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Abstract
In this paper I develop an account of truth and knowledge for
logic and mathematic. The underlying methodology is a syn-
thesis of holistic and foundational principles, logical and math-
ematical truth are based on indirect correspondence, and log-
ical and mathematical knowledge is quasi-apriori (as opposed
to being either empirical or purely-apriori).
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Logic and matheinatics are abstract disciplines par excellence. What
is the nature of truth and knowledge in these disciplines? In this pa-
per I investigate the possibility of a new approach to this question.
The underlying idea is that knowledge qua knowledge, including log-
ical and mathematical knowledge, has a dual grounding in mind and
reality, and the standard of truth applicable to all knowledge is a cor-
respondence standard. This applies to logic and mathematics as much
as to other disciplines; i.e., logical and mathematical truth are based
on correspondence. But the view that logical and mathematical truth
are (i) based on correspondence and (ii) require a grounding in reality
demands a change in the common conception of both correspondence
and epistemic grounding.

Before turning to this task, however, I have to address the ques-
tions (a) Do logic and mathematics, as highly abstract disciplines,
require a grounding in reality (or do humans need a logic and a math-
ematics that are grounded in reality)?, and (b) Is there is anything in
reality for logic and mathematics to correspond to? After giving posi-
tive answers to these questions, [ will turn to the traditional methodol-
ogy of grounding branches of knowledge in reality (“foundationalism”)
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and the traditional theory of truth associated witl¥ correspondence
(“copy”, “mirror”, or “isomorphism” theory), and I will propose an al-
ternative. A foundational methodology for logic and mathematu:?, I
will argue, ought to be holistic rather than foundationalist; but be§ng
holistic does not mean being coherentist. On the contrary. Grour}dmg
highly abstract disciplines in reality requires a large array of inter-
connected cognitive resources and a wide network of mterconne'c?ed
routes from mind to reality, and a holistic conception of cc‘)gmtlon
is better suited to explaining how these requirements are satlsﬁec‘l. I
will call the use of holistic methods to pursue the foundational project
“foundational holism”.

As for correspondence, traditionally correspondence is viewed as
based on a single and simple principle, one that assumes the same
form in all fields, be they largely observational or highly .abstract.
However, given the large array of fields and the substantial dfoerences
between them (for example, differences in the a§pects of reality they
study), this view is quite unreasonable. Likewise, t.he idea tha‘? th'e
correspondence between true statements (true theones.) and reality is
always simple or direct is unreasonable. Instead, I will suggest thaft
mathematical correspondence is “composite” (indirect).and that logi-
cal correspondence is closely related to it. I will describe a te.mplate
of composite correspondence that can be used for mathematics and
an associated template for logic, and I will show how these and othe;
elements of the present account equip it to solve some outstgn(i.lng
problems in the philosophy of logic and mathematics. l?ue to limita-
tions of space I will be able to offer only a general outline and a few
examples.

1 Truth in mathematics

Our first question is: If truth in mathematics is based on correspon-
dence, what is mathematical correspondence correspondenge with?
My proposed answer is that mathematica} corr(.aspondence is corre-
spondence with the formal layer (aspect, dimension, gtrgcture) ?f re-
ality, the layer of formal features, or formal “behawo'r s of obJec.ts.
This answer, however, raises two new questions, the critical guestlon
“Does reality have a formal layer or structure?” and t.he clarificatory
question “What do we mean by ‘formal’ ™ Starting with a somewhat
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vague characterization of the formal as sensitive to the patterns of
objects having properties and standing in relations but not to the
identity or type of objects involved (a more precise characterization
will be given shortly), let us turn to the first, critical, question. To
avoid a conflict with nominalists right at the beginning, let us think of
the ontology of individuals as limited to observable individuals. The
question, then, is: Do objects in the world have formal properties? My
answer is positive: Individuals (0-level objects) have the formal prop-
erty of self-identity; properties of individuals (1st-level objects) have
cardinality properties, which are formal; relations of individuals (1st-
level objects) have formal properties like reflexivity, symmetry, and
transitively, and so on. As for a precise characterization of formality,
I propose invariance under isomorphisms (Lindstrém, 1966) as cap-
turing the informal idea with which we have started. To see what is
meant by “invariance under isomorphisms”, let us define for each prop-
erty a class of argument-structures, i.e., a class of pairs consisting of
a universe and an argument of the given property in that universe.

