 
structure of “donkey sentences,” i.e., sentences like 

(1) Every farmer who owns a donkey, beats it.

(See discussion in, e.g., Neale 1990.) Moreover, the theory of standard quantifiers 
played a central role in the development of important linguistic theories (for example, 
LF theory), the establishment of new semantic frameworks (for example, Montague 
grammar), and so on. 

But the expressive power of the standard quantifiers is linguistically very limited. 
Even such simple quantitative determiners as “most”, “few”, “half”, “an even number 
of”, “all but ten”, “finitely many”, “uncountably many”, and so on, cannot be expressed 
by any (well-formed) combination of standard 1st-order quantifiers. As far as quantifier-
structures in natural language are concerned, it is quite clear that standard quantifier 
theory offers no more than a preliminary framework for their study. 

3 Philosophical Strengths and Weaknesses

Standard quantifier theory has had a privileged status in contemporary analytic philoso-
phy since its birth in the early years of the 20th century. It is interwoven into most ana-
lytic theories, and its position has been sealed by such works as Quine’s influential Phi-
losophy of Logic (1970). Even philosophers who have challenged the standard theory have 
rarely viewed its choice of quantifiers as a problem. They have assigned  and  a large 
array of alternative interpretations, going all the way from the substitutional interpre-
tation (Marcus 1972) to the intuitionistic (Dummett 1973) and paraconsistent (Priest 
& Routley 1989) interpretations, but few have contested its restriction to the standard 
quantifiers. Perhaps the most celebrated feature of the standard theory is the completeness 
of its proof method, i.e., the fact that it is integrated into a powerful logic with a complete 
proof system (see above). This, indeed, is a desirable feature. For many, including Quine, 
the incompleteness of stronger quantifier theories justifies their rejection. 

But standard quantifier theory is also widely recognized to have many problems. Here 
I will focus on six problems of philosophical significance (some mentioned above, and 
some interrelated): 
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(a) Inability to Account for Basic Inferences

In his 1962 abstract, Rescher points out that standard “quantificational logic is unequal 
to certain childishly simple valid arguments” like “Most things are A’s, Most things are 
B’s; therefore: Some A’s are B’s”, and “Most C’s are A’s, Most C’s are B’s; therefore: 
Some A’s are B’s” (ibid.: 374). Since these inferences are of the same kind as the infer-
ences logic is designed to account for (for example,” All things are A’s, Some things are 
B’s; therefore: Some A’s are B’s”), this state of affairs is problematic. 

(b) Limited Logical Expressive Power 

As noted in Section II.2 above, many elementary quantificational notions, includ-
ing quantitative determiner notions like “most”, “few”, “half”, “finitely many”, and 
“uncountably many” are indefinable in terms of the standard quantifiers (and other 
standard logical constants). 

(c) Limited Formal Expressive Power

As demonstrated by the Löwenheim-Skolem Theorem (Section II.1(a) above), many 
formal (mathematical) notions, and in particular infinitistic notions like “uncount-
able”, are not only indefinable as logical notions within the standard quantificational 
framework but are also inadequately definable as nonlogical notions within that frame-
work. That is, it appears that the standard framework does not enable us to define them 
in a way that adequately captures their meaning. (In logicians’ terminology, it enables 
us to define “uncountable” only as a “relative” notion but not as an “absolute” notion.) 

(d) Absence of a Theoretical Criterion for Logical Quantifiers

It is a surprising fact about modern logic that it has a theoretical, precise, systematic, 
informative, and philosophically explanatory criterion for logical connectives but not 
for logical quantifiers or predicates. Logical connectives (at least in classical logic) have 
a precise and philosophically informative criterion, truth-functionality, which is given a 
mathematically precise definition by Boolean algebra. Every logical connective is repre-
sented by a Boolean operator in a 2-element Boolean algebra, and every Boolean opera-
tor of that kind determines a logical connective. Philosophically, every truth-functional 
connective—i.e., a connective that takes into account only the formal pattern of truth-
values of its arguments—is logical, and every logical connective is truth-functional. 
(On the philosophical ramifications of this criterion, see (e) below.) 

In contrast, for logical quantifiers and predicates we have nothing more than an 
utterly uninformative, unexplanatory, and unsystematic characterization, namely, a 
characterization by enumeration. All this characterization says is that  and  are logical 
quantifiers and = is a logical predicate, and that any quantifier definable from  and  
(using logical predicates and connectives) is also a logical quantifier, and any predicate 
defined from = (using other logical constants) is also a logical predicate. Why these rather 
than others are logical, why only these are logical, remains a mystery. We may try to justify 
the standard choice on pragmatic grounds, by appealing to custom or convenient fea-
tures of the associated logic (for example, completeness), but unless we add a theoretical 
dimension to such a justification it remains philosophically shallow. Furthermore, even 
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on purely pragmatic grounds, how do we know that a stronger 1st-order system, i.e., a 
1st-order system with additional logical quantifiers, will not give us an overall more 
desirable logic? The current situation is thus philosophically unacceptable. 

(e) Lack of Philosophical Understanding of Logicality

Given the central role that logic plays in all areas of knowledge, including philoso-
phy, the nature of logicality requires a theoretical account. The nature of logicality, 
however, has so far resisted such an account. One of the problems facing us is finding 
a fruitful standpoint from which to launch the investigation, i.e., a standpoint, or a 
perspective, which will enable us to formulate the question in a precise, systematic, 
and philosophically enlightening terms. It is quite clear that such a perspective requires 
an informative account of the logical constants. We know that logical truth, logical 
consequence, logical consistency, etc., are largely due to the logical constants involved; 
understanding the nature of the logical constants is therefore a prerequisite to a theo-
retical understanding of logicality. 

Our experience with sentential logic shows that a theoretical criterion for logical con-
stants can, indeed, make a significant contribution to our philosophical understanding 
of logicality. Philosophically, the truth-functionality of the logical connectives means 
that they abstract from everything but the bare truth pattern of their arguments, and 
this explains why logical consequences based on these connectives preserve truth rather 
than other features of sentences. Furthermore, this, together with the fact that truth-
functional connectives correspond to mathematical operators, i.e., operators governed 
by necessary laws, and the fact that the test for logical truth/consequence based on such 
connectives is truth/preservation-of-truth under all possible variations in truth patterns, 
explain some of the philosophically significant features of sentential logic. In particular, 
they explain its great generality, topic neutrality, immunity to (at least most) empirical 
discoveries, and necessity. A philosophically informative criterion for logical quantifiers 
(and predicates) is needed to extend this understanding to all of logic. 

(f) The Shaky Status of the Semantic Definition of Logical Consequence 
for Quantificational Logic.

In his 1936 paper, “On the Concept of Logical Consequence,” Tarski constructed a 
semantic definition of logical consequence for quantificational logic that established 
logical semantics (model theory) as one of the two major fields of contemporary logic, 
along with proof theory. Tarski’s semantic definition says that:

(LC) |=  iff every model of  is a model of  (or: there is no model in which 
all the sentences of  are true and  is false).

Tarski anchored his semantic definition in the intuitive idea that a logical consequence 
is a necessary-and-formal consequence. To determine the adequacy of his definition, he 
asked whether it accurately captured this idea. Investigating this question, he realized 
that the answer varies according to the choice of logical constants. For some choices of 
logical constants—for example, treating Is-a-Property-of-Napoleon as a logical quanti-
fier or treating  as a nonlogical constant—the answer is clearly negative, while for 
others, including the standard choice of logical constants, no conflict seems to occur. 
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But even in the latter case, Tarski realized, it is not clear that his definition fully cap-
tures the idea it was supposed to capture. Adding such nonstandard logical quantifiers 
as Finitely Many also accords with this idea. The scope and justification of the contem-
porary definition of logical consequence, thus, require a systematic criterion for logical 
quantifiers. 

A solution to all the above problems is offered by generalized quantifier theory.