An argument-structure of self-identity, for example, is a pair (4,a)

where A is a non-empty set of individuals and a is a member of A; an
argument-structure of a cardinality property is a pair, (A, B), where
A is as above and B is a subset of A, and an argument-structure of a
property like “is symmetrical” is a pair (A, R), where R is a binary re-

lation on A. These properties are invariant under isomorphisms in the

sense that they are preserved under isomorphisms of their argument-

structures: (i) a is self-identical, (A, a) & (A, a’)==a’ is self-identical,

(i) Exactly one individual is B (or all but two individuals are B),

(A, B) = (A’, B'y== Exactly one individual is B’ (all but two indi-

viduals are B’), and (iii) R is symmetric, (A,R) > (A", R == R is

symmetric.

Now, if formal properties are real (in the sense that objects in the
world—actual and potential—have, or could have, such properties),
then it is reasonable to surmise that such properties are governed by
laws. The question arises: Which discipline, if any, studies these laws?
Our answer is that mathematics does (or some of its parts do). To
see the force of this answer, suppose mathematics does not study the
laws governing properties of objects in the world. This would be quite
strange. It would be quite strange if arithmetic and set theory studied
the laws governing imaginary cardinalities but real cardinalities were
governed by altogether different laws. This does not mean that the
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only thing that mathematics does is study the formal laws governing
the behavior of objects and structures of objects in the world, but
that one important thing it does is study these laws.

Here, however, we come upon a puzzle: It appears that the formal
features of objects in the world are for the most part of a relatively
high level (2nd-level and above), but mathematical theories are for
the most part 1st-order theories. Why do arithmetic and set theory
study cardinalities as individuals (the numbers zero, one, two, ...} if
they are 2nd-level properties (ZERO, ONE, TWO, ...)?

My answer is that there could be many reasons why people prefer
to think of cardinalities as individuals and mathematicians prefer to
study them by Ist-order theories. For example, it is quite possible
that we, humans, work better with individuals and their properties
than with properties and their properties. It is easier for us to figure
out, and present in a systematic manner, the laws governing cardinal-
ities when we think of cardinalities as individuals than as 2nd-level
properties. The main issue is: Is it possible to account for 2nd-level
phenomena. accurately and systematically by 1st-order theories?

The answer to this question is quite clearly positive. Mathematics
may study cardinalities indirectly yet accurately and systematically.
Before we further elaborate on this answer, let us reflect, more gener-
ally, on some of the factors involved in humans’ ability (or inability)
to reach the world cognitively and develop a standard of truth for
theories (statements, thoughts, beliefs) about it. Four such factors
are:

{(a) The complexity of the world.
(b) Our desire to know and understand it in all its complexity.
(c) The mind’s cognitive limitations.

(d) Its intricate cognitive capacities.

These factors introduce some tensions into the two projects of theo-
rizing (thinking) about the world and constructing a truth standard
for our theories (thoughts) about it. But they also point to a solution.
In particular, they suggest that we approach these projects with the
following principles as guidelines:
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(a) Seek a fruitful balance between unity and diversity. (Dyson,
1988, p. 47)

{b) Access reality holistically.

The first principle suggests that instead of either radical monism or
radical pluralism with respect to truth, we adopt a family of diverse
yet unified standards of truth. E.g., instead of either a single and sim-
ple correspondence standard of truth or radically divergent standards
of truth for different fields (correspondence for physics, coherence for
mathematics), we allow a family of correspondence standards that can
take into account the special needs of different fields. The second prin-
ciple says that in accessing reality we are free to use all the resources
available to us (including those involving non-vicious circularity), and
that using these resources we are free to forge multiple routes to re-
ality, including multiple correspondence routes. Correspondence, on
this conception, is not a “mirror” or a “copy” or even an “isomorphism”
relation between language and reality, but rather a family of interre-
lated connections between the two. These connections enable us to
say “of what is that it is and of what is not that it is not” in an accu-
rate, if at times circuitous (indirect, composite, multi-staged), ways.
As a standard, correspondence sets substantial yet flexible conditions
on our discourse, requiring an appropriate truth-conferring connec-
tion between our discourse and reality, given our resources, reality,
and what aspect(s) of reality we are speaking about. (The exact con-
tent of these conditions may change in the course of history, reflecting
changes in our resources, our understanding of reality, and what as-
pects of reality we are interested in.)