III Generalized Quantifier Theory

1 Brief History

The history of generalized quantifiers starts with Mostowski (1957). Mostowski sug-
gested that we might generalize the standard notion of logical quantifier along two 
dimensions, syntactic and semantic. Syntactically, a logical quantifier is a variable-
binding operator that generates new formulas from old formulas. Semantically, a logical 
quantifier over a universe A is a cardinality function from subsets of A to a truth-value, 
satisfying a certain invariance condition. For example, the existential and universal 
quantifiers over A, A and A, are functions that, given a subset B of A:

(2) A(B) = T iff the cardinality of B, |B|, is larger than 0; i.e., iff |B| > 0.
(3) A(B) = T iff the cardinality of the complement of B in A is 0; i.e., iff 

|A–B| = 0.

It is easy to see that both  and  satisfy the following invariance condition:

(4) A quantifier Q on A is invariant under all permutations of A.

That is: For every A, B, B’, where A is a nonempty set and B, B’ are subsets of A: If B’ 
is obtained from B by some permutation of A, then: QA(B) = QA(B’), where a permuta-
tion of A is a bijection p: A A, i.e., a 1–1 function from A onto A. Using “ “ for “is 
a subset of” and “p*” for “the function on subsets of A induced by p”, we can spell out 
(4) by:

(5) If A is a nonempty set, B  A, B’  A, and there is a permutation p of A 
such that p*(B) = B’, then: QA(B) = QA (B’).

Generalizing, Mostowski arrived at the following criterion for logical quantifiers: 

(PER) A Quantifier Q is logical iff for any non-empty set A, QA is invariant 
under all permutations of A. 

Under this criterion, every 2nd-order 1-place cardinality predicate is a 1st-order logi-
cal quantifier, and every 1st-order logical quantifier is a 2nd-order 1-place cardinality 
predicate. Examples of logical quantifiers in addition to  and , are Most (interpreted 
as, say, “more than half”), An Even Number of, Finitely Many, Uncountably Many, 
and -Many for every cardinal number , finite or infinite. Such quantifiers appear in 
English sentences such as
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(6) Most things are beautiful.
(7) There is a finite number of stars.

They are symbolized by the formulas

(8) (Mx)Bx 
(9) (Fx)Bx,

using obvious abbreviations.
Examples of 2nd-order 1-place predicates that are not logical quantifiers are “some 

men”, “all women”, “is a property of Napoleon”, and “is a color property”. 
Lindström (1966) generalized Mostowski’s criterion further in two ways. First, he 

extended it to 1st-order predicates of all types (for example, “is red” and “=”), and 
second, he extended it to 1st-order quantifiers (2nd-order predicates) of all types (for 
example, “is a relation between humans” and “is symmetric”). 

Lindström’s criterion for logical quantifiers and predicates can be formulated as 
follows: 

(ISO) A Quantifier/predicate Q is logical iff for any Q-structure S, Q is invari-
ant under all isomorphisms of S. 

By a Q-structure S we mean a structure <A, 1, . . ., n>, where A is a nonempty set (the 
universe of S), and 1, . . ., n are elements or structures of elements of A of the same 
types as the corresponding arguments of Q. Let S = <A, 1, . . ., n> and S’ = <A’, ’1, . 
. ., ‘n>. We say that structures S and S’ are isomorphic—S�S’—iff there is a bijection 
(a 1–1 and onto function) f from A to A’ such that for 1 i i n, f*( i) = ‘i, where f* is 
induced by f. Q is invariant under all isomorphisms of Q-structures S iff for any Q-struc-
tures S, S’, if S�S’, then QA( 1, . . ., n) = QA’( ’1, . . ., ‘n). 

Among the new quantifiers/predicates satisfying ISO are, in addition to all the above 
examples of quantifiers satisfying PER, the identity predicate of standard 1st-order logic 
as well as nonstandard quantifiers such as the 2-place Most and Only, and the 1-place 
Symmetric and Well-Ordered. As the last two examples suggest, logical quantifiers, 
according to ISO, are not limited to (although they include all) cardinality quantifiers. 
Examples of a predicate and a quantifier which do not satisfy ISO are “is red” and “is a 
relation between humans”.

We can indicate the type of a given quantifier by an n-tuple representing the types of 
its arguments, using <1> for a property on, or a subset of, the universe; <1,1> for a pair 
of subsets of the universe; <2> for a 2-place relation on the universe, and so on. Quanti-
fiers of types involving only 1’s we call “predicative”, those of types involving at least 
one number larger than 1 we call “relational” or “polyadic”. Thus, the standard  and  
are predicative quantifiers of type <1>, but the 2-place Most is a predicative quantifier 
of type <1,1>, and the 1-place relational (polyadic) Symmetric is of type <2>. The last 
two are defined, semantically, as follows: 

Given a universe A, subsets B,C of A, and a binary relation R on A,
(M1,1) (M1,1)A(B,C) = T iff |B C| > |B–C|.
(S2) (S2)A(R) = T iff R is symmetric.

They appear in English sentences such as:
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(10) Most presidents are women.
(11) Equality is a symmetric relation.

Syntactically, these sentences have the logical forms:

(12) (M1,1x)(Px,Wx).
(13) (S2xy) Exy.

Literally, (13) say, “Symmetric xy, x = y”. It means something like “For x and y to be 
equal is for them to be symmetrically equal.” 

Tarski (1966) formulated essentially the same criterion, albeit in terms of permuta-
tions. As demonstrated by McGee (1996), a formulation in terms of isomorphisms is 
preferable. 
Note: the presentation of this section is based on Sher (1991).

2 Logical Results

Generalized quantifier theory has had a considerable impact on the development of 
mathematical logic since the 1960s. It has led to the development of a new field, model-
theoretic logic, and the establishment of numerous results. (For a representative collec-
tion of articles in this field see Barwise & Feferman 1985.) Two results of special interest 
are due to Lindström (1969, 1974) and Keisler (1970).

Lindström’s Theorem 

By offering a model-theoretic generalization of the notion of logical constant, Mostowski 
and Lindström created tools for comparing the strength of different 1st-order logical sys-
tems (with respect to their ability to define model-theoretic structures). These tools ena-
bled Lindström to arrive at an important characterization of standard 1st-order logic: 

(FOL) Standard 1st-order logic is the strongest logic that has both the com-
pactness/completeness and the Löwenheim-Skolem properties (see 
Section II.1 above).

Keisler’s Result

Keisler showed that completeness is not limited to standard 1st-order logic; some 
stronger logics are also complete. In particular 1st-order logic with the generalized 
quantifier Uncountably Many has a complete proof system. (In contrast, 1st-order logic 
with the quantifier At Least Denumerably Many does not.) Keisler’s result weakens 
the case for the standard 1st-order quantifiers based on completeness (see II.1. and II.3. 
above).

3 Linguistic Results

Generalized quantifier theory has led to a renaissance in linguistic semantics. We can 
divide its linguistic contributions into two: contributions to the study of natural-lan-
guage determiners, and contributions to the study of natural-language polyadic (relational) 
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quantifiers. In both cases the restriction to logical quantifiers is relaxed, but here we will 
limit ourselves to logical quantifiers. 

(a) Determiners

Determiners form an important linguistic category of noun modifiers (different from 
adjectives). Determiners include quantity modifiers that are naturally construed as quan-
tifiers. Some of these—for example, “all”, “every”, “each”, “any”, “a”, “some”, “at least 
(exactly, at most) one”—are naturally construed as the standard quantifiers,  and , or 
as quantifiers defined in terms of these. However, many quantitative determiners can-
not be analyzed using the standard quantifiers. A few examples are “most”, “few”, “half”, 
“more . . . than—”, “finitely many”, “uncountably many”, “ 0”, and so on. Generalized 
quantifier theory enables linguists to account for the semantics of all these determiners 
by treating them as predicative quantifiers. Among the pioneers in this field are Barwise 
& Cooper (1981), Higginbotham & May (1981), van Benthem (1983), Westerståhl 
(1985), and Keenan & Stavi (1986). 