‘Turning back to mathematics, our question was whether it is pos-
sible to accurately account for the formal aspect of reality, which is
largely higher-level, by Ist-order mathematical theories. It should now
be clear why a positive answer to this question is, in principle, justified.
One way in which we can account for 2nd-level phenomena through
Ist- and O-level thoughts is by introducing an intermediate layer of
posits into our picture of reality. For example, we can create a posited
layer of mathematical individuals and their properties (levels 0 and
1) that systematically represents 2nd-level cardinality properties and
their (3rd-level) properties. Mathematical correspondence will then
be circuitous yet accurate. Starting with reference, we can display the
difference between simple and “composite” reference as follows:
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Simple Reference Composite Reference

Lang.: Ind. Consts® Predicates! Lang.: Ind. Consts® Predicates!

1 1
l j Posit: Individuals® Properties?
1 4

World: Individuals® Properties’ World: Properties? Properties®

Turning to correspondence, consider the 1st-order arithmetic truths
“24+7 =9 and “(Ym)(Vn)(m + n = n + m)”’. We can describe their
composite correspondence-conditions as follows:

Composite Mathematical Correspondence

1st-Order Language: “2 47 =9 is true
iff
Posits: +(2,7) =9
iff
Reality: DISJOINT-UNION(TWO, SEVEN) = NINE
[iff
(VPIWVYP2)((TWO(P1) & SEVEN(PDHY & P1Nn P2 = D
NINE(P1 U P2))|
1st-Order Language:“(¥Ym)(¥n)(m +n = n + m)” is true
iff
Posits: The operation of addition is symmetric
iff
Reality: DISJOINT-UNION IS SYMMETRIC.

Three advantages of the composite correspondence principle of math-
ematical truth together with the other alethic and epistemic principles
delineated above are:

(a) They enable us to provide a substantive account of mathemat-
ical truth.

(b) They enable us to integrate this account in a unified corre-
spondence account of truth.

{c¢) They lead to solutions to outstanding problems in the philoso-
phy of mathematics (the large ontology problem, the identity
problem, and the applications problem), as well as to progress
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toward solutions to other problems (the cognitive access prob-
lem and the “mathematics as algebra” problem). This will be
discussed in Section 4 below.

2 Truth in logic

If truth is correspondence throughout, then logical truth, to the extent
that it is a genuine type of truth, is also based on correspondence.
Similarly, the other semantic properties (relations) associated with
logical truth—Ilogical consequence, logical consistency, etc.—are based
on principles related to correspondence. This means that logic has
as much to do with the world as it does with the mind (language,
concepts, etc.), and the first question we are facing is, therefore: What
does logic have to do with the world?
My answer is:

(a) Logic has to “work” in the world. This point was already noted
by Russell. Speaking about logical laws (the “law of identity”,
the “law of contradiction”, the “law of excluded middle”), Rus-
sell says that “what is important [with respect to these laws]
is mot the fact that we think in accordance with [them], but
the fact that things behave in accordance with them”. It
is this that is responsible for “the fact that when we think in
accordance with them we think truly”. (Russell, 1959, p. 34,
my bolding)

(b) There have been cases of factual error in logical theories, and
some say there still are. The most dramatic example of a dis-
covery of a factual error in a logical theory is the discovery
of an error in Frege’s logic by Russell. Frege's logic, Russell
discovered, affirms the existence of a set that does not, and
cannot, exist. Moreover, advocates of so-called nonclassical
logics (fuzzy logic, quantum logic, etc.) claim that classical
logic fails to work in the world and this is naturally under-
stood as due to errors in understanding the formal structure
of reality.

(¢) Logic is both constrained and enabled by reality through its
inherent connection with truth. (This is a theoretical rendition
and expansion of a point noted briefly in the citation from
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Russell above.) Consider the case of logical consequence, ¥ |=
o, where the truth-conditions of both o and the sentences in
¥, are based on correspondence principles. Say, o is true iff the
situation &, is the case, and the sentences in ¥ are true iff &,
is the case. For o to be a logical consequence of X, the truth
of the sentences in ¥ (assuming they are all true) has to be
transmitted to (or preserved by) o with an especially strong
modal force. But because the truth of o and the sentences in
¥ is a matter of whether €5 and &; are the case, €; must be
connected to E; with an especially strong modal force as well.
The relation between logical consequence and reality is, thus,
as in the following diagram:

Logie: Yo

0
Truth: T(%) = T(o)

g
World: &y — &,

where => and — have an especially strong modal force.