Quantifiers representing determiners are for the most part of type <1,1>, and some-
times of more complex types, such as <<1,1>,1>. We have seen above how Most1,1 is 
defined. 1,1 is defined as follows: 

( 1,1) 1,1
A(B,C) = T iff |B C|>0

We may say that 1,1 is generated from 1 by relativizing it to a subset of the universe, B. 
Most existential quantifications in English have this (or some derivative) form. In the 
simplest case, linguists assign 

(14) Some B’s are C’s

the logical form 

(15) ( 1,1x)(Bx, Cx)

rather than 

(16) ( 1x)(Bx & Cx).

A determiner-quantifier of type <<1,1>1> appears in 

(17) More students than teachers attended the lecture, 

whose logical form is:

(18) (O<1,1>,1x)(Sx, Tx, Lx).

O<1,1>,1
 is defined by:

(19) O<1,1>,1
A(B,C,D) = T iff |B D| > |C D|.
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Linguists and logicians have developed a rich theory of the characteristic features of 
determiner-quantifiers. For an up-to-date account see Peters & Westerståhl (2006), 
Chs. 3–6.

(b) Relational or Polyadic Quantifiers

Generalized quantifier theory enables us to go beyond determiners to more complex 
quantificational structures. The study of relational or polyadic quantifiers in natural 
language has been pursued by Higginbotham & May (1981), Keenan (1987, 1992), van 
Benthem (1989), Sher (1991), and many others. The simplest relational quantifiers are 
of type <2>. We have already defined one relational quantifier of this type, Symmetric. 

One way to arrive at relational quantifiers is by combining predicative quantifiers 
in some order. In the simplest case, relational quantifiers of this kind correspond to 
linear quantifier-prefixes (of other quantifiers); in more complex cases they correspond 
to non-linear, branching or partially-ordered quantifier-prefixes. 

An example of a relational quantifier equivalent to a linear prefix of predicative 
quantifiers is 2, where 

(20) ( 2xy) xy

is logically equivalent to 

(21) ( 1x)( 1y) xy.

While 2 simply says “for every’ x there is a y such that”, a more intricate relational 
quantifier that resembles it but cannot be expressed by a linear prefix of ‘s and ‘s, says 
“Every x has its own y”. This quantifiers appears, for example, in

(22) For every drop of rain that falls, a flower grows, 
(23) Every family has its own misery. (Every family is unhappy in its own way. 

Tolstoy)

If we symbolize this quantifier by “ 2”, the logical structure of (22) and (23) is:

(24) ( 2xy)(Bx, Cy).

Other interesting relational quantifiers appear in: 

(25) Different students answered different questions on the exam. (Keenan 
1987)

(26) No three students answered the same number of questions. (ibid.)
(27) Most pairs of people are not married to each other.

An up-to-date discussion of relational (polyadic) quantifiers appears in Peters & West-
erståhl (2006), Ch. 10.

A special type of relational quantifier corresponds to a branching quantifier-prefix. 
But the branching prefix is more interesting when thought of as a complex prefix. Two 
examples of irreducibly branching quantifier-prefixes are:
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 ( x)( y)
(28)  xyzw. (Henkin 1959)
 ( z)( w)

 (M1x)
(29)  xy. (Barwise 1979)
 (M1y)

English sentences exemplifying these forms, or in the case of (29), the more complex 
form:

 (M1,1x) 1x
(30)  xy (Barwise 1979)
 (M1,1y) 2y

are:

(31) Some relative of each villager and some relative of each townsman hate 
each other. (Hintikka 1973)

(32) Most boys in my class and most girls in your class have all dated each 
other. (Variation on Barwise 1979)

The branching form raises interesting questions of interpretation. In particular, there is 
no consensus on the interpretation of non-monotone-increasing branching quantifiers 
(Q1 is monotone increasing iff Q1(B) = T, B C  Q1(C) = T) and on how to formulate 
a general semantic definition of branching quantifications that will deal with branching 
prefixes of any complexity. Most importantly, the branching form raises the question 
of compositionality, i.e., the question of whether the interpretation of logically complex 
formulas is always determined by that of their simpler components. The key issue is the 
structure of the branching prefix, which need not be a tree structure (but only a partial 
ordering). In addition to the works mentioned above, see Westerståhl (1987) and Sher 
(1990, 1997). For a further development (IF languages) and a discussion of composi-
tionality see Hintikka & Sandu (1989, 2001). 

4 Philosophical Results

Generalized quantifier theory provides solutions to all the philosophical problems 
plaguing the standard theory that were discussed in Section II.3 above. How successful 
these solutions are, is an open question. But generalized quantifier theory undoubtedly 
makes an important contribution to philosophy by creating a framework for confronting 
philosophical questions that were earlier thought to resist any systematic investigation. 
This is especially true of the last three questions, (d)–(f), which concern fundamental 
issues in the philosophy of logic.

Briefly, the solutions to the six problems raised in Section II.3 are:

(a) Basic (Non-standard) Logical Inferences

The problem of recognizing and accounting for basic inferences based on quantifier-
notions is largely, and perhaps fully, solved by the generalized theory. All inferences 
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based on such quantitative notions as “most”, “few”, “half”, “finitely many”, “as many 
as”, etc., can be accounted by this logic.

(b) Logical Expressive Power

This problem is also largely (perhaps fully) solved by generalized quantifier theory. All 
common quantitative notions, including all quantitative determiner notions, can be 
construed as logical notions in this theory. Indeed, every classical mathematical notion 
can be construed as a logical quantifier, predicate, or function according to this theory, 
often by transforming it to a 2nd-order notion. As a result, the expressive power of gen-
eralized 1st-order logic as a whole is very large. (See McGee 1966.) 

(c) Formal Expressive Power & the Löenheim-Skolem Theorem

In many systems of generalized 1st-order logic the Löenheim-Skolem theorem does not 
hold. As a result, formal or mathematical notions that lose their intended meaning 
in standard 1st-order logic retain their intended meaning in such systems. There are 
two possible ways of achieving this result: by constructing such notions as logical, and 
by constructing them as nonlogical within an appropriate generalized logical system. 
The first was noted in (b) above. We can, for example, construct the formal notion 
“uncountably many” as a logical quantifier, UNC1, defined, for an arbitrary universe A 
by:

(UNC1) UNC1
A(B) = T iff |B| > 0.

Since the interpretation of logical constants is built into the apparatus of models (see 
Sher 1991), UNC1 will preserve its intended meaning in every model. Sometimes, 
however, we prefer to define a formal notion as a nonlogical notion (for example, in 
order to explain its meaning or establish its properties). In this case we might be able 
to construct an appropriate generalized framework that blocks the Löenheim-Skolem 
theorem, and define the desired concept within that framework without subjecting it 
to the Löenheim-Skolem effect. (The gain in expressive power is not totally free; often, 
the price includes loss of compactness and other properties that make standard 1st-order 
logic easier to work with.) 

(d) A Theoretical Criterion for Logical Quantifiers

Generalized quantifier theory provides a criterion (necessary and sufficient condition) 
for logical quantifiers and predicates—ISO—that is as theoretical, systematic, precise, 
and comprehensive as is the truth-functional, Boolean criterion for logical connectives. 
Both criteria are essentially invariance criteria. The truth-functional criterion says that 
a sentential connective is logical iff it does not distinguish anything about its argu-
ments besides their bare truth value. ISO says that a quantifier/predicate is logical iff it 
does not distinguish anything about its arguments besides their bare formal structure. 
That is, logical connectives are invariant under all truth-preserving variations in their 
arguments; logical quantifiers are invariant under all structure-preserving variations in 
their arguments. Both criteria are also precise mathematical criteria: The sentential cri-
terion is based on Boolean algebra, the quantificational criterion is based on set theory 
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(most commonly ZFC). Finally, both criteria determine a maximal collection of logical 
constants, connectives, and quantifiers, respectively. In so doing, both sanction the 
existence of a far larger number of logical constants than one would anticipate based 
on (mere) intuition, indeed an infinite number of logical connectives and quantifiers. 
(The fact that we cannot reduce the collection of logical quantifiers to a small finite 
collection as in the case of the logical connectives is to be expected. The power of quan-
tificational logic is so much greater than that of sentential logic that it cannot have as 
simple a logical apparatus as the latter’s.)