This relation means that the world both counstrains and gives rise to
logical consequences, or that the world can both falsify and justify
logical-consequence claims. Starting with falsification, the point is
that we cannot choose a logical theory without paying attention to
the world. In particular, if our chosen logical theory says that £ = o
but in the world one of the following three situations is the case:

(a) €; but not &,,
(b) €; and €5, but no law connects &; to €,

(¢) &, &;, and some law connects &; to €;, but this law is not
sufficiently strong for logical consequence,

then our chosen theory is wrong: ¢ is not a logical consequence of ¥.

One way in which the world can give rise to logical consequences
or support {provide positive evidence) for logical-consequence claims
is:

(d) &y, €5, and &, is connected to €, by a law whose modal force
is sufficient for logical consequernce.
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The questions arise: What modal force is sufficient for logical conse-
quence? Are there laws possessing such modal force? My proposal is
that the modal force sufficient for logic is that of formal laws (laws
that hold in all formally possible states of affairs), and that there are
such laws, namely those studied (directly or indirectly) by mathemat-
ical theories like arithmetic and set theory. We have already seen that
objects in the world have formal properties and that it is reasonable
to surmise that these properties are governed by laws. We have also
seen that arithmetic and set theory study these laws. An example of
such a law and the logical claim it grounds is:

World: UNIVERSALITY OF A — UNIVERSALITY OF AU B

4

Truth: T[(Vz)Az] = T[(Vz)(Azr Vv Br))
4

Logic: (Vz)Az = (Vz)(Ax v Br),

where A and B are the properties denoted by “A” and “B”, respec-
tively. The logical form of sentences standing in the relation of logical
consequence is determines by their (linguistic) formal parameters (“v”
and “V” in the example above), and these parameters are formal in
virtue of representing the (objectual) formal parameters of the situa-
tions corresponding to these sentences (UNIVERSALITY and U).

Our account unites logic with mathematics in a way that is in some
respects similar to logicism. Like logicism, it unifies the two disci-
plines, thereby replacing two foundational tasks—the task of ground-
ing logic and the task of grounding mathematics—by one. However,
unlike logicism, it provides a grounding not just for one of these dis-
ciplines (logicism grounds mathematics in logic leaving logic itself un-
grounded), but for both: both logic and mathematics are grounded
in the formal. On this conception, the relationship between logic and
mathematics is a back and forth relationship: we use our mathemati-
cal knowledge (knowledge of the formal) to construct our logical sys-
tem, and we use our logical system as a framework for constructing
mathematical theories. (Think of the mutual relationships between
1st-order logic and set theory, each having played an important role
in the development of the other.)

Under this conception, logical constants are referring constants and
logical truths are based on correspondence with formal laws governing
reality. Logical reference and correspondence have two dimensions: a
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stinple, 1-step dimension, in which they are directly connected to cer-
tain features of reality, and a composite, 3-step dimension, in which
they are connected to the same features of reality indirectly through
mathematical reference and correspondence. The former dimension is
ontologicael, the latter—epistemic. Logical laws are grounded in largely
higher-level formal laws, but these laws are known to us through
lower-level mathematical theories and lower-level posits. An exam-
ple of these two dimensions is:

Simple Logical Reference

Logical language: “F* (2nd-order predicate serving as
Ist-order quantifier)
¥
World: (2nd-level property of) NON-EMPTINESS

Simple Logical Correspondence
Logical language: “~Fx)(Px & ~Pz)’

g
World: EMPTY[P n COMPLEMENT(P) IN A,
where A is a given universe

But to know this and more complex formal laws governing the world,
logic turns to mathematics, which establishes them, often indirectly, as
1st-level laws. Therefore, in the order of knowledge, logical reference
and correspondence may very well be indirect:

Composite (3-layered) Logical Reference

Logical language: “qr
4
Mathematical language: >0 AR
4
Posit: being larger than (the individual) 0 /
being different from (the individual) {
4

World: NON-EMPTINESS (of properties of individuals)
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Composite (3-layered) Correspondence

Logical language: “~Jz)(Px & ~Px)”
Mathematical language: “pn complerjient(p) =

Posit: Empty|intersection(p, complement(p) in A)]
World: EMPTY [P N COMIIELEMENT(P) in A|

3 Knowledge in logic & mathematics

Logical and mathematical knowledge, on the present proposal, has
several distinctive features:

(a) It is grounded in reality, yet it is holistic.

(b) It is grounded in the same reality that scientific knowledge is
grounded in, yet in different features of this reality. It follows
that there are no two separate realities, a Platonic reality that
grounds the abstract sciences (including logic and mathemat-
ics) and a mundane reality that grounds the empirical sciences,
but there is a single reality with diverse features that grounds
both.

(c) The grounding of logical and mathematical knowledge in re-
ality can be either direct or indirect (with the possibility of
various combinations of the two).

(d) Logical and mathematical knowledge is grounded not just in
reality but also in the mind. Its grounding in the mind is both
passive and active. On the one hand it is both constrained and
enabled by our biological, psychological, cultural and other
resources; on the other hand we are always free to devise new
ways of expanding our knowledge and improving its quality:
new tests, new forms of evidence, new concepts, etc.

(e) Logical and mathematical knowledge is neither purely apri-
ori nor empirical in the sense of relying primarily on sensory
perception. Instead, it is quasi apriori. We can represent the
contrast between our conception and the traditional concep-
tion by a line with five regions:
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]
I i B

g
I
A B C D E

A is the (almost infinitesimally) narrow space of absolutely sensory
cognition, i.e., cognition for which not even the slightest influence of
reason is permitted; E is the (almost infinitesimally) narrow space of
absolutely reason-based cognition, i.e., cognition for which not even
the slightest influence of sensory experience is permitted; and B-D
are the large intervals of cognitions that can in principle be based
both on sensory perception and on reason in various combinations
and in a gradually increasing ratio of the latter to the former. In tra-
ditional epistemology the apriori-aposteriori division has on one side
the (almost infinitesimally) narrow region E and on the other side
essentially the whole line of knowledge, from A to (and including)
D. This is a very uneven division and, moreover, it is a division with
sharp boundaries. Logical and mathematical knowledge fall on the
(almost infinitesimally) narrow side of this division—it is purely apr-
ori, i.e., strictly limited to E. As such its resources are very limited
in the sense that no combination of experience and reason is available
to it. In contrast, aposteriori, or empirical knowledge has a wide ar-
ray of resources, being entitled (in principle) to all combinations of
sense-based and reasoun-based cognitive elements. Given this uneven
distribution of cognitive resources hetween logical and mathematical
knowledge on the one side and scientific knowledge on the other, it
is not surprising that the task of explaining logical and mathematical
knowledge within traditional epistemology is especially difficult and
has led philosophers to resort to extreme measures. Two such mea-
sures are (i) postulating a separate abstract (Platonic) reality and
(ii) viewing logical/mathematical knowledge as {purely) conventional
(thereby giving up on genuine truth in these fields).

On the present (foundational holistic) account, regions A and E
are eliminated as epistemically significant regions. Human knowledge
consists of three continuous (i.e., not sharply divided) regions: the
region of largely observational knowledge—B; the region of more the-
oretical scientific knowledge—C; and the region of highly abstract
knowledge—D. Logical and mathematical knowledge resides in D.
Due to the special nature of its subject-matter, the formal, such knowl-
edge is quasi-apriori. l.e., its use of cognitive resources is characterized
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by a relatively high ratio of reason-based to sensory resources. But
we do not rule out cases in which empirical considerations make a
significant contribution to changes in mathematics and logic. Among
other things, we allows that occasionally empirical discoveries point
beyond themselves to phenomena that are highly abstract in nature.

4 Solution to outstanding problems in the philos-
ophy of logic and mathematics

Our account offers a solution to a number of outstanding problems in
the philosophy of logic and mathematics, and makes significant steps
toward a solution to others.