(e) Philosophical Understanding of Logicality

For reasons indicated in the discussion of this topic in Section II.3 above, a theoreti-
cal criterion for logical constants can be instrumental in providing a philosophically 
informative characterization of logicality. What is the philosophical content of ISO? 
The idea of invariance under isomorphisms is a systematic rendering of the intuitive idea 
of being indifferent to, or not distinguishing, the individual characteristics of objects in 
any given universe of discourse. There is a very long tradition of viewing this idea as 
characterizing logic. Two examples, taken from Kant and Frege, are:

[General logic] treats of understanding without any regard to difference in the 
objects to which the understanding may be directed. 

(Kant 1981/7: A52/B76)

Pure logic . . . disregard[s] the particular characteristics of objects. 
(Frege 1879: 5)

ISO offers a precise characterization of this condition and places it at the center of our 
understanding of logic. To be logical is to abstract from, or disregard, everything about 
objects and their relations besides their formal features or structure. That is, to be logical 
is to be formal or structural in a very strong sense. (It is, in a certain sense, to be maxi-
mally formal or structural.) 

This characterization explains some of the intuitive features of logic: its high degree 
of necessity, extreme generality, topic neutrality, strong normativity, and even apriority 
(or quasi-apriority). Very briefly, since logical constants are formal, the laws governing 
them are necessary. Since logical constants apply regardless of what objects exist in the 
domain (universe of discourse), their laws are highly general and topic neutral. Since 
they are not affected by the empirical features of objects (or the laws governing these 
features), their laws are (largely) nonempirical. And since their invariance is greater 
than that of physical and other constants (which are not invariant under all isomor-
phisms), the laws associated with them are normatively stronger than those associated 
with other constants (logic does not have to obey the laws of physics, but physics has to 
obey the laws of logic). For sources and further discussion see Tarski (1966), Sher (1991, 
1996, 2008), McGee (1996), and others.

(f) Foundation of Logical Consequence

By providing a general criterion for logical constants (combining ISO for predi-
cates and quantifiers and the Boolean criterion for logical connectives), generalized 
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quantifier theory enables us to evaluate the adequacy of Tarski’s semantic definition of 
logical consequence. The question is whether Tarski’s model-theoretic test yields intui-
tively necessary and formal consequence in languages with logical constants satisfying 
the above criterion. The answer appears to be positive. Since (i) Tarskian consequences 
depend on the logical constants of the given language and on the apparatus of models; 
since (ii) according to the above criterion, logical constants are formal (in the sense 
of taking into account only the formal or structural features of their arguments); and 
since (iii) Tarskian models represent all formally possible situations relative to the given 
language, consequences based on formal constants satisfying Tarski’s test are necessary 
and formal. 

For a view claiming that the problem of logical constants is a “red herring”, see Etch-
emendy (1990). For a discussion of this and the other issues raised in (d)–(f), see Sher 
(1991, 1996, 2008).

5 Criticisms and Alternatives

To date, generalized quantifier theory has been criticized mostly on two grounds. 
Some of the criticisms (for example, Hanson 1997 and Gómez-Torrente 2002) con-

cern the applicability of ISO to natural language quantifiers. The critics present exam-
ples of natural-language quantifier expressions that purportedly satisfy ISO yet are intui-
tively nonlogical. They conclude that the characterization of logical constants should 
be pragmatic rather than theoretical. 

Other criticisms (for example, Feferman 1999) focus on more theoretical issues, like 
the relation between logic and mathematics and certain meta-mathematical features of 
quantifiers satisfying ISO (although here too, “gut feeling” plays a central role). Two 
logicians (Feferman 1999 and Bonnay 2008) offer alternatives to ISO, for example, 
invariance under homomorphisms (Feferman). For response to some of these criticisms 
see Sher (2001, 2003, 2008). 
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