4.1 Problems in the philosophy of mathematics
4.1.1  The large ontology problem

The problem is to explain the large ontology of mathematics. This
is thought to be especially difficult if mathematics is true about the
world since the number of individuals in the world appears to be much
smaller than that required by mathematics,

On our account, the large ontology of mathematical individuals is
an ontology of posits and as such need not be limited to the ontol-
ogy of real individuals (whatever this is). As for the question, “Why
does a theory of the formal need a very large posited ontology?”, our
answer is: Laws in general are counterfactual in scope, and as such
hold for, and may be best formulated in terms of, a counterfactual
ontology that. being counterfactual, might be larger than the “actual”
ontology. Due to the especially high degree of invariance of formal
properties, formal laws have an especially large counterfactual scope;
hence they require an especially large posited ontology. For example:
to express the laws of finite cardinalities in complete generality, we
need an ontology on the order of the denumerable ontology of the
natural numbers, and to express the formal laws governing a denu-
merable ontology (laws like the law of power-set cardinality) we need
an ontology on the order of the indenumerable ontology of ZFC.

4.1.2 The identity problem (Benacerraf, 1965)

The problem, as formulated by Benacerraf through an example, is:
Zermelo’s 2 is {{0}}. von Neumann’s 2 is {0, {0} }; which is the real 27
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Our solution to this problem is straightforward: Since 2 is a posit
representing the 2nd-level property TWO, it does not matter whether
we construe it as {{@}}, using Zermelo’s method, or as {, {0}}, using
von Neumann’s method (so long as we are consistent). The two are
different but equally good representational methods.

4.1.83  The application problem

The problem is how results concerning mathematical objects, which
are highly abstract, can apply to physical objects, which are not ab-
stract.

This question is especially difficult for radical Platonists, who be-
lieve in two disconnected realities, an abstract reality and a physical
reality, and for radical conventionalists, who believe that mathemat-
ics is purely conventional and as such disconnected from reality. But
on the present account this problem does not arise: physical objects
have formal properties, and therefore laws governing these properties
apply to them (directly or indirectly) in an unproblematic way.

4.1.4 The cognitive-access problem (Benacerraf, 1973)

Benacerraf’s cognitive-access problem is the problem of how, given
that our only access to reality is causal, we have access to mathe-
matical objects, which do not stand in causal relations to us (or to
anything else, for that matter).

Our response has two parts. First, we question the assumption
that humans’ only access to reality is causal; second, we point to the
existence of a large network of routes from mind to reality (combining
both causal and non-causal elements) that were not considered by Be-
nacerraf. Both points are based on our foundational holistic methodol-
ogy. The access question has so far been asked from two perspectives,
a foundationalist perspective and an anti-foundational perspective,
but not from the perspective of foundational holism. Foundational
holism, with its rich and multi-layered conception of cognitive access
to reality and its view of mathematics as quasi-apriori, questions the
exclusiveness of causal access to reality, and suggests other ways of
accessing it.
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4.1.5  The “mathematics as algebra” problem

If mathematics is a theory of the formal, what is the status of algebraic
theories, theories that seem to study structures for their own sake?
The present approach points to two ways in which this problem
can be dissolved. First, mathematics is a broad and multi-faceted
discipline with a variety of interests. One of its central interests is
a theory (or theories) of the formal (or of various aspects thereof),
but it has other interests as well. Second, algebraic theories offer
potential models of phenomena in the world (as it is or as it could have
been), i.e., models of some states of affairs, but not all; The difference
between, say, arithmetic and group theory is, then, this, that while
in all formally-possible states of affairs properties of individuals have
cardinalities, not all formally-possible structures are group structures.

4.2 Problems in the philosophy of logic

The situation in the philosophy of logic is quite different from that in
the philosophy of mathematics. While philosophers of mathematics
have, for a long time, been aware of the need to establish the veridi-
cality of mathematics, explain how mathematics works in the world,
and clarify the nature of mathematics in a systematic and theoretical
manner, philosophers of logic have often neglected these tasks with re-
spect to logic. One exception is Russell who, as we have noted above,
was fully aware of the importance of the questions of veridicality and
“how it works in the world” for understanding logic. In addition, Rus-
sell was fully aware of the need for, and the difficulty of, explaining
the nature of logic:

The fundamental characteristic of logic, obviously, is that
which is indicated when we say that logical propositions
are true in virtue of their form. ... [ confess, however,
that I am unable to give any clear account of what is
meant by saying that a proposition is “true in virtue of
its form”. (Russell, 1938, p. xii)

The present paper has offered a solution to these questions, if only in
an outline form. (For discussion of related issues see Sher, 1991, 2008,
in press.)
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